Hardware Accelerated Displacement Mapping for Image Based Rendering

Total Page:16

File Type:pdf, Size:1020Kb

Hardware Accelerated Displacement Mapping for Image Based Rendering Hardware Accelerated Displacement Mapping for Image Based Rendering Jan Kautz Hans-Peter Seidel Max-Planck-Institut für Informatik Max-Planck-Institut für Informatik Saarbrücken, Germany Saarbrücken, Germany Abstract In this paper, we present a technique for rendering dis- placement mapped geometry using current graphics hard- ware. Our method renders a displacement by slicing through the enclosing volume. The α-test is used to render only the appropriate parts of every slice. The slices need not to be aligned with the base surface, e.g. it is possible to do screen-space aligned slicing. We then extend the method to be able to render the intersection between several displacement mapped poly- gons. This is used to render a new kind of image-based objects based on images with depth, which we call image based depth objects. This technique can also directly be used to acceler- Figure 1: Furry donut (625 polygons) using displacement ate the rendering of objects using the image-based visual mapping. It was rendered at 35Hz on a PIII/800 using an hull. Other warping based IBR techniques can be accel- NVIDIA GeForce 2 GTS. erated in a similar manner. Key words: Displacement Mapping, Image Warping, Displacement mapping recently made its way into Hardware Acceleration, Texture Mapping, Frame-Buffer hardware accelerated rendering using standard features. Tricks, Image-Based Rendering. The basic technique was introduced by Schaufler [24] in the context of warping for layered impostors. It was then 1 Introduction reintroduced in the context of displacement mapping by Displacement mapping is an effective technique to add Dietrich [8]. This algorithm encodes the displacement in detail to a polygon-based surface model while keeping the α-channel of a texture. It then draws surface-aligned the polygon count low. For every pixel on a polygon a slices through the volume defined by the maximum dis- value is given that defines the displacement of that partic- placement. The α-test is used to render only the appropri- ular pixel along the normal direction effectively encoding ate parts of every slice. Occlusions are handled properly a heightfield. So far, displacement mapping has mainly by this method. been used in software rendering [21, 29] since the graph- This algorithm works well only for surface-aligned ics hardware was not capable of rendering displacement slices. At grazing angles it is possible to look through maps, although ideas exist on how to extend the hardware the slices. In this case, Schaufler [24] regenerates the lay- with this feature [9, 10, 20]. ered impostor, i.e. the texture and the displacement map, A similar technique used in a different context is im- according to the new viewpoint, which is possible since age warping. It is very similar to displacement mapping, he does have the original model that the layered impostor only that in image warping adjacent pixels need not to be represents. connected, allowing to see through them for certain view- We will introduce an enhanced method that supports ing directions. Displacement mapping is usually applied arbitrary slicing planes, allowing orthogonal slicing di- to a larger number of polygons, whereas image warp- rections or screen-space aligned slicing commonly used ing is often done for a few images only. Techniques in volume rendering, eliminating the need to regenerate that use image warping are also traditionally software- the texture and displacement map. based [12, 16, 19, 25, 26, 27]. On the one hand, we use this new method to render traditional displacement mapped objects; see Figure 1. All of them work in software, but some are designed to This works at interactive rates even for large textures and be turned into hardware. displacements employing current graphics hardware. The only known hardware accelerated method to do On the other hand, this new method can be extended image warping was introduced by Schaufler [24]. Diet- to render a new kind of image-based object, based on im- rich [8] used it later on for displacement mapping. This ages with depth, which we will refer to as image based algorithm will be explained in more detail in the next sec- depth objects. How to reconstruct an object from sev- tion. It has the main problem of introducing severe arti- eral images with depth has been known for many years facts at grazing viewing angles. now [2, 3, 6]. The existing methods are purely software Many IBR techniques employ (forward) image warp- based, very slow, and often working on a memory con- ing [12, 19, 20, 25, 26, 27] but also using a software im- suming full volumetric representation. We introduce a plementation. way to directly render these objects at interactive rates New hardware has also been proposed that would al- using graphics hardware without the need to reconstruct low displacement mapping [9, 10, 20], but none of these them in a preprocessing step. The input images are as- methods have found their way into actual hardware. sumed to be registered beforehand. The reconstruction of objects from images with depth We will also show how the image-based visual hull al- has been researched for many years now. Various differ- gorithm [13] can be implemented using this new method, ent algorithms have been proposed [2, 3, 6] using two and which runs much faster than the original algorithm. different approaches: reconstruction from unorganized Many other image based rendering algorithms also use point clouds, and reconstruction that uses the underlying some kind of image warping [12, 16, 19, 25, 26, 27]. The structure. None of these algorithms using either approach acceleration of these algorithms using our technique is can reconstruct and display such an object in real-time, conceivable. whereas our method is capable of doing this. There are many publications on image based objects; 2 