Serine Protease Inhibitors to Treat Inflammation: a Patent Review (2011-2016) Feryel Soualmia, Chahrazade El Amri

Total Page:16

File Type:pdf, Size:1020Kb

Serine Protease Inhibitors to Treat Inflammation: a Patent Review (2011-2016) Feryel Soualmia, Chahrazade El Amri Serine protease inhibitors to treat inflammation: a patent review (2011-2016) Feryel Soualmia, Chahrazade El Amri To cite this version: Feryel Soualmia, Chahrazade El Amri. Serine protease inhibitors to treat inflammation: a patent review (2011-2016). Expert Opinion on Therapeutic Patents, Informa Healthcare, In press, 28 (2), pp.93-110. 10.1080/13543776.2018.1406478. hal-01656928 HAL Id: hal-01656928 https://hal.sorbonne-universite.fr/hal-01656928 Submitted on 6 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Serine protease inhibitors to treat inflammation: a patent review (2011-2016) Feryel Soualmia and Chahrazade El Amri B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, Paris, France ABSTRACT Introduction: Inflammation is a physiological part of the complex biological response of tissues to counteract various harmful signals. This process involves diverse actors such as immune cells, blood vessels, and nerves as sources of mediators for inflammation control. Among them serine proteases are KEYWORDS key elements in both physiological and pathological inflammation. Serine proteases; Areas covered: Serine protease inhibitors to treat inflammatory diseases are being actively investigated inflammation; therapeutical by various industrial and academic institutions. The present review covers patent literature on serine inhibitors; kallikreins; protease inhibitors for the therapy of inflammatory diseases patented between 2011 and 2016. plasmin; neutrophil elastase; Expert opinion: Serine proteases regulating inflammation are versatile enzymes, usually involved in skin inflammation; lung proinflammatory cytokine production and activation of immune cells. Their dysregulation during inflammation; inflammation can have devastating consequences, promoting various diseases including skin and gastrointestinal inflammation lung inflammation, neuroinflammation, and inflammatory arthritis. Several serine proteases were selected for their contribution to inflammatory diseases and significant efforts that are spread to develop inhibitors. Strategies developed for inhibitor identification consist on either peptide-based inhibitor derived from endogenous protein inhibitors or small-organic molecules. It is also worth noting that among the recent patents on serine protease inhibitors related to inflammation a significant number are related to retinal vascular dysfunction and skin diseases. 1. Introduction no longer necessary [9]. This regulation makes it possible to preserve the homeostasis of the numerous physiological systems Proteolytic enzymes or proteases catalyze the hydrolysis of the in which the proteases are involved [10]. More than one-third of established peptide bonds between the amino acids of the pro- human proteases are serine proteases. These are probably the teins and peptides. Much more than degradation enzymes, they enzymes that are the most studied in detail [1,2]. They are char- are considered nowadays as important signaling molecules, acterized by a catalytic serine residue that acts as a nucleophile involved in many physiological processes that are highly con- and are involved in a wide variety of processes such as digestion, trolled [1,2]. Furthermore, their deregulation is often associated development, blood coagulation, fibrinolysis, immune response, with pathologies ranging from cardiovascular and inflammatory prohormone cleavage, signal transduction, and complement disorders to cancer and neurological disorders [3,4]. They are fixation [11]. In this review, after the description of the role and therefore very attractive biological targets for the identification features of selected serine proteases in inflammatory diseases, we and design of pharmacological molecules that can modulate will give an overview of current patents on serine proteases their activity [3]. The literature is full of examples of compounds inhibitors. Particularly, we will place emphasis on their diversity targeting proteases, which have reached clinical phase and/or in term of chemical scaffolds and clinical field of application. placed on the market, illustrating perfectly the considerable interest that is brought to them by the academic and industrial laboratories [3,5](Table 1). Given not only the success of a num- 2. Serine protease main features ber of flagship protease inhibitors in the treatment of hyperten- sion, hepatitis C, or HIV triple therapy [5] but also the lessons In human, serine proteases exert their activities at various cellular learned from the failures [3,7], the interest for synthetic modula- levels and are responsible for the coordination of many physio- tors of proteases remains constant [8]. The development of such