NIAID Biodefense Research for CDC Category a Agents: Progress
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hidden Cargo: a Cautionary Tale About Agroterrorism and the Safety of Imported Produce
HIDDEN CARGO: A CAUTIONARY TALE ABOUT AGROTERRORISM AND THE SAFETY OF IMPORTED PRODUCE 1. INTRODUCTION The attacks on the World Trade Center and the Pentagon on Septem ber 11, 2001 ("9/11") demonstrated to the United States ("U.S.") Gov ernment the U.S. is vulnerable to a wide range of potential terrorist at tacks. l The anthrax attacks that occurred immediately following the 9/11 attacks further demonstrated the vulnerability of the U.S. to biological attacks. 2 The U.S. Government was forced to accept its citizens were vulnerable to attacks within its own borders and the concern of almost every branch of government turned its focus toward reducing this vulner ability.3 Of the potential attacks that could occur, we should be the most concerned with biological attacks on our food supply. These attacks are relatively easy to initiate and can cause serious political and economic devastation within the victim nation. 4 Generally, acts of deliberate contamination of food with biological agents in a terrorist act are defined as "bioterrorism."5 The World Health Organization ("WHO") uses the term "food terrorism" which it defines as "an act or threat of deliberate contamination of food for human con- I Rona Hirschberg, John La Montagne & Anthony Fauci, Biomedical Research - An Integral Component of National Security, NEW ENGLAND JOURNAL OF MEDICINE (May 20,2004), at 2119, available at http://contenLnejrn.org/cgi/reprint/350/2112ll9.pdf (dis cussing the vulnerability of the U.S. to biological, chemical, nuclear, and radiological terrorist attacks). 2 Id.; Anthony Fauci, Biodefence on the Research Agenda, NATURE, Feb. -
Francisella Spp. Infections in Farmed and Wild Fish. ICES CM 2008/D:07
ICES CM 2008/D:07 Francisella spp. infections in farmed and wild fish Duncan J. Colquhoun1, Adam Zerihun2 and Jarle Mikalsen3 National Veterinary Institute, Section for Fish Health, Ullevaalsveien 68, 0454 Oslo, Norway 1 tel: +47 23 21 61 41; fax: +47 23 21 61 01; e-mail: [email protected] 2 tel: +47 23 21 61 08; fax: +47 23 21 61 01; e-mail: [email protected] 3 tel: +47 23 21 61 55; fax: +47 23 21 61 01; e-mail: [email protected] Abstract Bacteria within the genus Francisella are non-motile, Gram-negative, strictly aerobic, facultatively intracellular cocco-bacilli. While the genus includes pathogens of warm-blooded animals including humans, and potential bioterror agents, there is also increasing evidence of a number of as yet unrecognised environmental species. Due to their nutritionally fastidious nature, bacteria of the genus Francisella are generally difficult to culture, and growth is also commonly inhibited by the presence of other bacteria within sample material. For these reasons, Francisella-related fish disease may be under-diagnosed. Following the discovery in 2004/2005 that a granulomatous disease in farmed and wild Atlantic cod (Gadus morhua) is caused by a previously undescribed member of this genus (Francisella philomiragia subsp. noatunensis), similar diseases have been identified in fish in at least seven countries around the world. These infections affect both freshwater and marine fish species and involve bacteria more or less closely related to F. philomiragia subsp. philomiragia, an opportunistic human pathogen. Recent work relating to characterisation of the disease/s, classification of fish pathogenic Francisella spp. -
Maximum Containment: the Most Controversial Labs in the World
Maximum Containment: The Most Controversial Labs in the World By Alison K. Bruzek B.A. Biological Sciences Northwestern University, 2010 SUBMITTED TO THE PROGRAM IN COMPARATIVE MEDIA STUDIES/WRITING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN SCIENCE WRITING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY MASSACHUSETTS IN'T-QUTE OF 7ECHNOLOqi September 2013 JUL 0 22013 @2013 Alison K. Bruzek. All rights reserved. Li__RARI ES The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: -----.. Program in Con rativeMedia Studies/Writing June 10, 2013 Certified by: Philip Hilts Director, Knight Science Journalism Fellowships Thesis Supervisor Accepted by: Seth Mnookin Assistant Professor of Science Writing Director, Graduate Program in Science Writing 1 2 Maximum Containment: The Most Controversial Labs in the World By Alison K. Bruzek Submitted to the Program in Comparative Media Studies/Writing on June 10, 2013 in Partial Fulfillment of the Requirements for the Degree of Master of Science in Science Writing ABSTRACT In 2002, following the September 1 1 th attacks and the anthrax letters, the United States allocated money to build two maximum containment biology labs. Called Biosafety Level 4 (BSL-4) facilities, these labs were built to research new vaccines, diagnostics, and treatments for emerging infectious diseases, potential biological weapons, and to contribute to the nation's biodefense. These labs were not the first dramatic reaction to the threat of biowarfare and are in fact, one product of a long history of the country's contentious relationship with biological weapons. -
