Measures and all that — A Tutorial Ernst-Erich Doberkat Math ++ Software, Bochum
[email protected] November 13, 2014 arXiv:1409.2662v3 [math.FA] 12 Nov 2014 Abstract This tutorial gives an overview of some of the basic techniques of measure theory. It in- cludes a study of Borel sets and their generators for Polish and for analytic spaces, the weak topology on the space of all finite positive measures including its metrics, as well as mea- surable selections. Integration is covered, and product measures are introduced, both for finite and for arbitrary factors, with an application to projective systems. Finally, the duals of the Lp-spaces are discussed, together with the Radon-Nikodym Theorem and the Riesz Representation Theorem. Case studies include applications to stochastic Kripke models, to bisimulations, and to quotients for transition kernels. Page 1 EED. Measures Contents 1 Overview 2 2 Measurable Sets and Functions 3 2.1 MeasurableSets .................................. 4 2.1.1 A σ-AlgebraOnSpacesOfMeasures . 10 2.1.2 The Alexandrov Topology On Spaces of Measures . 11 2.2 Real-ValuedFunctions . 17 2.2.1 Essentially Bounded Functions . 21 2.2.2 Convergence almost everywhere and in measure ............. 22 2.3 Countably Generated σ-Algebras ......................... 27 2.3.1 Borel Sets in Polish and Analytic Spaces . ..... 32 2.3.2 Manipulating Polish Topologies . 38 2.4 AnalyticSetsandSpaces . .. .. .. .. .. .. .. .. 41 2.5 TheSouslinOperation ............................. 51 2.6 UniversallyMeasurableSets . ..... 55 2.6.1 Lubin’s Extension through von Neumann’s Selectors . ........ 58 2.6.2 Completing a Transition Kernel . 61 2.7 MeasurableSelections . 64 2.8 Integration ..................................... 67 2.8.1 FromMeasuretoIntegral .