Dumand. a New Window on the Universe

Total Page:16

File Type:pdf, Size:1020Kb

Dumand. a New Window on the Universe DUMAND A New Window on the Universe P.K.F. Grieder Physikalisches Institut, University of Bern, Switzerland For the DUMAND Collaboration* The Deep Underwater Muon and Neutrino Installation in the ocean, and continuous Detector (DUMAND) is a completely new high-precision sonar tracking of the location concept, based on the detection of Cheren­ of each module had to be solved. kov radiation produced by relativistic muons This work, together with extensive theore­ particles as they move through a dielectric tical studies and the construction and suc­ medium (the ocean water) faster than the cessful operation of a prototype system, phase velocity of light in the medium. In DUMAND I, lead to the present scope of enabling the construction of a detector sys­ scientific activities and to today’s system tem of a size capable of identifying sources configuration for the DUMAND II detector. of high-energy neutrinos with a reasonable hope of success, DUMAND opens the era of Site and Environmental Aspects high-energy neutrino astronomy. It employs The site where the detector matrix will be the ocean’s water mass as a multi-purpose installed as well as the 25 km cable route to medium: as a shield against the unwanted the site have been carefully surveyed. Com­ cosmic-ray background, as a well-behaved position and topography of the sea floor are absorber for particles and radiation, as a tar­ well-known along with significant ocean get for muon and neutrino interactions, as a parameters around a depth of 4500 m such Cherenkov radiator for charged particles, as ocean currents (≤ 50 mm/s), water tem­ and as a dark room to prevent light from perature (≈ + 4.0°C), the optical attenuation interfering with faint Cherenkov radiation. length in the visible (≈ 40 m), salinity, etc. Comparatively small optical sensor mo­ The optical background In the ocean has dules constitute the detectors. They are dis­ been Investigated [1]. It is chiefly due to tributed in the form of a three-dimensional background light from seawater radioactivity matrix array throughout a well-defined vo­ (specifically, Cherenkov radiation from the lume at great depth in the ocean and sepa­ beta decay of 40K) and to bioluminescence. rated by a distance of the same order as the The former can be eliminated by noting local attenuation length of light in ocean water Fig. 1— DUMAND II array layout, showing coincidences between neighbouring modu­ (Fig. 1). The system is capable of detecting the 216 optical modules arranged in strings les. High levels of light were observed high-energy muon-neutrinos and their anti­ moored on the ocean floor some 4500 m during ship-tethered measurements owing particles of terrestrial and extraterrestrial ori­ deep. Systems for control, data handing, to wave motion inducing local turbulence gin that Interact within the detector matrix or auxiliaries, and support are not shown. causing bacteria to release light flashes. Its Immediate vicinity, producing detectable This stimulated bioluminescence whenever and reconstructable muon trajectories in the not confined to the size of an underground excessive turbulence is present is not array. Very high-energy cosmic ray muons cavity and the interpretation of data will not expected to be a major problem for originating from even more energetic inter­ be troubled by uncertainties in the density of DUMAND modules that are moored from actions of the primary cosmic radiation In the surrounding rock or in the complexity of the ocean floor, because ocean currents at the atmosphere are also monitored. the surface topography. The very large the site are weak. Sedimentation and bio- Distinction between cosmic-ray muons background rate found In detectors placed fouling have been studied and were found to and neutrino induced muons is achieved by in shallow lakes will also not be a problem. be of no concern. Lost equipment that we excluding from the neutrino analysis dow- have recovered some one and a half years ward-going muons within a zenith angle Prototype Experiment after immersion at a depth of nearly 5000 m range between 0° and 70°. Discrimination The main concern with this novel concept showed no signs of growth on its surface. against atmospheric neutrinos Is achieved is that completely new technologies have by statistical analysis and angular correla­ had to be developed; they must then be Prototype System and Experiment tion of arrival direction in conjunction with deployed in an unusual environment. A To deliver the ultimate proof of the feasibi­ energy cuts. DUMAND also has the capabi­ large amount of exploratory and pioneering lity and practicability of the DUMAND con­ lity to detect electron-neutrinos and antineu­ work therefore had to be carried out during cept, and to test the reliability of our techno­ trinos, but this option will not be