2019 Biodefense Public Report Implementation of the National Biodefense Strategy PREFACE
2019 Biodefense Public Report Implementation of the National Biodefense Strategy PREFACE The National Biodefense Strategy (NBS or the Strategy) was released on September 18, 2018 and guides the U.S. government’s efforts to reduce the risk of, prepare for, respond to, and recover from biological incidents, whether naturally occurring, deliberate, or accidental in origin. National Security Presidential Memorandum-14 (NSPM-14) directs implementation of the Strategy, including the development of this Biodefense Public Report. This report does not primarily address activities related to the coronavirus disease 2019 (COVID-19) pandemic because the data collection period concluded well before the HHS Secretary’s declaration of a public health emergency regarding the COVID-19 pandemic. Therefore, the content of this report is diverse and highlights some of the efforts across the U.S. government to address all biological threats. Development of this report followed the timeline laid out in NSPM-14. Work began among federal departments and agencies to collect biodefense data in late 2018, the first year to capture biodefense programs and activities across the federal government, and continued through the first half of 2019. This report describes a sampling of specific achievements and programs undertaken by federal agencies that reduce the risk of biological threats to the American people. In addition to the specific programs captured here, many other activities continue to be implemented across the federal government to protect the United States from a wide range of biological threats. Some of the efforts that have been described within this report, and many activities that have not been reported here, support the ongoing COVID-19 response. -
Bioterrorism & Biodefense
Hugh-Jones et al. J Bioterr Biodef 2011, S3 Bioterrorism & Biodefense http://dx.doi.org/10.4172/2157-2526.S3-001 Review Article Open Access The 2001 Attack Anthrax: Key Observations Martin E Hugh-Jones1*, Barbara Hatch Rosenberg2 and Stuart Jacobsen3 1Professor Emeritus, Louisiana State University; Anthrax Moderator, ProMED-mail, USA 2Sloan-Kettering Institute for Cancer Research and State Univ. of NY-Purchase (retired); Scientists Working Group on CBW, Center for Arms Control and Non-Proliferation, USA 3Technical Consultant Silicon Materials, Dallas, TX,USA Abstract Unresolved scientificquestions, remaining ten years after the anthrax attacks, three years after the FBI accused a dead man of perpetrating the 2001 anthrax attacks singlehandedly, and more than a year since they closed the case without further investigation, indictment or trial, are perpetuating serious concerns that the FBI may have accused the wrong person of carrying out the anthrax attacks. The FBI has not produced concrete evidence on key questions: • Where and how were the anthrax spores in the attack letters prepared? There is no material evidence of where the attack anthrax was made, and no direct evidence that any specific individual made the anthrax, or mailed it. On the basis of a number` of assumptions, the FBI has not scrutinized the most likely laboratories. • How and why did the spore powders acquire the high levels of silicon and tin found in them? The FBI has repeatedly insisted that the powders in the letters contained no additives, but they also claim that they have not been able to reproduce the high silicon content in the powders, and there has been little public mention of the extraordinary presence of tin. -
Bioinformatics Resource Centers Systems Biology (Brcs) Centers
Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work -
Francisella Tularensis Subspecies Holarctica and Tularemia in Germany
