Mosquito Isolates of Ross River Virus from Cairns, Queensland, Australia

Total Page:16

File Type:pdf, Size:1020Kb

Mosquito Isolates of Ross River Virus from Cairns, Queensland, Australia Am. J. Trop. Med. Hyg., 62(5), 2000, pp. 561–565 Copyright ᭧ 2000 by The American Society of Tropical Medicine and Hygiene MOSQUITO ISOLATES OF ROSS RIVER VIRUS FROM CAIRNS, QUEENSLAND, AUSTRALIA DAVID HARLEY, SCOTT RITCHIE, DEBRA PHILLIPS, AND ANDREW VAN DEN HURK Australian Centre for International and Tropical Health and Nutrition, The University of Queensland, Medical School, Herston Road, Herston, Queensland, 4006, Australia; Tropical Public Health Unit, Cairns, Queensland, Australia; Centre for Public Health Sciences, 39 Kessels Road, Coopers Plains, Queensland, 4108, Australia; Department of Microbiology, The University of Queensland, St. Lucia, Queensland, 4072, Australia Abstract. During 1996–1998 60,619 mosquitoes were collected around Cairns, Australia and processed for Al- phavirus isolation. Thirty-three isolates of Ross River (RR) virus were made from 9 species, Aedes imprimens, Aedes kochi, Aedes notoscriptus, Aedes vigilax, Culex annulirostris, Culex gelidus, Mansonia septempunctata, Verrallina (formerly Aedes) carmenti, and Verrallina lineatus. Attempts to isolate RR virus from 121 Aedes aegypti were unsuccessful. Twenty-six (79%) of the isolates came from within 1 km of a colony of spectacled flying-foxes, Pteropus conspicillatus. The minimum infection rate for these mosquitoes was 1.0 compared with 0.2 per 1,000 for mosquitoes trapped at all other sites. Ross River virus has not previously been isolated from Ae. imprimens, Cx. gelidus, Ma. septempunctata, Ve. carmenti, or Ve. lineatus. This is also the first isolation of an arbovirus from Cx. gelidus in Australia. In conclusion, the vector status of Ve. carmenti, Ae. aegypti and Ma. septempunctata warrants further study. This study also provides evidence that P. conspicillatus may be a reservoir host. Ross River (RR) virus is a mosquito-borne Alphavirus that this paper were 1. to determine what mosquito species are occurs in Australia, Papua New Guinea, and the Solomon infected with RR virus in the Cairns region, and 2. to com- Islands.1–3 Human infection may cause arthralgia and arthri- pare the minimum infection rates for mosquitoes collected tis, possibly persisting for long periods.4,5 The average num- Յ 1 km and Ͼ 1 km from a spectacled flying-fox (Pteropus ber of notified cases in Australia during 1991–1996 was conspicillatus) camp. 4,800 with a maximum of 7,823 in 1996 and a minimum of 2,602 in 1995. The majority of notifications come from MATERIALS AND METHODS Queensland,6 especially north Queensland. During 1989– 1992 the incidences in Cairns and Townsville, provincial cit- Mosquito collections. Centers for Disease Control and ies in the north, ranged from 131 to 233 and 150 to 367, Prevention (CDC) traps27 were set between 3.45 and 6.25 respectively, while the incidence in Brisbane, the state cap- PM, and collected between 7.45 and 9.30 AM. Traps were ital in the southeast, ranged from 17 to 96 per 100,000 per baited with 1-octen-3-ol (release rate 5 mg/hr)28 and 500 gm annum.7 In Cairns the majority of cases of human disease of dry ice. Twenty trapping sites were used, 14 within the occur during February to April (Tulip F, unpublished data). city of Cairns. Trapping was on 12 nights during 1996 (early In Australia the natural reservoir hosts for RR virus are February to late March), 6 nights during 1997 (early Feb- kangaroos and wallabies but other species, including horses, ruary to early April), and 1 night during 1998 (mid Febru- may act as urban reservoirs for human infection.3,8–10 Sero- ary) for a total 60 trap-nights. Two