discussed. the early phases of the DUMAND project. logy, a one-dimensional prototype, called The DUMAND detector system is, in prin­ One of the foremost technical problems, the Short Prototype String (SPS), was ciple, freely expandable and allows the of course, was the development of a sui­ constructed and deployed for an experiment construction of a truly giant experiment. table detector module which met the many carried out in the Pacific Ocean about 30 km Unlike typical underground experiments, it is stringent requirements, keeping in mind the west of the island of Hawaii in November ever-present high pressure of the surroun­ 1987 [2]. The roughly 70 m long SPS string ding water masses. Major problems deman­ consisted of seven optical modules, two Peter Grieder graduated as an electronics ding great effort, ingenuity and much time calibration modules, an extensive environ­ engineer in Switzerland in 1951 and worked for four years in Industry before undertaking a were tackled during optimisation of the ove­ mental data recording system, wide-band Masters in accelerator physics at the IIT, rall response of the detector matrix, of its hydrophones, and a sonar system. Chicago, USA. He received his Ph.D. in experi­ sensitivity, efficiency and track reconstruc­ The primary purpose of this experiment mental astrophysics from the University of tion capability. Questions related to the opti­ was to demonstrate that muons could be Bern In 1961 where he was appointed cal background, high-speed long-distance detected In the deep ocean and their trajec­ Honorarprofessor in 1978. data transmission, system deployment and tories reconstructed. Because of the limited Europhys. News 23 (1992) 167 similar in principle to those employed for the SPS, and a very high precision sonar. Capabilities The size and configuration of the array were chosen to yield a reasonably even rate and adequate sensitivity to detect neutrinos from extraterrestrial high-energy neutrino sources at their expected flux levels. Moreover, the array has been optimised for the detection of high-energy muons from neutrino interactions because calculations indicate that this is the best compromise for detecting the same sources. Finally, the Fig. 2 — a, left) schematic view of the Short Prototype system can has also detect contained neu­ String used for the first phase of DUMAND: b, upper) trino-induced cascades. In order to carry out diver’s view from a depth of 30 m of the top portion of useful astronomy, a high angular resolution the string during deployment to a depth of over 4000 (typically < 1°) is required. Cherenkov light m from the US Navy’s SSP Kaimalino, a highly stable from through-going particles will illuminate ship. The dark unit in the foreground with the protru­ on average a photomultipler in each of 13 ding rod is an optical calibration module. modules so the detector spacings ensure that muons with energies ≥ 50 GeV which pass through from outside will be detected with high efficiency and reconstructed in direction with a median accuracy of about 1°. The array will be able to resolve the direction of a neutrino to this accuracy if the neutrino energy is ≥ 1 TeV, when the scatte­ ring angle between a neutrino striking a nucleon and the resulting muon which passes into the detector will be ≤ 1°. Muons from atmospheric neutrinos will dominate the downward going muons above a zenith angle of about 80° (Fig. 5) leaving a Fig. 3 — Zenith angular distribution of solid angle of 2.357π steradians for neutrino muons at a depth on 4000 m in the observations. There will be about 3500 at­ ocean, measured with the DUMAND mospheric neutrino events detected each Short Prototype String. year. This gives a background rate of about one atmospheric neutrino per (2.80)2 per year. Thus, with the calculated resolution of 1° for muon direction reconstruction, we will size of the SPS (Fig. 2) and the very short Monte Carlo simulation. The simulation also be largely signal limited, rather than back­ time that was available for the experiment gave the effective detection area for muons ground limited, in the search for extraterres­ (11 days), the test was performed using as a function of the zenith angles. Multi­ trial point sources. high-energy muons produced by interac­ plying the events rates by the area gave the As in the case of the SPS, the array will tions of cosmic rays with the earth’s atmos­ total muon intensity as a function of depth. also contain wide-band hydrophones to phere that penetrate deep into the ocean. Vertical intensities obtained by multiplying The final DUMAND II array will in fact be by a correction factor agreed with previous Fig. 4 — Optical detector module for used to detect the much rarer muons indu­ estimates from underground experiments. DUMAND II with the upper hemisphere of the ced by the interactions of high-energy neu­ glass pressure housing removed. The coarse trinos with the surrounding ocean water.