microorganisms Review Francisella tularensis Subspecies holarctica and Tularemia in Germany 1, 2, 3 1 1 Sandra Appelt y, Mirko Faber y , Kristin Köppen , Daniela Jacob , Roland Grunow and Klaus Heuner 3,* 1 Centre for Biological Threats and Special Pathogens (ZBS 2), Robert Koch Institute, 13353 Berlin, Germany; [email protected] (S.A.); [email protected] (D.J.); [email protected] (R.G.) 2 Gastrointestinal Infections, Zoonoses and Tropical Infections (Division 35), Department for Infectious Disease Epidemiology, Robert Koch Institute, 13353 Berlin, Germany; [email protected] 3 Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, 13353 Berlin, Germany; [email protected] * Correspondence: [email protected]; Tel.: +49-301-8754-2226 These authors contributed equally to this work. y Received: 27 August 2020; Accepted: 18 September 2020; Published: 22 September 2020 Abstract: Tularemia is a zoonotic disease caused by Francisella tularensis a small, pleomorphic, facultative intracellular bacterium. In Europe, infections in animals and humans are caused mainly by Francisella tularensis subspecies holarctica. Humans can be exposed to the pathogen directly and indirectly through contact with sick animals, carcasses, mosquitoes and ticks, environmental sources such as contaminated water or soil, and food. So far, F. tularensis subsp. holarctica is the only Francisella species known to cause tularemia in Germany. On the basis of surveillance data, outbreak investigations, and literature, we review herein the epidemiological situation—noteworthy clinical cases next to genetic diversity of F. tularensis subsp. holarctica strains isolated from patients. In the last 15 years, the yearly number of notified cases of tularemia has increased steadily in Germany, suggesting that the disease is re-emerging. -
Isolation of Francisella Tularensis from Skin Ulcer After a Tick Bite, Austria, 2020
microorganisms Case Report Isolation of Francisella tularensis from Skin Ulcer after a Tick Bite, Austria, 2020 Mateusz Markowicz 1,*, Anna-Margarita Schötta 1 , Freya Penatzer 2, Christoph Matscheko 2, Gerold Stanek 1, Hannes Stockinger 1 and Josef Riedler 2 1 Center for Pathophysiology, Infectiology and Immunology, Institute for Hygiene and Applied Immunology, Medical University of Vienna, Kinderspitalgasse 15, A-1090 Vienna, Austria; [email protected] (A.-M.S.); [email protected] (G.S.); [email protected] (H.S.) 2 Kardinal Schwarzenberg Klinikum, Kardinal Schwarzenbergplatz 1, A-5620 Schwarzach, Austria; [email protected] (F.P.); [email protected] (C.M.); [email protected] (J.R.) * Correspondence: [email protected]; Tel.: +43-1-40160-33023 Abstract: Ulceroglandular tularemia is caused by the transmission of Francisella tularensis by arthro- pods to a human host. We report a case of tick-borne tularemia in Austria which was followed by an abscess formation in a lymph node, making drainage necessary. F. tularensis subsp. holarctica was identified by PCR and multilocus sequence typing. Keywords: tularemia; Francisella tularensis; tick; multi locus sequence typing Depending on the transmission route of Francisella tularensis, tularemia can present Citation: Markowicz, M.; Schötta, as a local infection or a systemic disease [1]. Transmission of the pathogen takes place A.-M.; Penatzer, F.; Matscheko, C.; by contact with infected animals, by bites of arthropods or through contaminated water Stanek, G.; Stockinger, H.; Riedler, J. and soil. Hares and wild rabbits are the main reservoirs of the pathogen in Austria [2]. -
Francisella Tularensis
The Genetic Composition and Diversity of Francisella tularensis Pär Larsson Akademisk avhandling som med vederbörligt tillstånd av rektorsämbetet vid Umeå Universitet för avläggande av medicine doktorsexamen i klinisk mikrobiologi med inriktning mot bakteriologi vid Medicinska fakulteten, framlägges till offentligt försvar vid Institutionen för Klinisk Mikrobiologi, sal E04 byggnad 6, torsdagen den 31 maj 2007, klockan 09.00. Avhandlingen kommer att försvaras på engelska. Fakultetsopponent: Dr. Andrew K Benson Department of Food Science & Technology University of Nebraska–Lincoln Lincoln, Nebraska USA Department of Clinical Microbiology, Clinical Bacteriology Umeå University Umeå 2007 Organization Document type UMEÅ UNIVERSITY DOCTORAL DISSERTATION Department of Clinical Microbiology Date of publication SE-901 87 Umeå, Sweden May 2007 Author Pär Larsson Title The Genetic Composition and Diversity of Francisella tularensis Abstract Francisella tularensis is the causative agent of the debilitating, sometimes fatal zoonotic disease tularemia. Despite all F. tularensis bacteria having very similar genotypes and phenotypes, the disease varies significantly in severity depending on the subspecies of the infectious strain. To date, little information has been available on the genetic makeup of this pathogen, its evolution, and the genetic differences which characterize subspecific lineages. These are the main areas addressed in this thesis. Using the F. tularensis subsp. tularensis SCHU S4 strain as a genetic reference, microarray-based comparative genomic hybridisations were used to investigate the differences in genomic composition of F. tularensis isolates. Overall, the strains analysed were very similar, matching the high degree of conservation previously observed at the sequence level. One striking finding was that subsp. mediasiatica was most similar to subsp. tularensis, despite their natural confinement to Central Asia and North America, respectively. -
“Defending the Homeland from Bioterrorism: Are We Prepared?”
