The Solar System Interplanetary Matter, the Birth of the Planets And
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Exploring Exoplanet Populations with NASA's Kepler Mission
SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Exploring exoplanet populations with NASA’s Kepler Mission Natalie M. Batalha1 National Aeronautics and Space Administration Ames Research Center, Moffett Field, 94035 CA Edited by Adam S. Burrows, Princeton University, Princeton, NJ, and accepted by the Editorial Board June 3, 2014 (received for review January 15, 2014) The Kepler Mission is exploring the diversity of planets and planetary systems. Its legacy will be a catalog of discoveries sufficient for computing planet occurrence rates as a function of size, orbital period, star type, and insolation flux.The mission has made significant progress toward achieving that goal. Over 3,500 transiting exoplanets have been identified from the analysis of the first 3 y of data, 100 planets of which are in the habitable zone. The catalog has a high reliability rate (85–90% averaged over the period/radius plane), which is improving as follow-up observations continue. Dynamical (e.g., velocimetry and transit timing) and statistical methods have confirmed and characterized hundreds of planets over a large range of sizes and compositions for both single- and multiple-star systems. Population studies suggest that planets abound in our galaxy and that small planets are particularly frequent. Here, I report on the progress Kepler has made measuring the prevalence of exoplanets orbiting within one astronomical unit of their host stars in support of the National Aeronautics and Space Admin- istration’s long-term goal of finding habitable environments beyond the solar system. planet detection | transit photometry Searching for evidence of life beyond Earth is the Sun would produce an 84-ppm signal Translating Kepler’s discovery catalog into one of the primary goals of science agencies lasting ∼13 h. -
Get Outside What to Look for in the Summer Sky Your Hosts of the Summer Sky Are Three Bright Stars — Vega, Altair and Deneb
Get Outside What to Look for in the Summer Sky Your hosts of the summer sky are three bright stars — Vega, Altair and Deneb. Together they make up the Summer Triangle. Look for the triangle in the east on a June evening, moving NORTH to overhead as the season progresses. Polaris The Big Dipper Deneb Cygnus Vega Lyra Hercules Arcturus EaST West Summer Triangle Altair Aquila Sagittarius Antares Turn the map so Scorpius the direction you are facing is at the Teapot the bottom. south facebook.com/KidsCanBooks @KidsCanPress GET OUTSIDE Text © 2013 Jane Drake & Ann Love Illustrations © 2013 Heather Collins www.kidscanpress.com Get Outside Vega The Keystone The brightest star in the Between Vega and Arcturus, Summer Triangle, Vega is look for four stars in a wedge or The summer bluish white. It is in the keystone shape. This is the body solstice constellation Lyra, the Harp. of Hercules, the Strongman. His feet are to the north and Every day from late Altair his arms to the south, making December to June, the The second-brightest star in his figure kneel Sun rises and sets a little the triangle, Altair is white. upside down farther north along the Altair is in the constellation in the sky. horizon. But about June Aquila, the Eagle. 21, the Sun seems to stop Keystone moving north. It rises in Deneb the northeast and sets in The dimmest star of the the northwest, seemingly Summer Triangle, Deneb would in the same spots for be the brightest if it were not so Hercules several days. -
A Spectroscopic Atlas of Deneb (A2 Iae) $\Lambda\Lambda$3826–5212