logical functions including digestion, cell cycle, coagulation, compounds must then be based on a precise knowledge of their immunity, and reproduction [2]. Furthermore, serine proteases catalytic mechanism and structure [2]. In the body, proteases are are key elements of the inflammation response due to their subjected to strict regulation. They are often initially secreted as release from activated leukocytes and mast cells or generation inactive forms or ‘zymogenic’ precursors, whose cleavage of the through the coagulation cascade [12,13]. N-terminal end allows their activation into mature enzyme. The dysregulation of serine proteases is thus involved in a Moreover, direct regulation of the proteases is ensured by endo- wide range of pathologies: thrombin and plasmin in coagu- genous inhibitors which reduce their catalytic activity when this is lopathies and bleeding disorders, granzymes and neutrophil CONTACT Chahrazade El Amri [email protected] The specificity of cleavage of a given protease is based on the Article highlights interaction of a protein or peptide substrate with the residues of ● In this review, we focus on the serine proteases involved in inflam- the protease at the active site. The surface of the protease that is matory diseases capable of hosting a side chain of a single substrate residue is ● Selected inhibitor patents are reported for the 2011-2016 period with referred to as the ‘subsite’ [20–22]. The subsites are numbered a special emphasis for kallikreins, plasmin and neutrophil elastase – ● The inhibitors can be divided in two categories: (i) heterocycles and from either side of the cleavage site: S1 Sn to the N-terminus and (ii) peptidic or peptidomimetic entities inspired from substrates or toward S1′–Sn′ to the C-terminus of the substrate. The corre- macromolecular natural inhibitors sponding residues on the substrate are numbered P1–Pn and ● The most successful inhibitor group is this of heterocycles that – includes: triazoles, benzylamine, benzoxazinones, pyrroles, coumarins. P1′ Pn′, respectively [1,20]. The structure of the active site of the ● Skin inflammatory diseases (Netherton Syndrome, atopic dermatitis, protease thus determines the nature of the residues of the sub- psoriasis, rosacea) and lung inflammation constitute among the most strate which can bind specifically to the enzyme [1]. dynamic therapeutical areas within the analyzed time period ● Several preclinical studies on serine protease inhibitors were per- Depending on their specificity for cleaved residues (P1), formed in the context of joint diseases (neutrophil elastase) serine proteases can be classified as trypsin, chymotrypsin, or ● GI inflammatory diseases (Crohn’s disease, ulcerative colitis) are elastase analogs. This specificity is guided by the size and under consideration for the targeting of serine proteases (trypsin- like proteases). nature of the residue involved in the catalytic pocket of the enzyme. Trypsin or trypsin-like (TL) analogs cleave after a This box summarizes key points contained in the article. positively charged residue (lysine or arginine). Their pocket S1 being narrow, deep, and negatively charged. The S1 pocket of ‘chymotrypsin-like (CTL)’ is broad and hydrophobic in nat- ure, this results in a specificity for medium or large hydropho- elastases (NEs) in immune deficiencies [12], and plasma kal- bic residues (tyrosine, phenylalanine, and leucine) [21,22]. likreins levels in blood pressure disorders like angioe- Elastase-like has a reduced pocket that receives short and dema [14]. uncharged residues [21]. For example, those which have a In the epidermis, serine proteases, including some kallik- digestive role, such as chymotrypsin, generally have few rein-related peptidases that we will detail hereafter and requirements with respect to the substrate and a large hydro- matriptase, are involved in various skin disorders [15–18]. phobic residue in position P1 is sufficient. The activity of other Serine proteases which possess similar structures and catalytic proteases can be also based on the recognition of a complete properties are grouped into clans. The four main clans are clan peptide portion, such as, enterokinase which requires the PA represented
Recommended publications
  • In Sickness and in Health: the Immunological Roles of the Lymphatic System