Recommended publications
  • Acoustic Particle Detection – from Early Ideas to Future Benefits
    Nuclear Instruments and Methods in Physics Research A ] (]]]]) ]]]–]]] Contents lists available at ScienceDirect Nuclear Instruments and Methods in Physics Research A journal homepage: www.elsevier.com/locate/nima Acoustic particle detection – From early ideas to future benefits Rolf Nahnhauer n Deutsches Elektronen-Synchrotron, DESY, Platanenallee 6, D-15738 Zeuthen, Germany article info abstract The history of acoustic neutrino detection technology is shortly reviewed from the first ideas 50 years ago Keywords: to the detailed R&D programs of the last decade. The physics potential of ultra-high energy neutrino Cosmogenic neutrinos interaction studies is discussed for some examples. Ideas about the necessary detector size and suitable Ultra-high energy neutrino detection design are presented. Acoustic detection technology & 2010 Elsevier B.V. All rights reserved. 1. The dawn of neutrino astroparticle physics 2. First ideas about ‘‘particle sound’’ Very soon after the 1956 Science publication of Cowan et al. [1] Fifty years ago a well developed method to observe elementary about the discovery of neutrino interactions at the Savannah River particles in accelerator and cosmic ray experiments was to look for light reactor first ideas about experiments detecting neutrinos produced in they produced through Cherenkov radiation or scintillation effects the Earth atmosphere or in distant astrophysical sources appeared. In when passing transparent media. At accelerators bubble chambers his talk ‘‘On high energy neutrino physics’’ at the 1960 Rochester started their two decades lasting successful application, having their conference [2] Markov stated: ‘‘in papers by Zhelesnykh1 and myself working principle still under study. In this context Askaryan [6] (1958, 1960) possibilities of experiments with cosmic ray neutrinos published in 1957 a paper about ‘‘Hydrodynamic radiation from the are analyzed.
    [Show full text]
  • A Deep Ocean Anti-Neutrino Detector Near Hawaii
    Part I: Project Summary A Deep Ocean Anti-Neutrino Detector near Hawaii In Response to: CEROS-CORE-05-01 The National Defense Center of Excellence for Research in Ocean Sciences (CEROS) 73-4460 Queen Kaahumanu Highway, Suite 111 Kailua-Kona, Hawaii 96740 Objectives/Result: Design and initial component testing of a deep ocean anti-neutrino detector for the presence of both natural and man-made nuclear activity. Period of Performance: 12 months (June 2005 - May 2006) Funding Requirements: $686,000 Subcontractors: University of Hawaii, Manoa High Energy Physics Principal Investigator: Dr. Joseph Van Ryzin, President Makai Ocean Engineering, Inc. [email protected] Co-Principal Investigator: Dr. John Learned, Professor Department of Physics and Astronomy University of Hawaii, Manoa [email protected] Administrative Contact: Dr. Michael Nedbal Makai Ocean Engineering, Inc. [email protected] Contact Address: Makai Ocean Engineering, Inc. PO Box 1206 Kailua, Hawaii 96734 [email protected] Phone: (808) 259-8871 Fax (808) 259-8238 January 26, 2005 Project Summary A Deep Ocean Anti-Neutrino Detector near Hawaii Summary, Proposed Effort We propose to initiate a project to build a deep ocean detector to measure low energy anti-neutrinos from radioactive decays. These anti-neutrinos arise from decays throughout the Earth, from a theoretical natural reactor at the Earth's core, and from man-made nuclear reactors or nuclear weapon testing. Such a detector has great value for both geophysical science and nuclear proliferation deterrence. A proposed initial detector is conceptually shown in Figure 1; it is 20m in diameter. Subsequent nuclear deterrent detectors would most likely be even larger.