trap-nights were within logical surveys and virus isolation from mosquitoes trapped suburban yards, otherwise trapping was in Melaleuca near a flying fox camp suggested flying foxes might be res- swamps and other natural habitats in and around Cairns. ervoir hosts.8,11,12 However, Ryan and others concluded that One of the trapping sites contained a flying-fox camp with the gray-headed flying-fox, Pteropus poliocephalus, was not about 15,000 spectacled flying-fox, P. conspicillatus (Olson an important reservoir host because only 10 of 510 (2%) A, unpublished data). In the camp the swamp canopy is Aedes vigilax that fed on infected flying-foxes were infected dominated by the paperbark Melaleuca quinquenervia, with with RR virus after an extrinsic incubation period, and be- Pandanus sp., and Archontophoenix alexandrae (Warming- cause RR virus could not be detected in any of 122 blood- ton D, unpublished data). Trapping was performed in this fed Ae. vigilax immediately after feeding on infected P. po- camp in early February 1996 and mid February to early liocephalus.13 April 1997 for a total of 9 trap-nights. Trapping was also The major vectors of RR virus in Australia are considered performed in a swampy area approximately 600 meters from to be Culex annulirostris, Ae. vigilax, and Aedes camptor- the camp on nights in mid March 1996 and early February hynchus.9,14–18 Ross River virus has been isolated from 27 to mid March 1997 for a total of 11 trap-nights. In order to mosquito species in Australia comprising 19 Aedes, 2 compare RR virus isolation rates with other trapping sites Anopheles, 1 Coquilletidia, 5 Culex, 1 Mansonia, 3 undes- results from these 2 flying-fox camp associated sites were cribed species, and an unidentified species of Triptero- pooled. ides.12,16,19–21 However, the vector status of most of these is On 21 days during mid February to early May 1997 day- unknown.14 Aedes polynesiensis and Aedes aegypti may have time sampling for Ae. aegypti was conducted in, around or transmitted RR virus in a large epidemic in the South Pacific under houses using either a hand-held battery-powered as- in the late 1970s and early 1980s.22,23 There is laboratory pirator29 or a sweep-net. evidence that Ae. aegypti can be infected with and transmit Virus isolation. Sweep-net, aspirator, and CDC trapped RR virus, however RR virus has not been isolated from this mosquitoes were identified by species, pooled in lots of up species in the field.24–26 The goals of the study reported in to 100 individuals, and stored at Ϫ70ЊC prior to transport on 561 562 HARLEY AND OTHERS TABLE 1 Ross River virus isolates from mosquitoes collected in Cairns, Queensland, Australia from February 1996–February 1998 No. No. of No. of MIR/1,000 Mosquito species processed pools isolates mosquitoesa Aedes aegypti 121 18 0 0.0 Aedes alboscutellatus 423 16 0 0.0 Aedes alternans 2 2 0 0.0 Aedes aurantius 50 8 0 0.0 Aedes imprimensc 99 19 1 10.3 Aedes kochi 11,405 176 2 0.2 Aedes lineatopennis 1 1 0 0.0 Aedes littlechildi 3 1 0 0.0 Aedes normanensis 2 1 0 0.0 Aedes notoscriptus 637 46 1 1.6 Aedes palmarum 37 17 0 0.0 Aedes quasirubrithorax 3 2 0 0.0 Aedes tremulus 45 22 0 0.0 Aedes tremulus (male) 15 5 0 0.0 Aedes vigilax 3,308 103 1 0.3 Aedes vittiger 11 3 0 0.0 Anopheles annulipes 4 2 0 0.0 Anopheles bancroftii 24 8 0 0.0 Anopheles farauti 402 31 0 0.0 Bironella simmondsi 8 5 0 0.0 Coquillettidia crassipes 22 12 0 0.0 Culex annulirostris 30,541 378 9 0.3 Culex annulirostris (male) 5 3 0 0.0 Culex bitaeniorhynchus 4 1 0 0.0 Culex cubiculi 31 8 0 0.0 Culex gelidusc 257 17 1 4.0 Culex hilli 15 3 0 0.0 Culex pullus 37 14 0 0.0 Culex quinquefasciatus 50 13 0 0.0 Culex sitiens 250 21 0 0.0 Culex starckeae 2 2 0 0.0 Mansonia