    International Journal of Molecular Sciences Review In Sickness and in Health: The Immunological Roles of the Lymphatic System Louise A. Johnson MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK; [email protected] Abstract: The lymphatic system plays crucial roles in immunity far beyond those of simply providing conduits for leukocytes and antigens in lymph fluid. Endothelial cells within this vasculature are dis- tinct and highly specialized to perform roles based upon their location. Afferent lymphatic capillaries have unique intercellular junctions for efficient uptake of fluid and macromolecules, while expressing chemotactic and adhesion molecules that permit selective trafficking of specific immune cell subsets. Moreover, in response to events within peripheral tissue such as inflammation or infection, soluble factors from lymphatic endothelial cells exert “remote control” to modulate leukocyte migration across high endothelial venules from the blood to lymph nodes draining the tissue. These immune hubs are highly organized and perfectly arrayed to survey antigens from peripheral tissue while optimizing encounters between antigen-presenting cells and cognate lymphocytes. Furthermore, subsets of lymphatic endothelial cells exhibit differences in gene expression relating to specific func- tions and locality within the lymph node, facilitating both innate and acquired immune responses through antigen presentation, lymph node remodeling and regulation of leukocyte entry and exit. This review details the immune cell subsets in afferent and efferent lymph, and explores the mech- anisms by which endothelial cells of the lymphatic system regulate such trafficking, for immune surveillance and tolerance during steady-state conditions, and in response to infection, acute and Citation: Johnson, L.A.
    [Show full text]
  • Downloaded from Genomic Data Common Website (GDC at Accessed on 2019)
    G C A T T A C G G C A T genes Article Molecular Pathways Associated with Kallikrein 6 Overexpression in Colorectal Cancer Ritu Pandey 1,2,*, Muhan Zhou 3, Yuliang Chen 3, Dalila Darmoul 4 , Conner C. Kisiel 2, Valentine N. Nfonsam 5 and Natalia A. Ignatenko 1,2 1 Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA; [email protected] 2 University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA; [email protected] 3 Bioinformatics Shared Resource, University of Arizona Cancer Center, Tucson, AZ 85724, USA; [email protected] (M.Z.); [email protected] (Y.C.) 4 Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Paris, Lariboisière Hospital, 75010 Paris, France; [email protected] 5 Department of Surgery, Section of Surgical Oncology, University of Arizona, Tucson, AZ 85724, USA; [email protected] * Correspondence: [email protected] Abstract: Colorectal cancer (CRC) remains one of the leading causes of cancer-related death world- wide. The high mortality of CRC is related to its ability to metastasize to distant organs. The kallikrein-related peptidase Kallikrein 6 (KLK6) is overexpressed in CRC and contributes to cancer cell invasion and metastasis. The goal of this study was to identify KLK6-associated markers for the CRC prognosis and treatment. Tumor Samples from the CRC patients with significantly elevated Citation: Pandey, R.; Zhou, M.; Chen, KLK6 transcript levels were identified in the RNA-Seq data from Cancer Genome Atlas (TCGA) Y.; Darmoul, D.; Kisiel, C.C.; and their expression profiles were evaluated using Gene Ontology (GO), Phenotype and Reactome Nfonsam, V.N.; Ignatenko, N.A.
    [Show full text]
  • IL-33 Is Processed Into Mature Bioactive Forms by Neutrophil Elastase and Cathepsin G
    IL-33 is processed into mature bioactive forms by neutrophil elastase and cathepsin G Emma Lefrançais, Stephane Roga, Violette Gautier, Anne Gonzalez-de-Peredo, Bernard Monsarrat, Jean-Philippe Girard1,2, and Corinne Cayrol1,2 Centre National de la Recherche Scientifique, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France; Université de Toulouse, Université Paul Sabatier, Institut de Pharmacologie et de Biologie Structurale, F-31077 Toulouse, France Edited* by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved December 19, 2011 (received for review October 3, 2011) Interleukin-33 (IL-33) (NF-HEV) is a chromatin-associated nuclear activity (4). However, we (23) and others (24–26) demonstrated cytokine from the IL-1 family, which has been linked to important that full-length IL-33 is biologically active and that processing of diseases, including asthma, rheumatoid arthritis, ulcerative colitis, IL-33 by caspases results in its inactivation, rather than its activa- and cardiovascular diseases. IL-33 signals through the ST2 receptor tion. Further analyses revealed that IL-33 is constitutively and drives cytokine production in type 2 innate lymphoid cells (ILCs) expressed to high levels in the nuclei of endothelial and epithelial (natural helper cells, nuocytes), T-helper (Th)2 lymphocytes, mast cells in vivo (27) and that it can be released in the extracellular cells, basophils, eosinophils, invariant natural killer T (iNKT), and space after cellular damage (23, 24). IL-33 was, thus, proposed (23, natural killer (NK) cells. We and others recently reported that, unlike 24, 27) to function as an endogenous danger signal or alarmin, IL-1β and IL-18, full-length IL-33 is biologically active independently similar to IL-1α and high-mobility group box 1 protein (HMGB1) of caspase-1 cleavage and that processing by caspases results in IL-33 (28–32), to alert cells of the innate immune system of tissue inactivation.