A&A 400, 1043–1049 (2003) Astronomy DOI: 10.1051/0004-6361:20030014 & c ESO 2003 Astrophysics A spectroscopic atlas of Deneb (A2 Iae) λλ3826–5212? B. Albayrak1,A.F.Gulliver2,??,S.J.Adelman3,??, C. Aydın1,andD.Ko¸cer4 1 Ankara University, Science Faculty, Department of Astronomy and Space Sciences, 06100, Tando˘gan, Ankara, Turkey e-mail: [email protected]; [email protected] 2 Department of Physics and Astronomy, Brandon University, Brandon, MB, R7A 6A9, Canada e-mail: [email protected] 3 Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409, USA e-mail: [email protected] 4 Istanbul˙ K¨ult¨ur University, Science & Art Faculty, Department of Mathematics, E5 Karayolu Uzeri,¨ 34510, S¸irinevler, Istanbul,˙ Turkey e-mail: [email protected] Received 2 December 2002 / Accepted 6 January 2003 Abstract. We present a spectroscopic atlas of Deneb (A2 Iae) obtained with the long camera of the 1.22-m telescope of the 1 Dominion Astrophysical Observatory using Reticon and CCD detectors. For λλ3826–5212 the inverse dispersion is 2.4 Å mm− with a resolution of 0.072 Å. At the continuum the mean signal-to-noise ratio is 1030. The wavelengths in the laboratory frame, the equivalent widths, and the identifications of the various spectral features are given. This atlas should provide useful guidance for studies of other stars with similar spectral types. The stellar and synthetic spectra with their corresponding line identifications can be examined at http://www.brandonu.ca/physics/gulliver/atlases.html Key words. atlases – stars: early type – stars: individual: Deneb – stars: supergiants 1. -
Summer Constellations
Night Sky 101: Summer Constellations The Summer Triangle Photo Credit: Smoky Mountain Astronomical Society The Summer Triangle is made up of three bright stars—Altair, in the constellation Aquila (the eagle), Deneb in Cygnus (the swan), and Vega Lyra (the lyre, or harp). Also called “The Northern Cross” or “The Backbone of the Milky Way,” Cygnus is a horizontal cross of five bright stars. In very dark skies, Cygnus helps viewers find the Milky Way. Albireo, the last star in Cygnus’s tail, is actually made up of two stars (a binary star). The separate stars can be seen with a 30 power telescope. The Ring Nebula, part of the constellation Lyra, can also be seen with this magnification. In Japanese mythology, Vega, the celestial princess and goddess, fell in love Altair. Her father did not approve of Altair, since he was a mortal. They were forbidden from seeing each other. The two lovers were placed in the sky, where they were separated by the Celestial River, repre- sented by the Milky Way. According to the legend, once a year, a bridge of magpies form, rep- resented by Cygnus, to reunite the lovers. Photo credit: Unknown Scorpius Also called Scorpio, Scorpius is one of the 12 Zodiac constellations, which are used in reading horoscopes. Scorpius represents those born during October 23 to November 21. Scorpio is easy to spot in the summer sky. It is made up of a long string bright stars, which are visible in most lights, especially Antares, because of its distinctly red color. Antares is about 850 times bigger than our sun and is a red giant. -
September 2016
11/20/2016 11:13 AM CHECK RECONCILIATION REGISTER PAGE: 1 COMPANY: 04 - COMMUNITY DEVELOPMENT CHECK DATE: 9/01/2016 THRU 9/30/2016 ACCOUNT: 10010 CASH C.D.B.G. - CHECKING CLEAR DATE: 0/00/0000 THRU 99/99/9999 TYPE: Check STATEMENT: 0/00/0000 THRU 99/99/9999 STATUS: All VOIDED DATE: 0/00/0000 THRU 99/99/9999 FOLIO: All AMOUNT: 0.00 THRU 999,999,999.99 CHECK NUMBER: 000000 THRU 999999 ACCOUNT --DATE-- --TYPE-- NUMBER ---------DESCRIPTION---------- ----AMOUNT--- STATUS FOLIO CLEAR DATE CHECK: ---------------------------------------------------------------------------------------------------------------- 10010 9/08/2016 CHECK 006680 LOWER RIO GRANDE VALLEY 1,702.00CR CLEARED A 10/10/2016 10010 9/08/2016 CHECK 006681 MISSION CRIME STOPPERS 2,726.60CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006682 A ONE INSULATION 5,950.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006683 A ONE INSULATION 5,950.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006684 A ONE INSULATION 5,850.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006685 A ONE INSULATION 5,850.00CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006686 CHILDREN'S ADV.CENTER HDL 911.62CR CLEARED A 10/10/2016 10010 9/22/2016 CHECK 006687 G&G CONTRACTORS 23,920.00CR CLEARED A 10/10/2016 10010 9/29/2016 CHECK 006688 AMIGOS DEL VALLE 1,631.05CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006689 DELL MARKETING L.P. 1,148.00CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006690 LOWER RIO GRANDE VALLEY 2,682.54CR CLEARED A 11/07/2016 10010 9/29/2016 CHECK 006691 SILVER RIBBON COMMUNITY PARTNE 815.04CR -