septempunctatac 913 44 3 5.8 Mansonia uniformis 52 13 0 0.0 Mansonia uniformis (male) 1 1 0 0.0 Tripteroides magnesianus 1 1 0 0.0 Tripteroides sp. 10 2 0 0.0 Uranotaenia pygmaea 5 1 0 0.0 Uranotaenia sp. 35 5 0 0.0 Verrallina carmentib,c 6,146 124 14 2.4 Verrallina funereus 975 42 0 0.0 Verrallina lineatusc 4,644 110 1 0.2 Verrallina lineatus (male) 1 1 0 0.0 Unidentified 22 4 0 0.0 Total 60,619 1,306 33 0.6 a Minimum infection rate (MIR) after Chiang and Reeves.30 b Includes 6 isolates from a preliminary study.39 c First recorded isolate from this species. dry ice to the Centre for Public Health Sciences in Brisbane, were Alphavirus non-reactive were discarded. Repeat isola- Queensland, Australia. Blood-fed mosquitoes were not pro- tions were performed for confirmation. cessed for virus isolation. The method used to isolate virus Minimum infection rates (MIRs) per 1,000 mosquitoes was described by Ritchie and others.12 Pools of up to 25 were calculated using the method of Chiang and Reeves.30 mosquitoes were homogenized by hand in 2 mL cold RPMI- 1640 (Roswell Park Memorial Institute medium) containing RESULTS 0.2% bovine serum albumin. The homogenates were then centrifuged; 100 ␮L of supernatant was inoculated onto con- A total of 60,619 mosquitoes encompassing 8 genera and fluent monolayers of C6–36 (Aedes albopictus) cells in 25 35 species were processed for virus isolation. Most (60,473) cm2 tissue culture flasks and incubated at 28ЊC. Day 3–5 were from CDC traps and the remainder (121 Ae. aegypti post-inoculation cells were scraped from the flask onto mi- and 25 Culex quinquefasciatus) were from household sweep- croscope slides and air-dried. The cells were examined by net and aspirator sampling. A total of 33 isolates, all RR indirect immunofluorescence using the following monoclo- virus, were obtained (Table 1).
Recommended publications
  • Morphology and Protein Profiles of Salivary Glands of Filarial Vector Mosquito Mansonia Uniformis; Possible Relation to Blood Feeding Process
    Asian Biomedicine Vol. 5 No. 3 June 2011; 353-360 DOI: 10.5372/1905-7415.0502.046 Original article Morphology and protein profiles of salivary glands of filarial vector mosquito Mansonia uniformis; possible relation to blood feeding process Atchara Phumeea, Kanok Preativatanyoub, Kanyarat Kraivichainb, Usavadee Thavarac, Apiwat Tawatsinc, Yutthana Phusupc, Padet Siriyasatienb aMedical Science Program, bDepartment of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330; cNational Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand Background: Vector control is a key strategy for eradication of filariasis, but it is limited, possibly due to rapid propagation from global warming. In Thailand, Mansonia mosquitoes are major vectors of filariasis caused by Brugia malayi filarial nematodes. However, little is yet known about vector biology and host-parasite relationship. Objectives: Demonstrate the preliminary data of salivary gland morphology and protein profile of human filarial mosquitoes M. uniformis. Methods: Morphology of M. uniformis salivary gland in both sexes was comparatively studied under a light microscope. Total protein quantization and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS- PAGE) was performed to compare protein profile between male and female. In addition, quantitative analysis prior to and after blood feeding was made at different times (0, 12, 24, 36, 48, 60, and 72 hours) Results: Total salivary gland protein of males and females was 0.32±0.03 and 1.38±0.02 μg/pair gland, respectively. SDS-PAGE analysis of the female salivary gland protein prior to blood meal demonstrated twelve bands of major proteins at 21, 22, 24, 26, 37, 39, 44, 53, 55, 61, 72, and 100 kDa.
