Crowdsourcing Formulaic Phrases: Towards a New Type of Spoken Corpus
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Talk Bank: a Multimodal Database of Communicative Interaction
Talk Bank: A Multimodal Database of Communicative Interaction 1. Overview The ongoing growth in computer power and connectivity has led to dramatic changes in the methodology of science and engineering. By stimulating fundamental theoretical discoveries in the analysis of semistructured data, we can to extend these methodological advances to the social and behavioral sciences. Specifically, we propose the construction of a major new tool for the social sciences, called TalkBank. The goal of TalkBank is the creation of a distributed, web- based data archiving system for transcribed video and audio data on communicative interactions. We will develop an XML-based annotation framework called Codon to serve as the formal specification for data in TalkBank. Tools will be created for the entry of new and existing data into the Codon format; transcriptions will be linked to speech and video; and there will be extensive support for collaborative commentary from competing perspectives. The TalkBank project will establish a framework that will facilitate the development of a distributed system of allied databases based on a common set of computational tools. Instead of attempting to impose a single uniform standard for coding and annotation, we will promote annotational pluralism within the framework of the abstraction layer provided by Codon. This representation will use labeled acyclic digraphs to support translation between the various annotation systems required for specific sub-disciplines. There will be no attempt to promote any single annotation scheme over others. Instead, by promoting comparison and translation between schemes, we will allow individual users to select the custom annotation scheme most appropriate for their purposes. -
Collection of Usage Information for Language Resources from Academic Articles
Collection of Usage Information for Language Resources from Academic Articles Shunsuke Kozaway, Hitomi Tohyamayy, Kiyotaka Uchimotoyyy, Shigeki Matsubaray yGraduate School of Information Science, Nagoya University yyInformation Technology Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan yyyNational Institute of Information and Communications Technology 4-2-1 Nukui-Kitamachi, Koganei, Tokyo, 184-8795, Japan fkozawa,[email protected], [email protected], [email protected] Abstract Recently, language resources (LRs) are becoming indispensable for linguistic researches. However, existing LRs are often not fully utilized because their variety of usage is not well known, indicating that their intrinsic value is not recognized very well either. Regarding this issue, lists of usage information might improve LR searches and lead to their efficient use. In this research, therefore, we collect a list of usage information for each LR from academic articles to promote the efficient utilization of LRs. This paper proposes to construct a text corpus annotated with usage information (UI corpus). In particular, we automatically extract sentences containing LR names from academic articles. Then, the extracted sentences are annotated with usage information by two annotators in a cascaded manner. We show that the UI corpus contributes to efficient LR searches by combining the UI corpus with a metadata database of LRs and comparing the number of LRs retrieved with and without the UI corpus. 1. Introduction Thesaurus1. In recent years, such language resources (LRs) as corpora • He also employed Roget’s Thesaurus in 100 words of and dictionaries are being widely used for research in the window to implement WSD. -
MASC: the Manually Annotated Sub-Corpus of American English
MASC: The Manually Annotated Sub-Corpus of American English Nancy Ide*, Collin Baker**, Christiane Fellbaum†, Charles Fillmore**, Rebecca Passonneau†† *Vassar College Poughkeepsie, New York USA **International Computer Science Institute Berkeley, California USA †Princeton University Princeton, New Jersey USA ††Columbia University New York, New York USA E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] Abstract To answer the critical need for sharable, reusable annotated resources with rich linguistic annotations, we are developing a Manually Annotated Sub-Corpus (MASC) including texts from diverse genres and manual annotations or manually-validated annotations for multiple levels, including WordNet senses and FrameNet frames and frame elements, both of which have become significant resources in the international computational linguistics community. To derive maximal benefit from the semantic information provided by these resources, the MASC will also include manually-validated shallow parses and named entities, which will enable linking WordNet senses and FrameNet frames within the same sentences into more complex semantic structures and, because named entities will often be the role fillers of FrameNet frames, enrich the semantic and pragmatic information derivable from the sub-corpus. All MASC annotations will be published with detailed inter-annotator agreement measures. The MASC and its annotations will be freely downloadable from the ANC website, thus providing -
Lexical Ambiguity • Syntactic Ambiguity • Semantic Ambiguity • Pragmatic Ambiguity