A Large Hα Line Forming Region for the Massive Interacting Binaries Β
A&A 532, A148 (2011) Astronomy DOI: 10.1051/0004-6361/201116742 & c ESO 2011 Astrophysics AlargeHα line forming region for the massive interacting binaries β Lyrae and υ Sagitarii D. Bonneau1, O. Chesneau1, D. Mourard1, Ph. Bério1,J.M.Clausse1, O. Delaa1,A.Marcotto1, K. Perraut2, A. Roussel1,A.Spang1,Ph.Stee1, I. Tallon-Bosc3, H. McAlister4,5, T. ten Brummelaar5, J. Sturmann5, L. Sturmann5, N. Turner5, C. Farrington5, and P. J. Goldfinger5 1 Lab. H. Fizeau, Univ. Nice Sophia Antipolis, CNRS UMR 6525, Obs. de la Côte d’Azur, Av. Copernic, 06130 Grasse, France e-mail: [email protected] 2 UJF-Grenoble 1/CNRS-INSU, Inst. de Planétologie et d’Astrophysique de Grenoble (IPAG) UMR 5274, Grenoble 38041, France 3 Univ. Lyon 1, Observatoire de Lyon, 9 avenue Charles André, Saint-Genis Laval 69230, France 4 Georgia State University, PO Box 3969, Atlanta GA 30302-3969, USA 5 CHARA Array, Mount Wilson Observatory, 91023 Mount Wilson CA, USA Received 17 February 2011 / Accepted 1 July 2011 ABSTRACT Aims. This study aims at constraining the properties of two interacting binary systems by measuring their continuum-forming region in the visible and the forming regions of some emission lines, in particular Hα, using optical interferometry. Methods. We have obtained visible medium (R ∼ 1000) spectral resolution interferometric observations of β Lyr and of υ Sgr using the VEGA instrument of the CHARA array. For both systems, visible continuum (520/640 nm) visibilities were estimated and differential interferometry data were obtained in the Hα emission line at several epochs of their orbital period. -
Our Place in the Universe Research Earth Orbits the Sun, Slowly Traveling Around in a Circular Path
Earth, Sun, and Moon System Explore 2 Our Place in the Universe Research Earth orbits the Sun, slowly traveling around in a circular path. The Sun is a middle sized star. All of the planets in our solar system orbit this star. But when you look up at the night sky, you will see many other stars. Some of those have their own planets orbiting away in space. These other solar systems are called exosolar systems to distinguish between our solar system and these alien systems. Almost all of the objects you see in the night sky are part of the Milky Way, which is a giant collection of stars that all orbit a common center due to gravity. But if you look at the constellation Pegasus, which makes a giant square in the summer sky, you might see what appears to be a puffy cloud nearby. It is not a cloud, though. It is the Andromeda galaxy. It is an even bigger collection of stars that orbit a common center, and is over a million light-years away! There are many millions of galaxies in our universe, some close by and others very distant. Your group will choose one of these types of objects (stars, exosolar systems, and galaxies) and research its properties and location in the universe. You will then create a poster and a presentation about your star, galaxy, or exosolar system to present to the class. Procedure: 1. With your group, research one of the following objects. These are not the only options, but simply suggestions. -
SEPTEMBER 2014 OT H E D Ebn V E R S E R V ESEPTEMBERR 2014