    [Show full text]
  • Queensland Public Boat Ramps
    Queensland public boat ramps Ramp Location Ramp Location Atherton shire Brisbane city (cont.) Tinaroo (Church Street) Tinaroo Falls Dam Shorncliffe (Jetty Street) Cabbage Tree Creek Boat Harbour—north bank Balonne shire Shorncliffe (Sinbad Street) Cabbage Tree Creek Boat Harbour—north bank St George (Bowen Street) Jack Taylor Weir Shorncliffe (Yundah Street) Cabbage Tree Creek Boat Harbour—north bank Banana shire Wynnum (Glenora Street) Wynnum Creek—north bank Baralaba Weir Dawson River Broadsound shire Callide Dam Biloela—Calvale Road (lower ramp) Carmilla Beach (Carmilla Creek Road) Carmilla Creek—south bank, mouth of creek Callide Dam Biloela—Calvale Road (upper ramp) Clairview Beach (Colonial Drive) Clairview Beach Moura Dawson River—8 km west of Moura St Lawrence (Howards Road– Waverley Creek) Bund Creek—north bank Lake Victoria Callide Creek Bundaberg city Theodore Dawson River Bundaberg (Kirby’s Wall) Burnett River—south bank (5 km east of Bundaberg) Beaudesert shire Bundaberg (Queen Street) Burnett River—north bank (downstream) Logan River (Henderson Street– Henderson Reserve) Logan Reserve Bundaberg (Queen Street) Burnett River—north bank (upstream) Biggenden shire Burdekin shire Paradise Dam–Main Dam 500 m upstream from visitors centre Barramundi Creek (Morris Creek Road) via Hodel Road Boonah shire Cromarty Creek (Boat Ramp Road) via Giru (off the Haughton River) Groper Creek settlement Maroon Dam HG Slatter Park (Hinkson Esplanade) downstream from jetty Moogerah Dam AG Muller Park Groper Creek settlement Bowen shire (Hinkson
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • The Non-Human Reservoirs of Ross River Virus: a Systematic Review of the Evidence Eloise B
    Stephenson et al. Parasites & Vectors (2018) 11:188 https://doi.org/10.1186/s13071-018-2733-8 REVIEW Open Access The non-human reservoirs of Ross River virus: a systematic review of the evidence Eloise B. Stephenson1*, Alison J. Peel1, Simon A. Reid2, Cassie C. Jansen3,4 and Hamish McCallum1 Abstract: Understanding the non-human reservoirs of zoonotic pathogens is critical for effective disease control, but identifying the relative contributions of the various reservoirs of multi-host pathogens is challenging. For Ross River virus (RRV), knowledge of the transmission dynamics, in particular the role of non-human species, is important. In Australia, RRV accounts for the highest number of human mosquito-borne virus infections. The long held dogma that marsupials are better reservoirs than placental mammals, which are better reservoirs than birds, deserves critical review. We present a review of 50 years of evidence on non-human reservoirs of RRV, which includes experimental infection studies, virus isolation studies and serosurveys. We find that whilst marsupials are competent reservoirs of RRV, there is potential for placental mammals and birds to contribute to transmission dynamics. However, the role of these animals as reservoirs of RRV remains unclear due to fragmented evidence and sampling bias. Future investigations of RRV reservoirs should focus on quantifying complex transmission dynamics across environments. Keywords: Amplifier, Experimental infection, Serology, Virus isolation, Host, Vector-borne disease, Arbovirus Background transmission dynamics among arboviruses has resulted in Vertebrate reservoir hosts multiple definitions for the key term “reservoir” [9]. Given Globally, most pathogens of medical and veterinary im- the diversity of virus-vector-vertebrate host interactions, portance can infect multiple host species [1].
