The LRR Receptor Islr2 Is Required for Retinal Axon Routing at the Vertebrate Optic Chiasm Paolo Panza1* , Austen A

Total Page:16

File Type:pdf, Size:1020Kb

The LRR Receptor Islr2 Is Required for Retinal Axon Routing at the Vertebrate Optic Chiasm Paolo Panza1* , Austen A Panza et al. Neural Development (2015) 10:23 DOI 10.1186/s13064-015-0050-x RESEARCH ARTICLE Open Access The LRR receptor Islr2 is required for retinal axon routing at the vertebrate optic chiasm Paolo Panza1* , Austen A. Sitko3, Hans-Martin Maischein1,4, Iris Koch5, Matthias Flötenmeyer5, Gavin J. Wright6, Kenji Mandai7, Carol A. Mason2,3 and Christian Söllner1 Abstract Background: In the visual system of most binocular vertebrates, the axons of retinal ganglion cells (RGCs) diverge at the diencephalic midline and extend to targets on both ipsi- and contralateral sides of the brain. While a molecular mechanism explaining ipsilateral guidance decisions has been characterized, less is known of how RGC axons cross the midline. Results: Here, we took advantage of the zebrafish, in which all RGC axons project contralaterally at the optic chiasm, to characterize Islr2 as an RGC receptor required for complete retinal axon midline crossing. We used a systematic extracellular protein-protein interaction screening assay to identify two Vasorin paralogs, Vasna and Vasnb, as specific Islr2 ligands. Antibodies against Vasna and Vasnb reveal cellular populations surrounding the retinal axon pathway, suggesting the involvement of these proteins in guidance decisions made by axons of the optic nerve. Specifically, Vasnb marks the membranes of a cellular barricade located anteriorly to the optic chiasm, a structure termed the “glial knot” in higher vertebrates. Loss of function mutations in either vasorin paralog, individually or combined, however, do not exhibit an overt retinal axon projection phenotype, suggesting that additional midline factors, acting either independently or redundantly, compensate for their loss. Analysis of Islr2 knockout mice supports a scenario in which Islr2 controls the coherence of RGC axons through the ventral midline and optic tract. Conclusions: Although stereotypic guidance of RGC axons at the vertebrate optic chiasm is controlled by multiple, redundant mechanisms, and despite the differences in ventral diencephalic tissue architecture, we identify a novel role for the LRR receptor Islr2 in ensuring proper axon navigation at the optic chiasm of both zebrafish and mouse. Keywords: Islr2, Vasorin, Slit-like2, Optic chiasm, Glial knot, Midline crossing, Axon coherence, Zebrafish, Mouse Background midbrain targets. In most binocular animals, retinal The stereotypical trajectory of developing axons is the axons approaching the optic chiasm – the crossing point outcome of chemotactic guidance. However, it also sub- at the midline – diverge into ipsi- and contralateral pro- stantially depends on axon extension by local substrate jections. While the latter is always predominant in size, adhesion and axon-axon fasciculation, and regulated ipsilaterally-projecting axons vary in number in different passage through signaling landmarks [38]. One of the organisms, ranging from zero in zebrafish to ~3 % in most clearly defined and best studied choice points rodents and ~45 % in primates [25]. encountered en route by commissural axons is the In vitro studies using retinal explants showed that the embryonic midline. In the vertebrate visual system, ret- cells of the optic chiasm suppress retinal axon growth, inal ganglion cell (RGCs) axons project into the optic irrespective of their laterality of projection [27, 51, 52, 55]. nerve, across the ventral diencephalic midline and into Accordingly, growth cones proceed in a saltatory fashion the optic tracts towards their dorsal thalamic and across the ventral diencephalon and slow down when approaching the midline [20, 22, 32]. In amphibians and * Correspondence: [email protected] mice, a specific population of midline radial glial cells 1Max-Planck-Institut für Entwicklungsbiologie, Abteilung Genetik, Spemannstraße 35, 72076 Tübingen, Germany expresses Ephrin-B2, which repels ventro-temporal retinal Full list of author information is available at the end of the article axons [33, 54]. As