    [Show full text]
  • History of High-Energy Neutrino Astronomy
    History of high-energy neutrino astronomy C. Spiering DESY, Platanenallee 6, D-15738 Zeuthen, Germany This talk sketches the main milestones of the path towards cubic kilometer neutrino telescopes. It starts with the first conceptual ideas in the late 1950s and describes the emergence of concepts for detectors with a realistic discovery potential in the 1970s and 1980s. After the pioneering project DUMAND close to Hawaii was terminated in 1995, the further development was carried by NT200 in Lake Baikal, AMANDA at the South Pole and ANTARES in the Mediterranean Sea. In 2013, more than half a century after the first concepts, IceCube has discovered extraterrestrial high-energy neutrinos and opened a new observational window to the cosmos { marking a milestone along a journey which is far from being finished. 1 From first concepts to the detection of atmospheric neutrinos The initial idea of neutrino astronomy beyond the solar system rested on two arguments: The first was the expectation that a supernova stellar collapse in our galaxy would be accompanied by an enormous burst of neutrinos in the 5-10 MeV range. The second was the expectation that fast rotating pulsars must accelerate charged particles in their Tera-Gauss magnetic fields. Either in the source or on their way to Earth they must hit matter, generate pions and neutrinos as decay products of the pions. The first ideas to detect cosmic high energy neutrinos underground or underwater date back to the late fifties (see 1 for a detailed history of cosmic neutrino detectors). In the 1960 Annual Review of Nuclear Science, K.
    [Show full text]
  • Performance Studies for the Km3net Neutrino Telescope
    Performance Studies for the KM3NeT Neutrino Telescope Der Naturwissenschaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-Nu¨rnberg zur Erlangung des Doktorgrades vorgelegt von Claudio Kopper aus Erlangen Als Dissertation genehmigt von der Naturwissenschaftlichen Fakult¨at der Friedrich-Alexander-Universit¨at Erlangen-Nurnberg¨ Tag der mundlichen¨ Prufung:¨ 12. M¨arz 2010 Vorsitzender der Promotionskommission: Prof. Dr. Eberhard B¨ansch Erstberichterstatter: Prof. Dr. Ulrich Katz Zweitberichterstatter: Prof. Dr. Christian Stegmann Meinen Eltern Contents Introduction9 I Basics 13 1 High energy cosmic neutrinos 15 1.1 Neutrinos in the Standard Model.................... 15 1.2 Cosmic accelerators............................ 16 1.2.1 The cosmic ray spectrum.................... 16 1.2.2 Particle acceleration....................... 17 1.2.3 Neutrino production....................... 20 1.2.4 Source candidates........................ 21 2 Neutrino telescopes 25 2.1 Detection mechanism........................... 25 2.1.1 Neutrino interaction....................... 25 2.1.2 Cherenkov radiation from charged particles.......... 29 2.1.3 Muon propagation........................ 29 2.1.4 Electromagnetic and hadronic cascades............ 30 2.1.5 Light propagation........................ 31 2.1.6 Light detection.......................... 32 2.1.7 Triggering............................. 33 2.1.8 Muon track reconstruction.................... 33 2.1.9 Background............................ 34 2.2 Existing neutrino telescopes......................
    [Show full text]
  • Research in High Energy Physics
    ,*•'••' Annual Technical Progress Report and FY 1997 Budget Request for DOE Grant DE-FG03-94ER40833 to The U.S. Department of Energy San Francisco Operations Office from The University of Hawaii Honolulu, Hawaii 96822 Title of Project: RESEARCH IN HIGH ENERGY PHYSICS December 1, 1993 to November 30, 1998 (FY94-FY98) Principal Investigators Stephen L. Olsen Xerxes Tata Experimental Physics Theoretical Physics G<: fun DOCUMENT IS UMJTO ASTER Contents 1 Introduction 2 1.1 Overview 2 1.1.1 Background 3 1.1.2 Recent Accomplishments 4 1.1.3 Personnel Changes 5 2 Accelerator-Based Experiments 6 2.1 The BELLE Experiment 6 2.1.1 Physics Motivation 6 2.1.2 The BELLE Detector 7 2.1.3 Hawaii Participation in BELLE 10 2.1.4 BELLE Equipment Budget 18 2.1.5 Detector Integration 19 2.1.6 Budget 19 2.1.7 Publications 19 2.2 The BES Experiment 21 2.2.1 V' Physics 21 2.2.2 Xc Physics 31 2.2.3 Charm Physics: measurement of fz>a and fn 34 2.2.4 CODEMAN 35 2.2.5 The BES upgrade 35 2.2.6 Recent BES publications: 38 2.3 The CLEO-II Experiment 41 2.3.1 Studies of inclusive B Meson decays 41 2.3.2 Search for the process b —• s gluon 42 2.3.3 Exclusive hadronic B decays 45 ii DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document 2.3.4 Determination of CKM matrix elements 47 2.3.5 Bs - Bs Mixing 47 2.3.6 Doubly Cabibbo-suppressed D° meson decay and D° — D° mixing 48 2.3.7 CLEO II particle ID 49 2.3.8 Reviews of B Physics 51 2.4 The DO Experiment 53 2.4.1 Top Mass Fitting 53 2.4.2 Hawaii analyses to extract the top mass 56 2.4.3 Another pseudolikelihood fit 58 2.4.4 Optimal cuts 59 2.4.5 HT analysis 62 2.4.6 Personnel 64 2.4.7 Other Activities 64 2.4.8 Future Plans 64 2.4.9 Publications 64 2.5 The AMY Experiment .