2223 West Loop South Umair A. Shah, M.D., M.P.H. Houston, Texas 77027 Executive Director Tel: (713) 439-6000 Fax: (713) 439-6080 “Defending the Homeland from Bioterrorism: Are We Prepared?” Testimony of Umair A. Shah, MD, MPH Executive Director, Harris County Public Health, TX Past-President, National Association of County and City Health Officials Before the House Homeland Security Committee Subcommittee on Emergency Preparedness, Response, & Recovery October 17, 2019 I would like to thank Chairman Thompson, Ranking Member Rogers, Subcommittee Chairman Payne, Ranking Member King, and members of the committee for the opportunity to testify today on behalf of local health departments and public health emergency responders across the country. My name is Dr. Umair Shah, and I am the Executive Director for Harris County Public Health (HCPH) and the Local Health Authority for Harris County, Texas. Harris County is the third most populous county in the United States with 4.7 million people and is home to the nation’s 4th largest city, Houston. I am a Past President and former Board Member of NACCHO, the National Association of County and City Health Officials. NACCHO is the voice of the nearly 3,000 local health departments (LHDs) across the country. I am also a Past President and current Board Member of TACCHO, the Texas Association of City and County Health Officials, which represents approximately 45 LHDs across Texas. As background, Harris County is the most culturally diverse and one of the fastest growing metropolitan areas in the U.S. and home to the world’s largest medical complex, the Texas Medical Center, one of the nation’s busiest ports, the Port of Houston, and two of the nation’s busiest international airports. -
1 Hearing of the Subcommittee on Emergency Preparedness
Hearing of the Subcommittee on Emergency Preparedness, Response and Recovery, Committee on Homeland Security, U.S. House of Representatives “Defending the Homeland from Bioterrorism: Are We Prepared?” October 17, 2019 Statement for the Record Asha M. George, DrPH Executive Director, Bipartisan Commission on Biodefense Chairman Payne, Ranking Member King, and Members of the Subcommittee: Thank you for your invitation to provide the perspective of the Bipartisan Commission on Biodefense. On behalf of our Commission – and as a former Subcommittee Staff Director and senior professional staff for this Committee – I am glad to have the opportunity today to discuss our findings and recommendations with respect to biological terrorism and national defense against biological threats. Our Commission assembled in 2014 to examine the biological threat to the United States and to develop recommendations to address gaps in national biodefense. Former Senator Joe Lieberman and former Secretary of Homeland Security and Governor Tom Ridge co- chair the Commission, and are joined by former Senate Majority Leader Tom Daschle, former Representative Jim Greenwood, former Homeland Security Advisor Ken Wainstein, and former Homeland Security and Counter Terrorism Advisor Lisa Monaco. Our commissioners possess many years of experience with national and homeland security. In October 2015, the Commission released its first report, A National Blueprint for Biodefense: Major Reform Needed to Optimize Efforts. Shortly thereafter, we presented our findings and recommendations to this Committee. We made 33 recommendations with 87 associated short-, medium-, and long-term programmatic, legislative, and policy action items. If implemented, these would improve federal efforts across the spectrum of biodefense activities – prevention, deterrence, preparedness, detection and surveillance, response, attribution, recovery, and mitigation. -
Laboratory Research Is Conducted at One of Four Biosafety Levels (BSL)
Biological Safety Training Programs as a Component of Personnel Reliability Workshop Report Prepared by AAAS Center for Science, Technology and Security Policy Kavita Marfatia Berger, Ph.D. Kathryn A. Luke, Ph.D. AAAS Program on Scientific Freedom, Responsibility and Law Mark S. Frankel, Ph.D. Jennifer L. Sta.Ana Acknowledgements About AAAS This workshop was funded by the The American Association for the Bureau of International Security and Advancement of Science (AAAS) is the Nonproliferation at the U.S. Department world’s largest general scientific society of State. We would like to thank the and publisher of the journal, Science speakers and participants of the (www.sciencemag.org). AAAS was workshop who not only provided founded in 1848, and serves 262 valuable discussion but also contributed affiliated societies and academies of to the workshop report. We want to science, reaching 10 million individuals. especially thank Susan Piguet from the Science has the largest paid circulation Frontline Foundation, who was of any peer-reviewed general science invaluable during the organization of the journal in the world, with an estimated workshop, and Gigi Kwik Gronvall, total readership of 1 million. The non- Ph.D. (Center for Biosecurity of profit AAAS (www.aaas.org) is open to UPMC), Paul Meechan, Ph.D. (Merck all and fulfills its mission to “advance and Co., Inc.), and Julie Fischer, Ph.D. science and serve society” through (Stimson Center) who all provided initiatives in science policy; international valuable comments on the draft report. programs; science education; and more. AAAS would also like to acknowledge For the latest research news, log onto Mary Kate Mohlman, Vivian Cheng, EurekAlert!, www.eurekalert.org, the Meghan Cunningham, Stephanie Heath, premier science-news web site, a service Cristina Kapustij, Janet Kim and Idalia of AAAS.