Prior Work we will briefly review the closely related ones. Pulli et We will briefly review previous work from the areas al. [23] hand-model sparse view-dependent meshes from of displacement mapping, image warping, object recon- images with depth in a preprocessing step and recom- struction, and image-based objects. bine them on-the-fly using a soft z-buffer. McAllister et Displacement Mapping was introduced by Cook [4] al. [14] use images with depth to render complex environ- and has been traditionally used in software based meth- ments. Every seen surface is stored once in exactly one of ods, e.g. using raytracing or micro-polygons. Patter- the images. Rendering is done using splatting or with tri- son et al. [21] have introduced a method that can ray- angles. Layered depth images (LDI) [27] store an image trace displacement mapped polygons by applying the in- plus multiple depth values along the direction the image verse of this mapping to the rays. Pharr and Hanra- was taken; reconstruction is done in software. Image- han [22] have used geometry caching to accelerate dis- based objects [19] combine six LDI arranged as a cube placement mapping. Smits et al. [29] have used an ap- with a single center of projection to represent objects. An proach which is similar to intersecting a ray with a height- object defined by its image-based visual hull [13] can be field. The REYES rendering architecture subdivided the rendered interactively using a software renderer. displacement maps into micro-polygons which are then Our method for rendering image-based objects is one rendered [5]. of the first purely hardware accelerated method achieving On the other hand many image-based rendering (IBR) high frame rates and quality. It does not need any prepro- techniques revolve around image warping, which was cessing like mesh generation, it only takes images with e.g. used by McMillan et al. [16] in this context. There depths. are two different ways to implement the warping: forward and backward mapping. Forward mapping loops over all 3 Displacement Mapping pixels in the original image and projects them into the The basic idea of displacement mapping is simple. A desired image. Backward mapping loops over all pixels base geometry is displaced according to a displacement in the desired image and searches for the corresponding function, which is usually sampled and stored in an ar- pixels in the original image. Forward mapping is usu- ray, the so-called displacement map. The displacement is ally preferred, since the search process used by backward performed along the interpolated normals across the base mapping is expensive, although forward mapping may in- geometry. See Figure 2 for a 2D example where a flat troduce holes in the final image. Many algorithms have line is displaced according to a displacement map along been proposed to efficiently warp images [1, 15, 20, 28]. the interpolated normals. n n the inside of a displacement (which will be needed later on). base geometry displacement map displacement mapped Schaufler [24] used a slightly different method. In ev- geometry ery slice only those pixels are drawn whose α-values lie within a certain bound of the slice’s height. For many Figure 2: Displacement Mapping. viewpoints this allows to see through neighboring pix- els whose displacement values differ more than the used 3.1 Basic Hardware Accelerated Method bound. This is suited to image warping in the traditional sense, where it is assumed that pixels with very differ- First we would like to explain the basic algorithm for do- ent depth values are not connected. The method we de- ing displacement mapping using graphics hardware as it scribed is more suited to displacement mapping, where it was introduced by Dietrich [8] (and in a similar way by is assumed that neighboring pixels are always connected. Schaufler [24]). Both methods have the problem that at grazing angles The input data for our displacement mapping algo- it is possible to look through the slices; see Figure 4 for an rithm is an RGBα-texture, which we call displacement example.
Recommended publications
  • AWE Surface 1.2 Documentation
    AWE Surface 1.2 Documentation AWE Surface is a new, robust, highly optimized, physically plausible shader for DAZ Studio and 3Delight employing physically based rendering (PBR) metalness / roughness workflow. Using a primarily uber shader approach, it can be used to render materials such as dielectrics, glass and metal. Features Highlight Physically based BRDF (Oren Nayar for diffuse, Cook Torrance, Ashikhmin Shirley and GGX for specular). Micro facet energy loss compensation for the diffuse and transmission lobe. Transmission with Beer-Lambert based absorption. BRDF based importance sampling. Multiple importance sampling (MIS) with 3delight's path traced area light shaders such as the aweAreaPT shader. Explicit Russian Roulette for next event estimation and path termination. Raytraced subsurface scattering with forward/backward scattering via Henyey Greenstein phase function. Physically based Fresnel for both dielectric and metal materials. Unified index of refraction value for both reflection and transmission with dielectrics. An artist friendly metallic Fresnel based on Ole Gulbrandsen model using reflection color and edge tint to derive complex IOR. Physically based thin film interference (iridescence). Shader based, global illumination. Luminance based, Reinhard tone mapping with exposure, temperature and saturation controls. Toggle switches for each lobe. Diffuse Oren Nayar based translucency with support for bleed through shadows. Can use separate front/back side diffuse color and texture. Two specular/reflection lobes for the base, one specular/reflection lobe for coat. Anisotropic specular and reflection (only with Ashikhmin Shirley and GGX BRDF), with map- controllable direction. Glossy Fresnel with explicit roughness values, one for the base and one for the coat layer. Optimized opacity handling with user controllable thresholds.