    [Show full text]
  • Department of Energy Division of High Energy Physics Scientific Assessment Group for Experiments in Non-Accelerator Physics
    DEPARTMENT OF ENERGY DIVISION OF HIGH ENERGY PHYSICS REPORT ON THE SCIENTIFIC ASSESSMENT GROUP FOR EXPERIMENTS IN NON-ACCELERATOR PHYSICS (SAGENAP) FEBRUARY 20-21, 1996 P.K. WILLIAMS, CHAIRMAN TABLE OF CONTENTS INTRODUCTION ................................................... 1 DUMAND ........................................................ 3 GRANITE III...................................................... 9 Gravitationally Lensed Quasars......................................... 13 GRSST/GLAST.................................................... 17 STATUS AND PROGRESS REPORTS MACRO ................................................... 19 Cryogenic Dark Matter Search .................................... 21 Super-Kamiokande ............................................ 23 MILAGRO.................................................. 25 Soudan II ................................................... 27 Auger Project................................................ 29 RECOMMENDATIONS .............................................. 31 APPENDICES A - CHARGE TO SAGENAP ................................... 37 B - MEMBERSHIP OF THE SAGENAP PANEL ..................... 39 C - AGENDA .............................................. 43 INTRODUCTION The Scientific Assessment Group for Experiments in Non-Accelerator Physics (SAGENAP) was assembled by the Division of High Energy Physics (DHEP) of the U.S. Department of Energy (DOE) in response to the advice given by the High Energy Physics Advisory Panel (HEPAP). This group will provide a standing review of the on-going
    [Show full text]
  • N a R L S T ® UNLIMITED of THIS DOCUWA
    FINAL TECHNICAL REPORT DOE-High Energy Physics Contract with the University of Hawaii (Project DE-ACO3-83ER40103) Period Covered: July 1, 1983 through February 28, 1994 (about 11.5 years). This report is divided into two sections: (I) Experimental program; and (II) Theoretical Program. In each case the report includes a highly condensed summary of the major developments on various Hawaii projects, which were described in more detail in the Annual Technical Progress Reports ("PRs", or "RPRs" = Renewal Proposal and Progress Report) sent to DOE-HEP annually. This Final Report calls attention to only a few publications by UH-HEPG over the 11-year period; complete lists of publications are given in the annual PR/RPRs. This Final Report provides an overview of each major program within the overall ongoing project, for the specific 11 year period from mid-1983 through the Feb. 1984 changeover from Contract to Grant status. Major developments are highlighted, with emphasis on UH-HEPG's contributions. (I) EXPERIMENTAL PROGRAM NOTE: this summary was drafted by V. Z. Peterson (Principal Investigator through August 31, 1992), but reviewed and augmented by Stephen Olsen (who took over as PI on (Sept.1,1992). Sections written entirely by Prof. Olsen are starred (*). The various experimental programs in which Hawaii played a significant role during this 11-year period are: (A) Neutrino Bubble Chamber Experiments: ...E388, E546, and E646 (completed analysis). ...E632, a major international collaborative effort. (B) e+e- Colliding Beams: ...Mark II experiment at SLAC. ...AMY experiment at KEK.(*) ...Beijing charm experiment at BES.(*) ...Preparation for B-factory experiments at KEK.(*) (C) Development of Silicon Particle-Position Detectors for HEP: ...Mark II Silicon secondary vertex detector (SSVD) ...Monolithic Pixel Particle Detector (MPPD) for SSC.