    [Show full text]
  • Kallikrein 13: a New Player in Coronaviral Infections
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.01.971499; this version posted March 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Kallikrein 13: a new player in coronaviral infections. 2 3 Aleksandra Milewska1,2, Katherine Falkowski2, Magdalena Kalinska3, Ewa Bielecka3, 4 Antonina Naskalska1, Pawel Mak4, Adam Lesner5, Marek Ochman6, Maciej Urlik6, Jan 5 Potempa2,7, Tomasz Kantyka3,8, Krzysztof Pyrc1,* 6 7 1 Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian 8 University, Gronostajowa 7a, 30-387 Krakow, Poland. 9 2 Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, 10 Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland. 11 3 Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska 12 Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, 13 Poland. 14 4 Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and 15 Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Krakow, Poland. 16 5 University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308 Gdansk, Poland. 17 6 Department of Cardiac, Vascular and Endovascular Surgery and Transplantology, Medical 18 University of Silesia in Katowice, Silesian Centre for Heart Diseases, Zabrze, Poland. 19 7 Centre for Oral Health and Systemic Diseases, University of Louisville School of Dentistry, 20 Louisville, KY 40202, USA. 21 8 Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, 22 5020 Bergen, Norway 23 24 25 26 27 28 29 30 31 * Correspondence should be addressed to Krzysztof Pyrc ([email protected]), Virogenetics 32 Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, 33 Gronostajowa 7, 30-387 Krakow, Poland; Phone number: +48 12 664 61 21; www: 34 http://virogenetics.info/.
    [Show full text]
  • AACR2006-1686P
    Funding Proteinases and Inflammation Network Group grant Kallikrein 14 Signalling through Proteinase-Activated Receptors CIHR operating grant 1,2 3,4 3,4 3,4 5 Alberta Heritage Foundation for Katerina Oikonomopoulou , Kristina K. Hansen , Mahmoud Saifeddine , Illa Tea , Patricia Andrade-Gordon , Medical Research Graeme S. Cottrell6, Nigel W. Bunnett6, Nathalie Vergnolle3, Eleftherios P. Diamandis1,2 and Morley D. Hollenberg3,4 NSERC / CRSNG 1Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto; 2Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto; 3Department of Pharmacology & Therapeutics, and 4Department of Medicine, University of Calgary, Calgary; 5Johnson & Johnson Pharmaceutical Research and Development, Spring House, Pennsylvania, 6Departments of Surgery and Physiology, University of California, San Francisco Kallikrein 14 can selectively disarm PAR (lower concentrations), OVERVIEW Figure 1: Mechanism of PAR activation (activation by proteolysis) 2. Kallikrein 14 can selectively disarm PAR1 (lower concentrations), 2+ Proteinase-activated receptors (PARs): a family of G-protein coupled receptors activated by serine proteinase cleavage site whilst activating PARs 2 and 4; Ca in HEK cells proteinases via a proteolytically revealed ‘tethered ligand’ (Fig. 1). Four family members (Fig. 2); PARs N PAR disarming 1, 2 and 4 signal to cells. N PAR1 dis-arming1 vs. activation Selective activation of PAR4 vs. PARs 1, 2 Human kallikreins (hKs): A 15-member family of secreted serine proteinases implicated in tumour 1 cm Thrombin 1 cm 2 min 2 min TFLLR-NH2 progression and cell survival (Fig. 4). (selective desensitization hK14: a tryptic kallikrein; wide tissue distribution, implicated in breast and ovarian cancer (Fig. 5 and 6). of PAR1) The mechanism of kallikrein action is not yet known: Although some targets have been identified (e.g.