    [Show full text]
  • Real-Time Rendering Techniques with Hardware Tessellation
    Volume 34 (2015), Number x pp. 0–24 COMPUTER GRAPHICS forum Real-time Rendering Techniques with Hardware Tessellation M. Nießner1 and B. Keinert2 and M. Fisher1 and M. Stamminger2 and C. Loop3 and H. Schäfer2 1Stanford University 2University of Erlangen-Nuremberg 3Microsoft Research Abstract Graphics hardware has been progressively optimized to render more triangles with increasingly flexible shading. For highly detailed geometry, interactive applications restricted themselves to performing transforms on fixed geometry, since they could not incur the cost required to generate and transfer smooth or displaced geometry to the GPU at render time. As a result of recent advances in graphics hardware, in particular the GPU tessellation unit, complex geometry can now be generated on-the-fly within the GPU’s rendering pipeline. This has enabled the generation and displacement of smooth parametric surfaces in real-time applications. However, many well- established approaches in offline rendering are not directly transferable due to the limited tessellation patterns or the parallel execution model of the tessellation stage. In this survey, we provide an overview of recent work and challenges in this topic by summarizing, discussing, and comparing methods for the rendering of smooth and highly-detailed surfaces in real-time. 1. Introduction Hardware tessellation has attained widespread use in computer games for displaying highly-detailed, possibly an- Graphics hardware originated with the goal of efficiently imated, objects. In the animation industry, where displaced rendering geometric surfaces. GPUs achieve high perfor- subdivision surfaces are the typical modeling and rendering mance by using a pipeline where large components are per- primitive, hardware tessellation has also been identified as a formed independently and in parallel.
    [Show full text]
  • Quadtree Displacement Mapping with Height Blending
    Quadtree Displacement Mapping with Height Blending Practical Detailed Multi-Layer Surface Rendering Michal Drobot Technical Art Director Reality Pump Outline • Introduction • Motivation • Existing Solutions • Quad tree Displacement Mapping • Shadowing • Surface Blending • Conclusion Introduction • Next generation rendering – Higher quality per-pixel • More effects • Accurate computation – Less triangles, more sophistication • Ray tracing • Volumetric effects • Post processing – Real world details • Shadows • Lighting • Geometric properties Surface rendering • Surface rendering stuck at – Blinn/Phong • Simple lighting model – Normal mapping • Accounts for light interaction modeling • Doesn’t exhibit geometric surface depth – Industry proven standard • Fast, cheap, but we want more… Terrain surface rendering • Rendering terrain surface is costly – Requires blending • With current techniques prohibitive – Blend surface exhibit high geometric complexity Surface properties • Surface geometric properties – Volume – Depth – Various frequency details • Together they model visual clues – Depth parallax – Self shadowing – Light Reactivity Surface Rendering • Light interactions – Depends on surface microstructure – Many analytic solutions exists • Cook Torrance BDRF • Modeling geometric complexity – Triangle approach • Costly – Vertex transform – Memory • More useful with Tessellation (DX 10.1/11) – Ray tracing Motivation • Render different surfaces – Terrains – Objects – Dynamic Objects • Fluid/Gas simulation • Do it fast – Current Hardware – Consoles
    [Show full text]
  • Dynamic Image-Space Per-Pixel Displacement Mapping With
    ThoseThose DeliciousDelicious TexelsTexels…… or… DynamicDynamic ImageImage--SpaceSpace PerPer--PixelPixel DisplacementDisplacement MappingMapping withwith SilhouetteSilhouette AntialiasingAntialiasing viavia ParallaxParallax OcclusionOcclusion MappingMapping Natalya Tatarchuk 3D Application Research Group ATI Research, Inc. OverviewOverview ofof thethe TalkTalk > The goal > Overview of approaches to simulate surface detail > Parallax occlusion mapping > Theory overview > Algorithm details > Performance analysis and optimizations > In the demo > Art considerations > Uses and future work > Conclusions Game Developer Conference, San Francisco, CA, March 2005 2 WhatWhat ExactlyExactly IsIs thethe Problem?Problem? > We want to render very detailed surfaces > Don’t want to pay the price of millions of triangles > Vertex transform cost > Memory > Want to render those detailed surfaces correctly > Preserve depth at all angles > Dynamic lighting > Self occlusion resulting in correct shadowing > Thirsty graphics cards want more ALU operations (and they can handle them!) > Of course, this is a balancing game - fill versus vertex transform – you judge for yourself what’s best Game Developer Conference, San Francisco, CA, March 2005 3 ThisThis isis NotNot YourYour TypicalTypical ParallaxParallax Mapping!Mapping! > Parallax Occlusion Mapping is a new technique > Different from > Parallax Mapping > Relief Texture Mapping > Per-pixel ray tracing at its core > There are some very recent similar techniques > Correctly handles complicated viewing phenomena