    [Show full text]
  • Curriculum Vitae John Gregory Learned Degrees
    November 2008 Curriculum Vitae John Gregory Learned degrees: A.B. Columbia University, 1961, New York, NY. M.S. University of Pennsylvania, 1963, Philadelphia, PA. Ph.D. University of Washington, 1968, Seattle, WA. positions held: 1961-62 Design Engineer/ Rocket Test Conductor, General Dynamics/Astronautics. 1963-65 Design Engineer, The Boeing Co./Aerospace. 1965-66 Teaching Asst., University of Washington. 1966-68 Research Assistant, University of Washington. 1968-73 Research Associate, University of Wisconsin. 1973-76 Assistant Scientist, University of Wisconsin. 1976-77 Visiting Associate Physicist, UC Irvine. 1977-79 Visiting Associate Professor, UC Irvine. 1980-83 Visiting Associate Professor, University of Hawaii. 1983-88 Associate Professor, University of Hawaii. 1988-Present Professor, University of Hawaii See attached lists of publications, students, thesis committee mem- bership, and public talks. present projects as of 11/08: • Super-Kamiokande Running experiment since 1996, discovery of muon neutrino oscillations, a wealth of material on many areas of neutrino stud- ies. This project opened up the field of neutrino oscillations, has one associated Nobel Prize and is generally expected to have another. Will continue at least to 2016. • KamLAND Discovered electron anti-neutrino oscillations from nuclear power reactors around Japan. Also began the emerging field of the study of the earth with neutrinos. Being upgraded to enable detection of solar Be neutrinos. Will operate for many years. • T2K Future ( 2009) high precision neutrino study from new 50GeV proton machine ion Tokai shooting 300km to SuperK. • ANITA Operational project for UHE neutrino detection from a balloon in Antarctica. Flew in 2007-8 and flying again in 2008-9.
    [Show full text]
  • History of Acoustic Neutrino Detection
    EPJ Web of Conferences 216, 01001 (2019) https://doi.org/10.1051/epjconf/201921601001 ARENA 2018 History of acoustic neutrino detection Robert Lahmann1, 1Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen Centre for Astroparticle Physics, Erwin- Rommel-Str. 1, 91058 Erlangen, Germany Abstract. The historic development of acoustic neutrino detection is shortly reviewed from early ideas starting in the 1950s to current experiments. The article concludes with an assessment of the current status of the field and outlook to the future, as perceived by the author, and with an emphasis on activities in the Mediterranean Sea. 1 A historic introduction to acoustic neutrino detection In 1957, G.A. Askariyan pointed out that ionisation and cavitation along the track of an ionising particle in a liquid leads to hydrodynamic radiation [1]. At that time, the detection of the neutrino— published in July 1956 [2]—had been recent news and the acoustic detection of these new particles was not yet a subject. State of the art for particle detection was the bubble chamber. In search for novel detection methods, piezo sensors irradiated with high energy electron beams were shown to emit sound waves and the potential for detecting individual particle tracks with this method was discussed [3]. Starting in the 70’s, theoretical and experimental studies on the hydrodynamic radiation of beams and particles traversing liquids [4–10] were conducted. These efforts lead to the formulation of the so-called thermo-acoustic model [4], according to which the energy deposition of particles traversing liquids (or other suitable dense media) leads to a local heating of the medium which can be regarded as instantaneous with respect to hydrodynamic time scales.