    [Show full text]
  • Three Dysregulated Mirnas Control Kallikrein 10 Expression and Cell Proliferation in Ovarian Cancer
    British Journal of Cancer (2010) 102, 1244 – 1253 & 2010 Cancer Research UK All rights reserved 0007 – 0920/10 $32.00 www.bjcancer.com Three dysregulated miRNAs control kallikrein 10 expression and cell proliferation in ovarian cancer 1,2 1 1,2 2 1 1,2 1 NMA White , T-FF Chow , S Mejia-Guerrero , M Diamandis , Y Rofael , H Faragalla , M Mankaruous , M Gabril3, A Girgis1 and GM Yousef *,1,2 1 Department of Laboratory Medicine, and the Keenan Research Centre in the Li Ka Shing Knowledge Institute, St Michael’s Hospital, Toronto, ON, 2 3 Canada M5B 1W8; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5G 1L5; Department of Pathology, London Health Sciences Center and University of Western Ontario, London, ON, Canada N6A 5W9 Translational Therapeutics BACKGROUND: Kallikrein-related peptidases (KLKs) are a family of serine proteases that have been shown to be dysregulated in several malignancies including ovarian cancer. The control of kallikrein genes and their physiological function in cancer is not well understood. We hypothesized that microRNAs (miRNAs) represent a novel mechanism for post-transcriptional control of KLK expression in cancer. METHODS: We first analysed miRNA expression in ovarian cancer in silico. A total of 98 miRNAs were reported to have altered expression in ovarian cancer. Three of these miRNAs were predicted to target KLK10. We experimentally verified the predicted 0 miR–KLK10 interaction using two independent techniques, a luciferase assay with a construct containing the KLK10 3 untranslated region (UTR), pMIR–KLK10, and measuring KLK10 protein levels after transfection with miRNA.
    [Show full text]
  • Salivary Protein Panel to Diagnose Systolic Heart Failure
    biomolecules Article Salivary Protein Panel to Diagnose Systolic Heart Failure Xi Zhang 1 , Daniel Broszczak 2, Karam Kostner 3, Kristyan B Guppy-Coles 4, John J Atherton 4 and Chamindie Punyadeera 1,* 1 Saliva and Liquid Biopsy Translational Research Team, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 2 School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia; [email protected] 3 Department of Cardiology, Mater Adult Hospital, Brisbane, Queensland 4101, Australia; [email protected] 4 Cardiology Department, Royal Brisbane and Women’s Hospital and University of Queensland School of Medicine, Brisbane, Queensland 4029, Australia; [email protected] (K.B.G.-C.); [email protected] (J.J.A.) * Correspondence: [email protected]; Tel.: +61-7-3138-0830 Received: 22 October 2019; Accepted: 19 November 2019; Published: 22 November 2019 Abstract: Screening for systolic heart failure (SHF) has been problematic. Heart failure management guidelines suggest screening for structural heart disease and SHF prevention strategies should be a top priority. We developed a multi-protein biomarker panel using saliva as a diagnostic medium to discriminate SHF patients and healthy controls. We collected saliva samples from healthy controls (n = 88) and from SHF patients (n = 100). We developed enzyme linked immunosorbent assays to quantify three specific proteins/peptide (Kallikrein-1, Protein S100-A7, and Cathelicidin antimicrobial peptide) in saliva samples. The analytical and clinical performances and predictive value of the proteins were evaluated.