a consequence, growth cones © 2015 Panza et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Panza et al. Neural Development (2015) 10:23 Page 2 of 17 expressing the Ephrin-B2 receptor EphB1 abruptly change annotated LRR receptors listed by the zebrafish model morphology to turn and ultimately follow the ipsilateral organism database, ZFIN [5], starting from the collection trajectory. Conversely, evidence to date argues that retinal of mammalian orthologs for these proteins [13]. Within axons with a contralateral trajectory cross the midline by our dataset of 116 genes, we identified 23 receptors overcoming chemosuppression at the chiasm. In the mur- expressed in the zebrafish RGC layer that we hypothe- ine anterior hypothalamus, a cluster of CD44/SSEA1-ex- sized may play a role in retinal axon guidance (Table 1). pressing early neurons is required for retinal axon entry Because we are interested in cellular recognition into the chiasm [48], providing the first evidence that the events at the midline, we focused our attention on chiasmatic territory is not exclusively refractory to axon receptor-encoding genes that are expressed in RGCs growth. Indeed, the expression of Plexin-A1 in these neu- between 30 and 36 h, the time between the beginning of rons, in conjunction with NrCAM on radial glia, reverses RGC differentiation and chiasm establishment. Most the inhibitory effect of midline-derived Semaphorin-6D, genes (e.g. ntrk2b, lrrc4.1, flrt1a, lrtm2)wereexpressedat thereby promoting axon growth [27, 53]. Similarly, a later stages (48 hpf onwards), leaving a single candidate, VEGF isoform expressed at the mouse optic chiasm acts islr2, fulfilling the temporal expression pattern suitable for as an attractant to support crossing of Neuropilin1- further study. In general, islr2 is expressed in brain nuclei positive retinal fibers [15]. associated with differentiated neurons (Fig. 1a), similar to In contrast to rodents and primates, fish have an en- descriptions of mouse and chick Islr2 expression [18, 21]. tirely contralateral retinal projection, making it an ideal The dynamic pattern of islr2 transcription and its correl- system in which to dissect mechanisms mediating RGC ation with the birthdate of RGCs are suggestive of a post- axon crossing at the midline. In order to identify new differentiation function held by this protein. Because islr2 molecular and cellular players in this process, we consid- expression starts in the very first cohort of RGCs develop- ered that both axon growth and guidance crucially ing in the retina (Fig. 1a), we hypothesized that Islr2 might depend on cell-cell and cell-extracellular matrix (ECM) be involved in early guidance decisions that these cells interactions mediated by cell surface and secreted pro- take, such as midline crossing. teins [38]. In this respect, proteins belonging to the leucine-rich repeat (LRR) superfamily – including Slits Islr2 is necessary for retinal axon midline crossing in and Trks – meet important requirements to participate zebrafish in precise and dynamic processes in neurodevelopment To investigate the function of Islr2 in vivo, we selected a [12]. These molecules display highly specific and zebrafish mutant strain harboring a germline mutation dynamic expression patterns, particularly in the nervous in islr2, generated by TILLING. The islr2sa82 locus con- system. Cell surface LRR proteins can mediate low affin- tains a premature nonsense mutation that leads to a pro- ity interactions with their binding partners. Finally, the tein truncation before the end of the LRR domain number of cell surface LRR proteins is greatly expanded (Fig. 1b). As a consequence, this allele is expected to in vertebrates, correlating with the increased complexity behave as a functional null. of nervous and immune system organization. To score for phenotypes related to retinal axon guid- Here, by analyzing the spatiotemporal expression pat- ance, we anterogradely labeled the optic nerves by terns of cell surface LRR superfamily members in zebra- intraretinal lipophilic dye injections at 5 dpf, at which fish, we identified islr2 as a LRR receptor-encoding gene time this axon tract is stable, since most error correction expressed in RGCs. Zebrafish larvae mutant for