    [Show full text]
  • Proposal Full Title Design Study for a Deep Sea Facility in The
    Design Study for a Deep Sea Facility in the Mediterranean Proposal full title for Neutrino Astronomy and Associated Sciences Proposal acronym KM3NeT List of Contents Overview 2 Table 1 – List of participants of the Design Study . 2 Table 2 – List of tasks for the Design Study . 6 Table 3 – Summary table of the expected budget and of the requested Community contribution 7 1 European Added Value of the New Infrastructure 10 2 Scientific and Technological Excellence 13 2.1 Quality of the New Infrastructure . 13 2.2 Quality of the Proposed Design Study . 15 2.2.1 Objectives of the Design Study . 15 2.2.2 Multi-Annual Implementation Plan . 16 3 Relevance to the Objectives of the Scheme 22 3.1 Justification of the Proposed Design Study . 22 3.2 Exploring the Feasibility of the Infrastructure . 26 4 Quality of the Management 28 4.1 Management and Competence of the Participants . 28 4.2 Justification of Financing Requested . 37 5 Other Issues 40 KM3NeT Table 1 – List of participants of the Design Study, part 1/4 Participant Organisation Short name Short description (i.e. fields of excellence) and specific roles in the consortium number 1 University of Erlangen, U-Erlangen The physics institute of U-Erlangen has been participating in various high-energy physics experiments Germany and is involved in the ANTARES pilot project since 2001. The University administration has managed several FP6 projects. U-Erlangen will contribute to simulation and reconstruction tasks as well as to the detector design and will coordinate the Design Study. 2 University of Kiel, U-Kiel As a branch of U-Kiel, the Forschungs- und Technologiezentrum Westkuste¨ (FTZ) (Research and Germany Technology Centre West Coast) at Busum¨ unites several disciplines of research on the Wadden Sea and the bordering coastline.
    [Show full text]
  • The Saga of Atmospheric Neutrinos
    The Saga of Atmospheric Neutrinos John Gregory Learned University of Hawaii A Saga? Yes, a great scientific tale of persistence, dead ends, serendipitous discovery, re- demption and glory. Dictionary definition of a Saga: \a long story of heroic achievement, especially a medieval prose narrative in Old Norse or Old Icelandic." (OED). Indeed the tale of atmospheric neutrino studies has much of this. 1 Neutrino Sources From whence do neutrinos originate? The dominant sources we know are: • Nuclear Reactors (power stations, ships, test reactors), known and observed since the 1950's. • Particle Accelerators make them from collisions of beams of protons into targets and subsequent mesons decaying to muons and those allowed to decay in flight, as at Fermilab, CERN, KEK and Tokai. • Atmospheric Neutrinos from GeV to TeV energies, produced by incoming cosmic rays colliding with air nuclei in the high atmosphere and then the secondary pions and kaons decaying in flight through the atmosphere. • Geo-neutrinos from throughout Earth's mass from primordial Uranium, Thorium and Potassium decay chains, long predicted but hard to detect, and first observed in 2005. • The Sun and indeed all stars produce vast numbers of electron neutrinos, bathing the Earth day and night. The flux of solar neutrinos at earth totally overwhelms the summed flux from all the rest of the Universe. • Supernova (SN) neutrinos are the exception where a huge bursts may be seen from SN not much further away than out neighbor galaxies (SN1987A), with detectors in the class of < 100 kT. Attempts have been made to see the sum of all SN neutrinos, but that flux has been beyond reach as yet (maybe in a few years in Hyper-Kamiokande).
    [Show full text]
  • Towards High-Energy Neutrino Astronomy. a Historical Review
    EPJ manuscript No. (will be inserted by the editor) Towards High-Energy Neutrino Astronomy A Historical Review Christian Spieringa DESY, Platanenallee, D-15738 Zeuthen Abstract. The search for the sources of cosmic rays is a three-fold as- sault, using charged cosmic rays, gamma rays and neutrinos. The first conceptual ideas to detect high energy neutrinos date back to the late fifties. The long evolution towards detectors with a realistic discov- ery potential started in the seventies and eighties, with the pioneer- ing works in the Pacific Ocean close to Hawaii and in Lake Baikal in Siberia. But only now, half a century after the first concepts, such a detector is in operation: IceCube at the South Pole. We do not yet know whether with IceCube we will indeed detect extraterrestrial high energy neutrinos or whether this will remain the privilege of next gen- eration telescopes. But whatever the answer will be: the path to the present detectors was a remarkable journey. This review sketches its main milestones. 1 Introduction The year 2012 marks the hundredth anniversary of the detection of cosmic rays by Viktor Hess [Hess 1912]. As we know today, cosmic rays consist of protons and nuclei of heavier elements; electrons contribute only on the percent level. Since cosmic rays are electrically charged, they are deflected by cosmic magnetic fields on their way to Earth. Precise pointing { i.e. astronomy { is only possible with electrically neutral, stable particles: electromagnetic waves (i.e. gamma rays at the energies under con- sideration) and neutrinos. High energy neutrinos, with energies much beyond a GeV, must be emitted as a by-product of collisions of charged cosmic rays with matter.
    [Show full text]