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • Aedes (Stegomyia ) Polynesiensis Marks
    Aedes (Stegomyia) polynesiensis Marks Polynesian mosquito NZ Status: Not present –Unwanted Organisms © CINHP/G.MCCormaCk Vector and Pest Status Aedes polynesiensis is a veCtor of dengue, doG heartworm (Dirofilaria immitis) and filariasis (Wuchereria bancrofti) (Rosen, 1954; Lee et al., 1987). This speCies is also susceptible to infeCtion with Brugia pahangi and Brugia malayii (Trpis, 1981 in Lee et al., 1987). In the laboratory it has been shown to be Capable of transmitting Murray Valley enCephalitis (Rozeboom and MCLean, 1956 in Lee et al., 1987) Ross River virus (Gubler, 1981) and ChikunGunya (Richard, Paoaafaite and Cao-Lormeau, 2016a). The ability for Ae. polynesiensis to transmit Chikungunya is likely how the disease was able to spread rapidly thouGh areas where Ae. aegypti is sCarce or not present durinG an outbreak in FrenCh Polynesia in 2014-2015 (RiChard, Paoaafaite and Cao-Lormeau, 2016a). Aedes polynesiensis has also been found to be a veCtor for Zika virus, thouGh they had a low transmission rate (Calvez et al., 2018, Richard, Paoaafaite and Cao- Lormeau, 2016b) and while CompetenCe is poor they likely responsible for the spread of Zika virus where they are the predominate speCies (Richard, Paoaafaite and Cao-Lormeau, 2016b). Version 3: May 2019 Geographic Distribution Aedes polynesiensis is found only in the PaCific, in Fiji, Horne Islands, ElliCe Islands (Tuvalu), Tokelau Islands, Samoa, Northern and Southern Cook Islands, Marquesas Islands, SoCiety Islands, ManGarewa Islands, Alofi Island, Wallis and Futuna Island Austral Islands, Tuamotu ArChipelago and PitCairn Island (Lee et al., 1987). © 2006 M. Disbury SMS-NZB www.smsl.co.nz This map denotes only the Country or General areas where this speCies has been reCorded, not aCtual distribution Incursions and Interceptions Aedes polynesiensis has been interCepted on three ocCasions in New Zealand sinCe 2001.
    [Show full text]
  • Male Mating Competitiveness of a Wolbachia-Introgressed Aedes Polynesiensis Strain Under Semi-Field Conditions" (2011)
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 8-2-2011 Male mating competitiveness of a Wolbachia- introgressed Aedes polynesiensis strain under semi- field conditions Eric W. Chambers University of Kentucky Limb Hapairai Institut Louis Malardé, French Polynesia Bethany A. Peel University of Kentucky, [email protected] Hervé Bossin Institut Louis Malardé, French Polynesia Stephen L. Dobson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Chambers, Eric W.; Hapairai, Limb; Peel, Bethany A.; Bossin, Hervé; and Dobson, Stephen L., "Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions" (2011). Entomology Faculty Publications. 28. https://uknowledge.uky.edu/entomology_facpub/28 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions Notes/Citation Information Published in PLoS Neglected Tropical Diseases, v. 5, no. 8, e1271. © 2011 Chambers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Digital Object Identifier (DOI) http://dx.doi.org/10.1371/journal.pntd.0001271 This article is available at UKnowledge: https://uknowledge.uky.edu/entomology_facpub/28 Male Mating Competitiveness of a Wolbachia-Introgressed Aedes polynesiensis Strain under Semi-Field Conditions Eric W.
    [Show full text]
  • Wetlands of the Townsville Area
    A Final Report to the Townsville City Council WETLANDS OF THE TOWNSVILLE AREA ACTFR Report 96/28 25 November 1996 Prepared by G. Lukacs of the Australian Centre for Tropical Freshwater Research, James Cook University of North Queensland, Townsville Q 4811 Telephone (077 814262 Facsimile (077) 815589 Wetlands of the TCC LGA: Report No.96/28 TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................................. 1 1.1 Wetlands and the Community............................................................................................................. 1 1.2 The Wetlands of the Townsville Region ............................................................................................. 1 1.3 Values and Functions of Wetlands..................................................................................................... 3 2. METHODOLOGY ................................................................................................................................. 4 2.1 Scope .................................................................................................................................................. 4 2.2 Mapping ............................................................................................................................................. 4 2.3 Classification ..................................................................................................................................... 5 2.4 Sampling............................................................................................................................................