islr2 events have terminated by 72 hpf [22] and robust visual aberrantly display ipsilateral retinal projections, demon- behaviors are displayed by wild-type larvae [14, 34]. strating a role for Islr2 in RGC axon midline crossing. In Strikingly, despite being mostly normal morphologically, Islr2 (alias Linx) mutant mice, many retinal axons mis- islr2 homozygous mutant larvae clearly display project at and distal to the chiasm, confirming the role ipsilaterally-projecting retinal axons (Fig. 1c, asterisks). of Islr2 in ensuring proper axon routing at this choice We also observed that a subset of islr2 mutants had point. We also identify two midline factors expressed in thinner optic nerves compared to wild-type siblings the zebrafish optic pathway, Vasna
Recommended publications
  • Table 2. Functional Classification of Genes Differentially Regulated After HOXB4 Inactivation in HSC/Hpcs
    Table 2. Functional classification of genes differentially regulated after HOXB4 inactivation in HSC/HPCs Symbol Gene description Fold-change (mean ± SD) Signal transduction Adam8 A disintegrin and metalloprotease domain 8 1.91 ± 0.51 Arl4 ADP-ribosylation factor-like 4 - 1.80 ± 0.40 Dusp6 Dual specificity phosphatase 6 (Mkp3) - 2.30 ± 0.46 Ksr1 Kinase suppressor of ras 1 1.92 ± 0.42 Lyst Lysosomal trafficking regulator 1.89 ± 0.34 Mapk1ip1 Mitogen activated protein kinase 1 interacting protein 1 1.84 ± 0.22 Narf* Nuclear prelamin A recognition factor 2.12 ± 0.04 Plekha2 Pleckstrin homology domain-containing. family A. (phosphoinosite 2.15 ± 0.22 binding specific) member 2 Ptp4a2 Protein tyrosine phosphatase 4a2 - 2.04 ± 0.94 Rasa2* RAS p21 activator protein 2 - 2.80 ± 0.13 Rassf4 RAS association (RalGDS/AF-6) domain family 4 3.44 ± 2.56 Rgs18 Regulator of G-protein signaling - 1.93 ± 0.57 Rrad Ras-related associated with diabetes 1.81 ± 0.73 Sh3kbp1 SH3 domain kinase bindings protein 1 - 2.19 ± 0.53 Senp2 SUMO/sentrin specific protease 2 - 1.97 ± 0.49 Socs2 Suppressor of cytokine signaling 2 - 2.82 ± 0.85 Socs5 Suppressor of cytokine signaling 5 2.13 ± 0.08 Socs6 Suppressor of cytokine signaling 6 - 2.18 ± 0.38 Spry1 Sprouty 1 - 2.69 ± 0.19 Sos1 Son of sevenless homolog 1 (Drosophila) 2.16 ± 0.71 Ywhag 3-monooxygenase/tryptophan 5- monooxygenase activation protein. - 2.37 ± 1.42 gamma polypeptide Zfyve21 Zinc finger. FYVE domain containing 21 1.93 ± 0.57 Ligands and receptors Bambi BMP and activin membrane-bound inhibitor - 2.94 ± 0.62
    [Show full text]
  • Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice
    Loyola University Chicago Loyola eCommons Biology: Faculty Publications and Other Works Faculty Publications 2013 Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice Mihaela Palicev Gunter P. Wagner James P. Noonan Benedikt Hallgrimsson James M. Cheverud Loyola University Chicago, [email protected] Follow this and additional works at: https://ecommons.luc.edu/biology_facpubs Part of the Biology Commons Recommended Citation Palicev, M, GP Wagner, JP Noonan, B Hallgrimsson, and JM Cheverud. "Genomic Correlates of Relationship QTL Involved in Fore- Versus Hind Limb Divergence in Mice." Genome Biology and Evolution 5(10), 2013. This Article is brought to you for free and open access by the Faculty Publications at Loyola eCommons. It has been accepted for inclusion in Biology: Faculty Publications and Other Works by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. © Palicev et al., 2013. GBE Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice Mihaela Pavlicev1,2,*, Gu¨ nter P. Wagner3, James P. Noonan4, Benedikt Hallgrı´msson5,and James M. Cheverud6 1Konrad Lorenz Institute for Evolution and Cognition Research, Altenberg, Austria 2Department of Pediatrics, Cincinnati Children‘s Hospital Medical Center, Cincinnati, Ohio 3Yale Systems Biology Institute and Department of Ecology and Evolutionary Biology, Yale University 4Department of Genetics, Yale University School of Medicine 5Department of Cell Biology and Anatomy, The McCaig Institute for Bone and Joint Health and the Alberta Children’s Hospital Research Institute for Child and Maternal Health, University of Calgary, Calgary, Canada 6Department of Anatomy and Neurobiology, Washington University *Corresponding author: E-mail: [email protected].