Welcome to the course! IntroductionIntroduction toto NaturalNatural LanguageLanguage ProcessingProcessing (NLP)(NLP) Professors:Marta Gatius Vila Horacio Rodríguez Hontoria Hours per week: 2h theory + 1h laboratory Web page: http://www.cs.upc.edu/~gatius/engpln2017.html Main goal Understand the fundamental concepts of NLP • Most well-known techniques and theories • Most relevant existing resources • Most relevant applications NLP Introduction 1 Welcome to the course! IntroductionIntroduction toto NaturalNatural LanguageLanguage ProcessingProcessing Content 1. Introduction to Language Processing 2. Applications. 3. Language models. 4. Morphology and lexicons. 5. Syntactic processing. 6. Semantic and pragmatic processing. 7. Generation NLP Introduction 2 Welcome to the course! IntroductionIntroduction toto NaturalNatural LanguageLanguage ProcessingProcessing Assesment • Exams Mid-term exam- November End-of-term exam – Final exams period- all the course contents • Development of 2 Programs – Groups of two or three students Course grade = maximum ( midterm exam*0.15 + final exam*0.45, final exam * 0.6) + assigments *0.4 NLP Introduction 3 Welcome to the course! IntroductionIntroduction toto NaturalNatural LanguageLanguage ProcessingProcessing Related (or the same) disciplines: •Computational Linguistics, CL •Natural Language Processing, NLP •Linguistic Engineering, LE •Human Language Technology, HLT NLP Introduction 4 Linguistic Engineering (LE) • LE consists of the application of linguistic knowledge to the development of computer systems able to recognize, understand, interpretate and generate human language in all its forms. • LE includes: • Formal models (representations of knowledge of language at the different levels) • Theories and algorithms • Techniques and tools • Resources (Lingware) • Applications NLP Introduction 5 Linguistic knowledge levels – Phonetics and phonology. Language models – Morphology: Meaningful components of words. Lexicon doors is plural – Syntax: Structural relationships between words. -
From CHILDES to Talkbank
From CHILDES to TalkBank Brian MacWhinney Carnegie Mellon University MacWhinney, B. (2001). New developments in CHILDES. In A. Do, L. Domínguez & A. Johansen (Eds.), BUCLD 25: Proceedings of the 25th annual Boston University Conference on Language Development (pp. 458-468). Somerville, MA: Cascadilla. a similar article appeared as: MacWhinney, B. (2001). From CHILDES to TalkBank. In M. Almgren, A. Barreña, M. Ezeizaberrena, I. Idiazabal & B. MacWhinney (Eds.), Research on Child Language Acquisition (pp. 17-34). Somerville, MA: Cascadilla. Recent years have seen a phenomenal growth in computer power and connectivity. The computer on the desktop of the average academic researcher now has the power of room-size supercomputers of the 1980s. Using the Internet, we can connect in seconds to the other side of the world and transfer huge amounts of text, programs, audio and video. Our computers are equipped with programs that allow us to view, link, and modify this material without even having to think about programming. Nearly all of the major journals are now available in electronic form and the very nature of journals and publication is undergoing radical change. These new trends have led to dramatic advances in the methodology of science and engineering. However, the social and behavioral sciences have not shared fully in these advances. In large part, this is because the data used in the social sciences are not well- structured patterns of DNA sequences or atomic collisions in super colliders. Much of our data is based on the messy, ill-structured behaviors of humans as they participate in social interactions. Categorizing and coding these behaviors is an enormous task in itself. -
The British National Corpus Revisited: Developing Parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK)
The British National Corpus Revisited: Developing parameters for Written BNC2014 Abi Hawtin (Lancaster University, UK) 1. The British National Corpus 2014 project The ESRC Centre for Corpus Approaches to Social Science (CASS) at Lancaster University and Cambridge University Press are working together to create a new, publicly accessible corpus of contemporary British English. The corpus will be a successor to the British National Corpus, created in the early 1990s (BNC19941). The British National Corpus 2014 (BNC2014) will be of the same order of magnitude as BNC1994 (100 million words). It is currently projected that the corpus will reach completion in mid-2018. Creation of the spoken sub-section of BNC2014 is in its final stages; this paper focuses on the justification and development of the written sub- section of BNC2014. 2. Justification for BNC2014 There are now many web-crawled corpora of English, widely available to researchers, which contain far more data than will be included in Written BNC2014. For example, the English TenTen corpus (enTenTen) is a web-crawled corpus of Written English which currently contains approximately 19 billion words (Jakubíček et al., 2013). Web-crawling processes mean that this huge amount of data can be collected very quickly; Jakubíček et al. (2013: 125) note that “For a language where there is plenty of material available, we can gather, clean and de-duplicate a billion words a day.” So, with extremely large and quickly-created web-crawled corpora now becoming commonplace in corpus linguistics, the question might well be asked why a new, 100 million word corpus of Written British English is needed. -