    [Show full text]
  • Survivorship in Aedes Polynesiensis with Artificial Wolbachia Infection Types
    Reactive Oxygen Species Production and Brugia pahangi Survivorship in Aedes polynesiensis with Artificial Wolbachia Infection Types Elizabeth S. Andrews1, Philip R. Crain1, Yuqing Fu1,2, Daniel K. Howe3, Stephen L. Dobson1* 1 Department of Entomology, College of Agriculture, University of Kentucky, Lexington, Kentucky, United States of America, 2 Tropical Research and Education Center, University of Florida, Homestead, Florida, United States of America, 3 Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, United States of America Abstract Heterologous transinfection with the endosymbiotic bacterium Wolbachia has been shown previously to induce pathogen interference phenotypes in mosquito hosts. Here we examine an artificially infected strain of Aedes polynesiensis, the primary vector of Wuchereria bancrofti, which is the causative agent of Lymphatic filariasis (LF) throughout much of the South Pacific. Embryonic microinjection was used to transfer the wAlbB infection from Aedes albopictus into an aposymbiotic strain of Ae. polynesiensis. The resulting strain (designated ‘‘MTB’’) experiences a stable artificial infection with high maternal inheritance. Reciprocal crosses of MTB with naturally infected wild-type Ae. polynesiensis demonstrate strong bidirectional incompatibility. Levels of reactive oxygen species (ROS) in the MTB strain differ significantly relative to that of the wild-type, indicating an impaired ability to regulate oxidative stress. Following a challenge with Brugia pahangi, the number of filarial worms achieving the infective stage is significantly reduced in MTB as compared to the naturally infected and aposymbiotic strains. Survivorship of MTB differed significantly from that of the wild-type, with an interactive effect between survivorship and blood feeding. The results demonstrate a direct correlation between decreased ROS levels and decreased survival of adult female Aedes polynesiensis.
    [Show full text]
  • Mosquitoes Sampling Strategy for Studying West Nile Virus Vectors In
    Sébastien Boyer et al., Archives de l’Institut Pasteur de Madagascar 2014; 71 (1) : 1-8 Article original Mosquitoes sampling strategy for studying West Nile Virus Vectors in Madagascar: Abundance, Distribution and Methods of Catching in High Risk Areas Sébastien Boyer1,*, Michael Luciano Tantely1, Sanjiarizaha Randriamaherijaona1, Lala Andrianaivolambo1, Eric Cardinale 2,3,4 1 Laboratoire d’Entomologie Médicale, Institut Pasteur de Madagascar, Antananarivo, Madagascar 2 Centre de coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR 15 CMAEE, F-97490 Sainte Clotilde, La Réunion, France 3 Institut National de la Recherche Agronomique (INRA), UMR 1309 CMAEE, F-97490 Sainte Clotilde, La Réunion, France 4 Centre de Recherche et de Veille sur les maladies émergentes dans l’Océan Indien (CRVOI), plateforme de recherche CYROI, F-97490 Sainte Clotilde, La Réunion, France * Corresponding author: [email protected] ABSTRACT The West Nile Virus (WNV) is a mosquito-borne virus discovered in 1937, and first described in 1978 in Madagascar. Twenty-six potential mosquito-vector species mainly ornithophilic were described in Madagascar. Investigations on catching methods of mosquitoes vectors of WNV were carried out in two districts located in the Malagasy west coast where high prevalence was detected in 2009 after a serological survey. Five different methods were evaluated during the samplings: CDC light traps and net-trap baited were tested in Mitsinjo district, while human landing catch, CDC light trap, and BioGent (BG) sentinel were used in Masoarivo. One thousand five hundred eleven adult mosquitoes were collected with between 53% and 66% of them captured by CDC light traps in the two districts.