    [Show full text]
  • Novel Therapeutic Targets for Axonal Degeneration in Multiple Sclerosis
    J Neuropathol Exp Neurol Vol. 69, No. 4 Copyright Ó 2010 by the American Association of Neuropathologists, Inc. April 2010 pp. 323Y334 REVIEW ARTICLE Novel Therapeutic Targets for Axonal Degeneration in Multiple Sclerosis Steven Petratos, PhD, Michael F. Azari, PhD, Ezgi Ozturk, BSc(Hons), Roula Papadopoulos, PhD, and Claude C.A. Bernard, DSc Downloaded from https://academic.oup.com/jnen/article/69/4/323/2917137 by guest on 30 September 2021 INTRODUCTION Abstract Multiple sclerosis (MS) is a major neurological disorder Multiple sclerosis (MS) is a devastating neurological condition in which there is inflammation, demyelination, and axonal that mainly affects young adults and is associated with long-standing damage in the brain and spinal cord. Approximately 2.5 million morbidity. The pathophysiology of MS is believed to involve people currently live with MS globally, and this causes a immune-mediated multifocal lesions in the CNS that are charac- significant health burden; more than 400,000 people in the terized by inflammation, demyelination, and axonal injury. Most United States alone are diagnosed with the disease. Women are research efforts to date have concentrated on the mechanisms of at least 2 to 3 times more likely to develop the disease than immune-mediated demyelination, whereas mechanisms of axonal men, and the disease onset is most often between the ages injury, the major determinant of neurological deficits in MS patients, of 20 and 50 years (1). Although MS occurs in most ethnic have been elusive beyond observational analyses. This review dis- groups (some more than others, particularly individuals from cusses current understanding of the pathology and novel clinical northern Europe or their direct descendants), strong genetic investigations of axonal injury in MS and the commonly used MS or environmental risk factors are still to be elucidated (2).
    [Show full text]
  • From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions During Embryonic Development
    International Journal of Molecular Sciences Review From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development Nitza Kahane and Chaya Kalcheim * Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; [email protected] * Correspondence: [email protected] Abstract: To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a pop- ulation of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogen- esis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex Citation: Kahane, N.; Kalcheim, C. developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal neural-mesodermal axis.
    [Show full text]
  • A Conserved Gene Family Encodes Transmembrane Proteins with Fibronectin, Immunoglobulin and Leucine-Rich Repeat Domains (FIGLER) Delicia L
    A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER) Delicia L. Munfus, University of Alabama at Birmingham Christopher L. Haga, University of Alabama at Birmingham Peter D. Burrows, University of Alabama at Birmingham Max Cooper, Emory University Journal Title: BMC Biology Volume: Volume 5, Number 1 Publisher: BioMed Central | 2007-09-13, Pages 36-36 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.1186/1741-7007-5-36 Permanent URL: https://pid.emory.edu/ark:/25593/rqdhh Final published version: http://dx.doi.org/10.1186/1741-7007-5-36 Copyright information: © 2007 Munfus et al; licensee BioMed Central Ltd. This is an Open Access work distributed under the terms of the Creative Commons Attribution 2.0 Generic License (http://creativecommons.org/licenses/by/2.0/). Accessed October 6, 2021 6:19 AM EDT BMC Biology BioMed Central Research article Open Access A conserved gene family encodes transmembrane proteins with fibronectin, immunoglobulin and leucine-rich repeat domains (FIGLER) Delicia L Munfus†1,2, Christopher L Haga†1,2, Peter D Burrows1,2,3 and Max D Cooper*1,2,4,5 Address: 1Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA, 2Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294-3300, USA, 3Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-3300,, 4Department of Medicine, University of Alabama at Birmingham, Birmingham,