Comprehensive and Consistent Propbank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.S
Comprehensive and Consistent PropBank Light Verb Annotation Claire Bonial,1 Martha Palmer2 1U.S. Army Research Laboratory, 2University of Colorado, Boulder 12800 Powder Mill Rd., Adelphi, MD, USA E-mail: [email protected], [email protected] Abstract Recent efforts have focused on expanding the annotation coverage of PropBank from verb relations to adjective and noun relations, as well as light verb constructions (e.g., make an offer, take a bath). While each new relation type has presented unique annotation challenges, ensuring consistent and comprehensive annotation of light verb constructions has proved particularly challenging, given that light verb constructions are semi-productive, difficult to define, and there are often borderline cases. This research describes the iterative process of developing PropBank annotation guidelines for light verb constructions, the current guidelines, and a comparison to related resources. Keywords: light verb constructions, semantic role labeling, NLP resources 2. PropBank Background 1. Introduction PropBank annotation consists of two tasks: sense annotation and role annotation. The PropBank lexicon The goal of PropBank (Palmer et al., 2005) is to supply provides a listing of the coarse-grained senses of a verb, consistent, general-purpose labeling of semantic roles noun, or adjective relation, and the set of roles associated across different syntactic realizations. With over two with each sense (thus, called a “roleset”). The roles are million words from diverse genres, the benchmark listed as argument numbers (Arg0 – Arg6) and annotated corpus supports the training of automatic correspond to verb-specific roles. For example: semantic role labelers, which in turn support other Natural Language Processing (NLP) areas, such as Offer-01 (transaction, proposal): machine translation. -
3 Corpus Tools for Lexicographers
Comp. by: pg0994 Stage : Proof ChapterID: 0001546186 Date:14/5/12 Time:16:20:14 Filepath:d:/womat-filecopy/0001546186.3D31 OUP UNCORRECTED PROOF – FIRST PROOF, 14/5/2012, SPi 3 Corpus tools for lexicographers ADAM KILGARRIFF AND IZTOK KOSEM 3.1 Introduction To analyse corpus data, lexicographers need software that allows them to search, manipulate and save data, a ‘corpus tool’. A good corpus tool is the key to a comprehensive lexicographic analysis—a corpus without a good tool to access it is of little use. Both corpus compilation and corpus tools have been swept along by general technological advances over the last three decades. Compiling and storing corpora has become far faster and easier, so corpora tend to be much larger than previous ones. Most of the first COBUILD dictionary was produced from a corpus of eight million words. Several of the leading English dictionaries of the 1990s were produced using the British National Corpus (BNC), of 100 million words. Current lexico- graphic projects we are involved in use corpora of around a billion words—though this is still less than one hundredth of one percent of the English language text available on the Web (see Rundell, this volume). The amount of data to analyse has thus increased significantly, and corpus tools have had to be improved to assist lexicographers in adapting to this change. Corpus tools have become faster, more multifunctional, and customizable. In the COBUILD project, getting concordance output took a long time and then the concordances were printed on paper and handed out to lexicographers (Clear 1987). -
Conference Abstracts
EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION Held under the Patronage of Ms Neelie Kroes, Vice-President of the European Commission, Digital Agenda Commissioner MAY 23-24-25, 2012 ISTANBUL LÜTFI KIRDAR CONVENTION & EXHIBITION CENTRE ISTANBUL, TURKEY CONFERENCE ABSTRACTS Editors: Nicoletta Calzolari (Conference Chair), Khalid Choukri, Thierry Declerck, Mehmet Uğur Doğan, Bente Maegaard, Joseph Mariani, Asuncion Moreno, Jan Odijk, Stelios Piperidis. Assistant Editors: Hélène Mazo, Sara Goggi, Olivier Hamon © ELRA – European Language Resources Association. All rights reserved. LREC 2012, EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION Title: LREC 2012 Conference Abstracts Distributed by: ELRA – European Language Resources Association 55-57, rue Brillat Savarin 75013 Paris France Tel.: +33 1 43 13 33 33 Fax: +33 1 43 13 33 30 www.elra.info and www.elda.org Email: [email protected] and [email protected] Copyright by the European Language Resources Association ISBN 978-2-9517408-7-7 EAN 9782951740877 All rights reserved. No part of this book may be reproduced in any form without the prior permission of the European Language Resources Association ii Introduction of the Conference Chair Nicoletta Calzolari I wish first to express to Ms Neelie Kroes, Vice-President of the European Commission, Digital agenda Commissioner, the gratitude of the Program Committee and of all LREC participants for her Distinguished Patronage of LREC 2012. Even if every time I feel we have reached the top, this 8th LREC is continuing the tradition of breaking previous records: this edition we received 1013 submissions and have accepted 697 papers, after reviewing by the impressive number of 715 colleagues. -