THE DENVER OBSERVER SEPTEMBER 2014 OT h e D eBn v e r S E R V ESEPTEMBERR 2014 FROM THE INSIDE LOOKING OUT Calendar Taken on July 25th in San Luis State Park near the Great Sand Dunes in Colorado, Jeff made this image of the Milky Way during an overnight camping stop on the way to Santa Fe, NM. It was taken with a Canon 2............................. First quarter moon 60D camera, an EFS 15-85 lens, using an iOptron SkyTracker. It is a single frame, with no stacking or dark/ 8.......................................... Full moon bias frames, at ISO 1600 for two minutes. Visible in this south-facing photograph is Sagittarius, and the 14............ Aldebaran 1.4˚ south of moon Dark Horse Nebula inside of the Milky Way. He processed the image in Adobe Lightroom. Image © Jeff Tropeano 15............................ Last quarter moon 22........................... Autumnal Equinox 24........................................ New moon Inside the Observer SEPTEMBER SKIES by Dennis Cochran ygnus the Swan dives onto center stage this other famous deep-sky object is the Veil Nebula, President’s Message....................... 2 C month, almost overhead. Leading the descent also known as the Cygnus Loop, a supernova rem- is the nose of the swan, the star known as nant so large that its separate arcs were known Society Directory.......................... 2 Albireo, a beautiful multi-colored double. One and named before it was found to be one wide Schedule of Events......................... 2 wonders if Albireo has any planets from which to wisp that came out of a single star. The Veil is see the pair up-close. -
Constellation at Your Fingertips: Cygnus
The National Optical Astronomy Observatory’s Dark Skies and Energy Education Program Constellation at Your Fingertips: Cygnus (Cygnus version adapted from Constellation at Your Fingertips: Orion at www.globeatnight.org) Grades: 3rd - 8th grade Overview: Constellation at Your Fingertips introduces the novice constellation hunter to a method for spotting the main stars in the constellation, Cygnus, the swan. Students will make an outline of the constellation used to locate the stars in Cygnus and visualize its shape. This lesson will engage children and first-time night sky viewers in observations of the night sky. The lesson links history, Greek mythology, literature, and astronomy. Once the constellation is identified, it may be easy to find the summer triangle. The simplicity of Cygnus makes locating and observing it exciting for young learners. More on Cygnus is at the Great World Wide Star Count at http://www.starcount.org. Materials for another citizen-science star hunt, Globe at Night, are available at http://www.globeatnight.org. Purpose: Students will use the this activity to visualize the constellation of Cygnus. This will help them more easily participate in the Great World Wide Star Count citizen-science campaign. The campaign asks participants to match one of 7 different charts of Cygnus with what the participant sees toward Cygnus. Chart 1 has only a few stars. Chart 7 has many. What they will be recording for the campaign is the chart with the faintest star they see. In many cases, observations over years will build knowledge of how light pollution changes over time. Why is this important to astronomers? What causes the variation year to year? The focus is on light pollution and the options we have as consumers when purchasing outdoor lighting and shields. -
The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 a Good Way to Start – Find North
The expression "dog days" refers to the period from July 3 through Aug. 11 when our brightest night star, SIRIUS (aka the dog star), rises in conjunction* with the sun. Conjunction, in astronomy, is defined as the apparent meeting or passing of two celestial bodies. TAAS Fabulous Fifty A program for those new to astronomy Friday Evening, July 20, 2018, 8:00 pm All TAAS and other new and not so new astronomers are welcome. What is the TAAS Fabulous 50 Program? It is a set of 4 meetings spread across a calendar year in which a beginner to astronomy learns to locate 50 of the most prominent night sky objects visible to the naked eye. These include stars, constellations, asterisms, and Messier objects. Methodology 1. Meeting dates for each season in year 2018 Winter Jan 19 Spring Apr 20 Summer Jul 20 Fall Oct 19 2. Locate the brightest and easiest to observe stars and associated constellations 3. Add new prominent constellations for each season Tonight’s Schedule 8:00 pm – We meet inside for a slide presentation overview of the Summer sky. 8:40 pm – View night sky outside The Midnight Sky: Familiar Notes on the Stars and Planets, Edward Durkin, July 15, 1869 A