    [Show full text]
  • Slit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System
    Neuron, Vol. 33, 219–232, January 17, 2002, Copyright 2002 by Cell Press Slit1 and Slit2 Cooperate to Prevent Premature Midline Crossing of Retinal Axons in the Mouse Visual System Andrew S. Plump,1,2,6 Lynda Erskine,3,6,7 midbrain. Some axons do not cross, projecting to the Christelle Sabatier,1 Katja Brose,1 same targets but ipsilaterally. As with many other brain Charles J. Epstein,2 Corey S. Goodman,4 commissures, formation of the optic chiasm occurs at Carol A. Mason,3 and Marc Tessier-Lavigne1,5,8 an invariant position along the antero-posterior axis of 1 Departments of Anatomy and the developing forebrain. Mechanisms must therefore of Biochemistry and Biophysics exist not only to direct divergence at the midline but also Howard Hughes Medical Institute to prevent retinal axons from crossing at inappropriate 2 Division of Medical Genetics locations. University of California, San Francisco While significant progress in recent years has led to San Francisco, California 94143 a greater understanding of the factors that help establish 3 Departments of Pathology, Anatomy, a topographic map within the retina and its targets and Cell Biology (O’Leary et al., 1999), less progress has been made in Center for Neurobiology and Behavior identifying the rudimentary axon guidance cues that es- Columbia University College of Physicians tablish the basic trajectories within the vertebrate visual and Surgeons system, particularly those that function at the midline New York, New York 10032 to regulate the positioning and decussation of retinal 4 Department of Molecular and Cell Biology axons. In mammals, chondroitin sulfate proteoglycans Howard Hughes Medical Institute (CSPGs), L1, netrin-1, and specific EphB ligands are University of California, Berkeley important for guidance within the retina (Birgbauer et Berkeley, California 94720 al., 2000; Brittis et al., 1992, 1995; Deiner et al., 1997; Snow et al., 1991).
    [Show full text]
  • LINGO-1 Antagonist Promotes Spinal Cord Remyelination and Axonal Integrity in MOG-Induced Experimental Autoimmune Encephalomyelitis
    ARTICLES LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis Sha Mi1,7, Bing Hu2,7,8, Kyungmin Hahm1,YiLuo1, Edward Sai Kam Hui6, Qiuju Yuan2, Wai Man Wong2, Li Wang2, Huanxing Su2, Tak-Ho Chu2, Jiasong Guo2, Wenming Zhang2, Kwok-Fai So2–4, Blake Pepinsky1, Zhaohui Shao1, Christilyn Graff1, Ellen Garber1, Vincent Jung1, Ed Xuekui Wu6 & Wutian Wu2,3,5,7 Demyelinating diseases, such as multiple sclerosis, are characterized by the loss of the myelin sheath around neurons, owing to inflammation and gliosis in the central nervous system (CNS). Current treatments therefore target anti-inflammatory mechanisms http://www.nature.com/naturemedicine to impede or slow disease progression. The identification of a means to enhance axon myelination would present new therapeutic approaches to inhibit and possibly reverse disease progression. Previously, LRR and Ig domain–containing, Nogo receptor– interacting protein (LINGO-1) has been identified as an in vitro and in vivo negative regulator of oligodendrocyte differentiation and myelination. Here we show that loss of LINGO-1 function by Lingo1 gene knockout or by treatment with an antibody antagonist of LINGO-1 function leads to functional recovery from experimental autoimmune encephalomyelitis. This is reflected biologically by improved axonal integrity, as confirmed by magnetic resonance diffusion tensor imaging, and by newly formed myelin sheaths, as determined by electron microscopy. Antagonism of LINGO-1 or its pathway is therefore a promising approach for the treatment of demyelinating diseases of the CNS. In multiple sclerosis, the myelin and oligodendrocytes of brain and multiple sclerosis. The model has previously been used to demon- Nature Publishing Group Group Nature Publishing 7 spinal cord white matter are the targets of T cell–mediated immune strate that fostering remyelination can be effective in moderating 1 4 200 attacks , resulting in demyelination and the consequent progressive disease progression .