    [Show full text]
  • Assessing the Presence of Wuchereria Bancrofti Infections in Vectors Using Xenomonitoring in Lymphatic Filariasis Endemic Districts in Ghana
    Tropical Medicine and Infectious Disease Article Assessing the Presence of Wuchereria bancrofti Infections in Vectors Using Xenomonitoring in Lymphatic Filariasis Endemic Districts in Ghana Sellase Pi-Bansa 1,2,3,*, Joseph H. N. Osei 3,4 , Worlasi D. Kartey-Attipoe 3, Elizabeth Elhassan 5, David Agyemang 5, Sampson Otoo 3, Samuel K. Dadzie 3, Maxwell A. Appawu 3, Michael D. Wilson 3, Benjamin G. Koudou 6,7, Dziedzom K. de Souza 3 , Jürg Utzinger 1,2 and Daniel A. Boakye 3 1 Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland; [email protected] 2 University of Basel, CH-4003 Basel, Switzerland 3 Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, LG 581 Legon, Ghana; [email protected] (J.H.N.O.); [email protected] (W.D.K.-A.); [email protected] (S.O.); [email protected] (S.K.D.); [email protected] (M.A.A.); [email protected] (M.D.W.); [email protected] (D.K.d.S.); [email protected] (D.A.B.) 4 Department of Animal Biology and Conservation Science, University of Ghana, LG 67 Legon, Ghana 5 SightSavers International, Ghana Office, Accra, Ghana; [email protected] (E.E.); [email protected] (D.A.) 6 Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; [email protected] 7 Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303, Abidjan 01, Côte d’Ivoire * Correspondence: [email protected]; Tel.: +233-244-109-583 Received: 17 January 2019; Accepted: 13 March 2019; Published: 17 March 2019 Abstract: Mass drug administration (MDA) is the current mainstay to interrupt the transmission of lymphatic filariasis.
    [Show full text]
  • 1020 1630 Chambers.Pdf
    Advances in Wolbachia-based biological control of mosquitoes: lessons learned from the South Pacific Eric W. Chambers Department of Biology Valdosta State University, Valdosta GA Outline of Presentation • What’s the problem? - Review of lymphatic filariasis • Aedes polynesiensis – A unique mosquito • Wolbachia based control of Aedes polynesiensis • Future research Lymphatic filariasis (LF) • Global Distribution-endemic in 83 countries – 120 million infected – 1 billion at risk Lymphatic filariasis in the Pacific Northern Marianas Guam Marshall Islands Federated States of Micronesia Palau Nauru Kiribati Kiribati Kiribati Papua New Guinea (Phoenix) (Line Tuvalu Islands) Periodic Tokelau Solomon Is Cook Wallis & Islands Futuna Samoa Fiji Am Vanuatu Samoa Subperiodic New Niue Caledonia Tonga French Polynesia Pitcairn Australia New Zealand Lymphatic filariasis vectors in the Pacific Vector Countries Where Found Aedes cooki Niue Aedes fijiensis Fiji Aedes horrensces Fiji Aedes kochi Papua New Guinea Aedes marshallensis Kiribati Aedes oceanicus Tonga Aedes polynesiensis Am Samoa, Samoa, Cook Islands, Tokelau, Tuvalu, French Polynesia, Wallis and Futuna, Fiji Aedes pseudoscutellaris Fiji Aedes rotumae Rotuma Island in Fiji Aedes samoanus Samoa Aedes tabu Tonga Aedes tutuilae Samoa Aedes upolenis Samoa Ochlerotatus vigilax New Caledonia, Fiji An punctulatus complex Papua New Guinea, Solomon Islands, Vanuatu Culex annulirostris Irian Jaya Culex quinquefasciatus Kiribati, Pelau, Fed States Micronesia, PNG, Fiji, etc Mansonia uniformis Papua New Guinea Aedes polynesiensis (Marks) Courtesy Renee Chambers • Found only on the islands of the South Pacific • Day-biting mosquito • Exophilic • Major vector of lymphatic filariasis (LF) French Polynesia Is MDA enough in the South Pacific? • Treatment with DEC since 1955 • Antigen prevalence of 4.6% • Mosquito infection rate of 1.4% Society islands – Marquesas = 12.3% Tahiti = 11.5% Australes-Tuamotu Gambier = 12.3% Slide credit: Herve Bossin What makes transmission of LF by Aedes polynesiensis in the South Pacific unique? 1.
    [Show full text]