Good Way to Start – Find North Polaris North Star Polaris is about the 50th brightest star. It appears isolated making it easy to identify. Circumpolar Stars Polaris Horizon Line Albuquerque -- 35° N Circumpolar Stars Capella the Goat Star AS THE WORLD TURNS The Circle of Perpetual Apparition for Albuquerque Deneb 1 URSA MINOR 2 3 2 URSA MAJOR & Vega BIG DIPPER 1 3 Draco 4 Camelopardalis 6 4 Deneb 5 CASSIOPEIA 5 6 Cepheus Capella the Goat Star 2 3 1 Draco Ursa Minor Ursa Major 6 Camelopardalis 4 Cassiopeia 5 Cepheus Clock and Calendar A single map of the stars can show the places of the stars at different hours and months of the year in consequence of the earth’s two primary movements: Daily Clock The rotation of the earth on it's own axis amounts to 360 degrees in 24 hours, or 15 degrees per hour (360/24). -
Detection and Characterization of Hot Subdwarf Companions of Massive Stars Luqian Wang
Georgia State University ScholarWorks @ Georgia State University Physics and Astronomy Dissertations Department of Physics and Astronomy 8-13-2019 Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars Luqian Wang Follow this and additional works at: https://scholarworks.gsu.edu/phy_astr_diss Recommended Citation Wang, Luqian, "Detection And Characterization Of Hot Subdwarf Companions Of Massive Stars." Dissertation, Georgia State University, 2019. https://scholarworks.gsu.edu/phy_astr_diss/119 This Dissertation is brought to you for free and open access by the Department of Physics and Astronomy at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Physics and Astronomy Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. DETECTION AND CHARACTERIZATION OF HOT SUBDWARF COMPANIONS OF MASSIVE STARS by LUQIAN WANG Under the Direction of Douglas R. Gies, PhD ABSTRACT Massive stars are born in close binaries, and in the course of their evolution, the initially more massive star will grow and begin to transfer mass and angular momentum to the gainer star. The mass donor star will be stripped of its outer envelope, and it will end up as a faint, hot subdwarf star. Here I present a search for the subdwarf stars in Be binary systems using the International Ultraviolet Explorer. Through spectroscopic analysis, I detected the subdwarf star in HR 2142 and 60 Cyg. Further analysis led to the discovery of an additional 12 Be and subdwarf candidate systems. I also investigated the EL CVn binary system, which is the prototype of class of eclipsing binaries that consist of an A- or F-type main sequence star and a low mass subdwarf. -
Planet Formation
3. Planet form ation Frontiers of A stronom y W orkshop/S chool Bibliotheca A lexandrina M arch-A pril 2006 Properties of planetary system s • all giant planets in the solar system have a > 5 A U w hile extrasolar giant planets have semi-major axes as small as a = 0.02 A U • planetary orbital angular momentum is close to direction of S un’s spin angular momentum (w ithin 7o) • 3 of 4 terrestrial planets and 3 of 4 giant planets have obliquities (angle betw een spin and orbital angular momentum) < 30o • interplanetary space is virtually empty, except for the asteroid belt and the Kuiper belt • planets account for < 0.2% of mass of solar system but > 98% of angular momentum Properties of planetary system s • orbits of major planets in solar system are nearly circular (eMercury=0.206, ePluto=0.250); orbits of extrasolar planets are not (emedian=0.28) • probability of finding a planet is proportional to mass of metals in the star Properties of planetary system s • planets suffer no close encounters and are spaced fairly n regularly (Bode’s law : an=0.4 + 0.3×2 ) planet semimajor axis (A U ) n an (A U ) Mercury 0.39 −∞ 0.4 V enus 0.72 0 0.7 Earth 1.00 1 1.0 Mars 1.52 2 1.6 asteroids 2.77 (Ceres) 3 2.8 Jupiter 5.20 4 5.2 S aturn 9.56 5 10.0 U ranus 19.29 6 19.6 N eptune 30.27 7 38.8 Pluto 39.68 8 77.2 Properties of planetary system s • planets suffer no close encounters and are spaced fairly n regularly (Bode’s law : an=0.4 + 0.3×2 ) planet semimajor axis (A U ) n an (A U ) Mercury+ 0.39 −∞ 0.4 V enus 0.72 0 0.7 Earth 1.00 1 1.0 *predicted