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Mouse Slit1 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Slit1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Slit1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Slit1 gene (NCBI Reference Sequence: NM_015748 ; Ensembl: ENSMUSG00000025020 ) is located on Mouse chromosome 19. 37 exons are identified, with the ATG start codon in exon 1 and the TAA stop codon in exon 37 (Transcript: ENSMUST00000025993). Exon 6~8 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Slit1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-332I24 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Mice homozygous for a reporter allele exhibit normal interneuron numbers and morphology. Exon 6 starts from about 10.58% of the coding region. The knockout of Exon 6~8 will result in frameshift of the gene. The size of intron 5 for 5'-loxP site insertion: 992 bp, and the size of intron 8 for 3'-loxP site insertion: 1117 bp. The size of effective cKO region: ~1526 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 5 6 7 8 9 10 11 37 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Slit1 Homology arm cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • Genetic Drivers of Pancreatic Islet Function
    | INVESTIGATION Genetic Drivers of Pancreatic Islet Function Mark P. Keller,*,1 Daniel M. Gatti,†,1 Kathryn L. Schueler,* Mary E. Rabaglia,* Donnie S. Stapleton,* Petr Simecek,† Matthew Vincent,† Sadie Allen,‡ Aimee Teo Broman,§ Rhonda Bacher,§ Christina Kendziorski,§ Karl W. Broman,§ Brian S. Yandell,** Gary A. Churchill,†,2 and Alan D. Attie*,2 *Department of Biochemistry, §Department of Biostatistics and Medical Informatics, and **Department of Horticulture, University of Wisconsin–Madison, Wisconsin 53706-1544, †The Jackson Laboratory, Bar Harbor, Maine 06409, and ‡Maine School of Science and Mathematics, Limestone, Maine 06409, ORCID IDs: 0000-0002-7405-5552 (M.P.K.); 0000-0002-4914-6671 (K.W.B.); 0000-0001-9190-9284 (G.A.C.); 0000-0002-0568-2261 (A.D.A.) ABSTRACT The majority of gene loci that have been associated with type 2 diabetes play a role in pancreatic islet function. To evaluate the role of islet gene expression in the etiology of diabetes, we sensitized a genetically diverse mouse population with a Western diet high in fat (45% kcal) and sucrose (34%) and carried out genome-wide association mapping of diabetes-related phenotypes. We quantified mRNA abundance in the islets and identified 18,820 expression QTL. We applied mediation analysis to identify candidate causal driver genes at loci that affect the abundance of numerous transcripts. These include two genes previously associated with monogenic diabetes (PDX1 and HNF4A), as well as three genes with nominal association with diabetes-related traits in humans (FAM83E, IL6ST, and SAT2). We grouped transcripts into gene modules and mapped regulatory loci for modules enriched with transcripts specific for a-cells, and another specific for d-cells.
    [Show full text]
  • Supplemental Information
    Supplemental information Dissection of the genomic structure of the miR-183/96/182 gene. Previously, we showed that the miR-183/96/182 cluster is an intergenic miRNA cluster, located in a ~60-kb interval between the genes encoding nuclear respiratory factor-1 (Nrf1) and ubiquitin-conjugating enzyme E2H (Ube2h) on mouse chr6qA3.3 (1). To start to uncover the genomic structure of the miR- 183/96/182 gene, we first studied genomic features around miR-183/96/182 in the UCSC genome browser (http://genome.UCSC.edu/), and identified two CpG islands 3.4-6.5 kb 5’ of pre-miR-183, the most 5’ miRNA of the cluster (Fig. 1A; Fig. S1 and Seq. S1). A cDNA clone, AK044220, located at 3.2-4.6 kb 5’ to pre-miR-183, encompasses the second CpG island (Fig. 1A; Fig. S1). We hypothesized that this cDNA clone was derived from 5’ exon(s) of the primary transcript of the miR-183/96/182 gene, as CpG islands are often associated with promoters (2). Supporting this hypothesis, multiple expressed sequences detected by gene-trap clones, including clone D016D06 (3, 4), were co-localized with the cDNA clone AK044220 (Fig. 1A; Fig. S1). Clone D016D06, deposited by the German GeneTrap Consortium (GGTC) (http://tikus.gsf.de) (3, 4), was derived from insertion of a retroviral construct, rFlpROSAβgeo in 129S2 ES cells (Fig. 1A and C). The rFlpROSAβgeo construct carries a promoterless reporter gene, the β−geo cassette - an in-frame fusion of the β-galactosidase and neomycin resistance (Neor) gene (5), with a splicing acceptor (SA) immediately upstream, and a polyA signal downstream of the β−geo cassette (Fig.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]