    [Show full text]
  • Identification of Single Nucleotide Polymorphisms in the Human Kallikrein10 KLK10) Gene and Their Associationwith Prostate,Breast,Testicular, and Ovarian Cancers
    The Prostate 51:35 ^ 41 2002) Identification of Single Nucleotide Polymorphisms in the Human Kallikrein10 KLK10) Gene and Their AssociationWith Prostate,Breast,Testicular, and Ovarian Cancers Bhupinder B. Bharaj,1,2 Liu-Ying Luo,1,2 Klaus Jung,3 Carsten Stephan,3 and Eleftherios P. Diamandis1,2* 1Department of Pathologyand Laboratory Medicine, Mount Sinai Hospital,Toronto,Ontario,Canada 2Department of Laboratory Medicine and Pathobiology,University of Toronto,Toronto,Ontario,Canada 3Department of Urology,University Hospital Charite, Humboldt University,Berlin,Germany BACKGROUND. The KLK10 gene $also known as the normal epithelial cell-speci®c 1 gene) is a member of the expanded human kallikrein gene family. Recently, it has been reported that KLK10 is a tumor suppressor gene and that its expression is downregulated in various forms of cancer and cancer cell lines. KLK10 is also upregulated in ovarian cancer. We thus hypo- thesized that the KLK10 gene may be a target for mutations in various cancers. METHODS. We sequenced the ®ve coding exons of the KLK10 gene using genomic DNA from various tumors, normal tissues, and blood, by PCR ampli®cation and automated sequencing. RESULTS. In none of the tumor-derived DNAs, we identi®ed somatic mutations that could inactivate this gene. However, we identi®ed a prevalent germline single nucleotide variation at codon 50 $exon 3) of this gene [GCC $alanine) to TCC $serine)]. The GCC genotype was less prevalent in prostatic cancer patients in comparison to control subjects $P 0.027) but no differences were seen with testicular, ovarian, and breast cancer. We also identi®ed four genetic variations in exon 4, at codons106 [GGC $glycine) to GGA $glycine)], codon 112 [ACG $threonine) to ACC $threonine)], codon 141 [CTA $leucine) to CTG $leucine)], and at codon 149 [CCG $proline) to CTG $leucine)].
    [Show full text]
  • Download, Or Email Articles for Individual Use
    Florida State University Libraries Faculty Publications The Department of Biomedical Sciences 2010 Functional Intersection of the Kallikrein- Related Peptidases (KLKs) and Thrombostasis Axis Michael Blaber, Hyesook Yoon, Maria Juliano, Isobel Scarisbrick, and Sachiko Blaber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] Article in press - uncorrected proof Biol. Chem., Vol. 391, pp. 311–320, April 2010 • Copyright ᮊ by Walter de Gruyter • Berlin • New York. DOI 10.1515/BC.2010.024 Review Functional intersection of the kallikrein-related peptidases (KLKs) and thrombostasis axis Michael Blaber1,*, Hyesook Yoon1, Maria A. locus (Gan et al., 2000; Harvey et al., 2000; Yousef et al., Juliano2, Isobel A. Scarisbrick3 and Sachiko I. 2000), as well as the adoption of a commonly accepted Blaber1 nomenclature (Lundwall et al., 2006), resolved these two fundamental issues. The vast body of work has associated 1 Department of Biomedical Sciences, Florida State several cancer pathologies with differential regulation or University, Tallahassee, FL 32306-4300, USA expression of individual members of the KLK family, and 2 Department of Biophysics, Escola Paulista de Medicina, has served to elevate the importance of the KLKs in serious Universidade Federal de Sao Paulo, Rua Tres de Maio 100, human disease and their diagnosis (Diamandis et al., 2000; 04044-20 Sao Paulo, Brazil Diamandis and Yousef, 2001; Yousef and Diamandis, 2001, 3 Program for Molecular Neuroscience and Departments of 2003;
    [Show full text]
  • Correlation of Serpin–Protease Expression by Comparative Analysis of Real-Time PCR Profiling Data