Università Degli Studi Di Macerata
UNIVERSITÀ DEGLI STUDI DI MACERATA Dipartimento di Studi Umanistici – Lingue, Mediazione, Storia, Lettere, Filosofia Corso di Laurea Magistrale in Lingue Moderne per la Comunicazione e la Cooperazione Internazionale (ClasseLM-38) Traduzione per laComunicazione Internazionale – inglese -mod. B STRUMENTI E TECNOLOGIE PER LA TRADUZIONESPECIALISTICA 1 What is a corpus? Some (authoritative) definitions • “a collection of naturally-occurring language text, chosen to characterize a state or variety of a language” (Sinclair, 1991:171) • “a collection of texts assumed to be representative of a given language, dialect, or other subset of a language, to be used for linguistic analysis” (Francis, 1992:7) • “a closed set of texts in machine-readable form established for general or specific purposes by previously defined criteria” (Engwall, 1992:167) • “a finite-sized body of machine-readable text, sampled in order to be maximally representative of the language variety under consideration” (McEnery & Wilson, 1996:23) • “a collection of (1) machine-readable (2) authentic texts […] which is (3) sampled to be (4) representative of a particular language or language variety” (McEnery et al., 2006:5) What is / is not a corpus…? • A newspaper archive on CD-ROM? The answer is • An online glossary? always “NO” • A digital library (e.g. Project (see Gutenberg)? definition) • All RAI 1 programmes (e.g. for spoken TV language) Corpora vs. web •Corpora: – Usually stable •searches can be replicated – Control over contents •we can select the texts to be included, or have control over selection strategies – Ad-hoc linguistically-aware software to investigate them •concordancers can sort / organise concordance lines • Web (as accessed via Google or other search engines): – Very unstable •results can change at any time for reasons beyond our control – No control over contents •what/how many texts are indexed by Google’s robots? – Limited control over search results •cannot sort or organise hits meaningfully; they are presented randomly Click here for another corpus vs. -
Corpus Linguistics: a Practical Introduction
Corpus Linguistics: A Practical Introduction Nadja Nesselhauf, October 2005 (last updated September 2011) 1) Corpus Linguistics and Corpora - What is corpus linguistics (I)? - What data do linguists use to investigate linguistic phenomena? - What is a corpus? - What is corpus linguistics (II)? - What corpora are there? - What corpora are available to students of English at the University of Heidelberg? (For a list of corpora available at the Department of English click here) 2) Corpus Software - What software is there to perform linguistic analyses on the basis of corpora? - What can the software do? - A brief introduction to an online search facility (BNC) - A step-to-step introduction to WordSmith Tools 3) Exercises (I and II) - I Using the WordList function of WordSmith - II Using the Concord function of WordSmith 4) How to conduct linguistic analyses on the basis of corpora: two examples - Example 1: Australian English vocabulary - Example 2: Present perfect and simple past in British and American English - What you have to take into account when performing a corpuslingustic analysis 5) Exercises (III) - Exercise III.1 - Exercise III.2 6) Where to find further information on corpus linguistics 1) Corpus Linguistics and Corpora What is corpus linguistics (I)? Corpus linguistics is a method of carrying out linguistic analyses. As it can be used for the investigation of many kinds of linguistic questions and as it has been shown to have the potential to yield highly interesting, fundamental, and often surprising new insights about language, it has become one of the most wide-spread methods of linguistic investigation in recent years. -
Background and Context for CLASP
Background and Context for CLASP Nancy Ide, Vassar College The Situation Standards efforts have been on-going for over 20 years Interest and activity mainly in Europe in 90’s and early 2000’s Text Encoding Initiative (TEI) – 1987 Still ongoing, used mainly by humanities EAGLES/ISLE Developed standards for morpho-syntax, syntax, sub-categorization, etc. (links on CLASP wiki) Corpus Encoding Standard (now XCES - http://www.xces.org) Main Aspects" ! Harmonization of formats for linguistic data and annotations" ! Harmonization of descriptors in linguistic annotation" ! These two are often mixed, but need to deal with them separately (see CLASP wiki)" Formats: The Past 20 Years" 1987 TEI Myriad of formats 1994 MULTEXT, CES ~1996 XML 2000 ISO TC37 SC4 2001 LAF model introduced now LAF/GrAF, ISO standards Myriad of formats Actually…" ! Things are better now" ! XML use" ! Moves toward common models, especially in Europe" ! US community seeing the need for interoperability " ! Emergence of common processing platforms (GATE, UIMA) with underlying common models " Resources 1990 ! WordNet gains ground as a “standard” LR ! Penn Treebank, Wall Street Journal Corpus World Wide Web ! British National Corpus ! EuroWordNet XML ! Comlex ! FrameNet ! American National Corpus Semantic Web ! Global WordNet ! More FrameNets ! SUMO ! VerbNet ! PropBank, NomBank ! MASC present NLP software 1994 ! MULTEXT > LT tools, LT XML 1995 ! GATE (Sheffield) 1996 1998 ! Alembic Workbench ! ATLAS (NIST) 2003 ! What happened to this? 200? ! Callisto ! UIMA Now: GATE