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 88 (2006) 173–184 www.elsevier.com/locate/ygeno Correlation of serpin–protease expression by comparative analysis of real-time PCR profiling data Sunita Badola a, Heidi Spurling a, Keith Robison a, Eric R. Fedyk a, Gary A. Silverman b, ⁎ Jochen Strayle c, Rosana Kapeller a,1, Christopher A. Tsu a, a Millennium Pharmaceuticals, Inc., 40 Landsdowne Street, Cambridge, MA 02139, USA b Department of Pediatrics, University of Pittsburgh School of Medicine, Magee-Women’s Hospital, 300 Halket Street, Pittsburgh, PA 15213, USA c Bayer HealthCare AG, 42096 Wuppertal, Germany Received 2 December 2005; accepted 27 March 2006 Available online 18 May 2006 Abstract Imbalanced protease activity has long been recognized in the progression of disease states such as cancer and inflammation. Serpins, the largest family of endogenous protease inhibitors, target a wide variety of serine and cysteine proteases and play a role in a number of physiological and pathological states. The expression profiles of 20 serpins and 105 serine and cysteine proteases were determined across a panel of normal and diseased human tissues. In general, expression of serpins was highly restricted in both normal and diseased tissues, suggesting defined physiological roles for these protease inhibitors. A high correlation in expression for a particular serpin–protease pair in healthy tissues was often predictive of a biological interaction. The most striking finding was the dramatic change observed in the regulation of expression between proteases and their cognate inhibitors in diseased tissues.
    [Show full text]
  • ELASTASE INHIBITOR Characterization of the Human Elastase Inhibitor Molecule Associated with Monocytes, Macrophages, and Neutrophils
    ELASTASE INHIBITOR Characterization of the Human Elastase Inhibitor Molecule Associated with Monocytes, Macrophages, and Neutrophils By EILEEN REMOLD-O'DONNELL,*$S JON C . NIXON,* AND RICHARD M. ROSEII From *The Centerfor Blood Research ; the 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School; the SDivision of Immunology, the Children's Hospital; and the IIDepartment ofMedicine, New England Deaconess Hospital, Boston, Massachusetts 02115 Preservation of the integrity of local organ function requires a delicate balance ofthe activities ofphagocytic cell proteinases and the action of proteinase inhibitors. Loss of this balance may be a major causative factor in the pathogenesis of asthma, chronic bronchitis, emphysema, sarcoidosis, respiratory distress syndromes, arthritis, and certain skin diseases . Ultimately, to monitor and manipulate the proteinase- proteinase inhibitor balance of human phagocytes within a pharmacological context will require that the relevant molecules be identified and their interactions defined at the molecular level. Ofthe phagocytic cell proteinases, the quantitatively most important is the serine active site proteinase commonly called "neutrophil elastase." Neutrophil elastase is 218-amino acid glycosylated protein ofknown sequence (1) that is particularly abundant in human neutrophils (0.5% of total protein) and is also found in monocytes and macrophages (2-4). Neutrophil elastase is contained in granules and functions op- timally at neutral pH; its multiple documented activities all involve extracellular action (5, 6). Elastase cleaves extracellular matrix proteins such as elastin, pro- teoglycans, fibronectin, type III and type IV collagen (7-10), and certain soluble proteins (11). It is required by neutrophils for their migration through cell barriers in vitro (12, 13). The continuous action of elastase inhibitors in vivo is evident from the neutrophil turnover rate.
    [Show full text]
  • Inactivate the C5a Receptor Neutrophil Serine Proteases
    Mechanism of Neutrophil Dysfunction: Neutrophil Serine Proteases Cleave and Inactivate the C5a Receptor This information is current as Carmen W. van den Berg, Denise V. Tambourgi, Howard of September 27, 2021. W. Clark, S. Julie Hoong, O. Brad Spiller and Eamon P. McGreal J Immunol 2014; 192:1787-1795; Prepublished online 20 January 2014; doi: 10.4049/jimmunol.1301920 Downloaded from http://www.jimmunol.org/content/192/4/1787 References This article cites 44 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/192/4/1787.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 27, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mechanism of Neutrophil Dysfunction: Neutrophil Serine Proteases Cleave and Inactivate the C5a Receptor Carmen W. van den Berg,* Denise V. Tambourgi,† Howard W. Clark,‡ S.
    [Show full text]