    [Show full text]
  • Per-Pixel Displacement Mapping with Distance Functions
    108_gems2_ch08_new.qxp 2/2/2005 2:20 PM Page 123 Chapter 8 Per-Pixel Displacement Mapping with Distance Functions William Donnelly University of Waterloo In this chapter, we present distance mapping, a technique for adding small-scale dis- placement mapping to objects in a pixel shader. We treat displacement mapping as a ray-tracing problem, beginning with texture coordinates on the base surface and calcu- lating texture coordinates where the viewing ray intersects the displaced surface. For this purpose, we precompute a three-dimensional distance map, which gives a measure of the distance between points in space and the displaced surface. This distance map gives us all the information necessary to quickly intersect a ray with the surface. Our algorithm significantly increases the perceived geometric complexity of a scene while maintaining real-time performance. 8.1 Introduction Cook (1984) introduced displacement mapping as a method for adding small-scale detail to surfaces. Unlike bump mapping, which affects only the shading of surfaces, displacement mapping adjusts the positions of surface elements. This leads to effects not possible with bump mapping, such as surface features that occlude each other and nonpolygonal silhouettes. Figure 8-1 shows a rendering of a stone surface in which occlusion between features contributes to the illusion of depth. The usual implementation of displacement mapping iteratively tessellates a base sur- face, pushing vertices out along the normal of the base surface, and continuing until 8.1 Introduction 123 Copyright 2005 by NVIDIA Corporation 108_gems2_ch08_new.qxp 2/2/2005 2:20 PM Page 124 Figure 8-1. A Displaced Stone Surface Displacement mapping (top) gives an illusion of depth not possible with bump mapping alone (bottom).
    [Show full text]
  • Analytic Displacement Mapping Using Hardware Tessellation
    Analytic Displacement Mapping using Hardware Tessellation Matthias Nießner University of Erlangen-Nuremberg and Charles Loop Microsoft Research Displacement mapping is ideal for modern GPUs since it enables high- 1. INTRODUCTION frequency geometric surface detail on models with low memory I/O. How- ever, problems such as texture seams, normal re-computation, and under- Displacement mapping has been used as a means of efficiently rep- sampling artifacts have limited its adoption. We provide a comprehensive resenting and animating 3D objects with high frequency surface solution to these problems by introducing a smooth analytic displacement detail. Where texture mapping assigns color to surface points at function. Coefficients are stored in a GPU-friendly tile based texture format, u; v parameter values, displacement mapping assigns vector off- and a multi-resolution mip hierarchy of this function is formed. We propose sets. The advantages of this approach are two-fold. First, only the a novel level-of-detail scheme by computing per vertex adaptive tessellation vertices of a coarse (low frequency) base mesh need to be updated factors and select the appropriate pre-filtered mip levels of the displace- each frame to animate the model. Second, since the only connec- ment function. Our method obviates the need for a pre-computed normal tivity data needed is for the coarse base mesh, significantly less map since normals are directly derived from the displacements. Thus, we space is needed to store the equivalent highly detailed mesh. Fur- are able to perform authoring and rendering simultaneously without typical ther space reductions are realized by storing scalar, rather than vec- displacement map extraction from a dense triangle mesh.
    [Show full text]
  • Per-Pixel Vs. Per-Vertex Real-Time Displacement Mapping Riccardo Loggini
    Per-Pixel vs. Per-Vertex Real-Time Displacement Mapping Riccardo Loggini Introduction Displacement Mapping is a technique that provides geometric details to parametric surfaces. The displacement values are stored in grey scale textures called height maps. We can distinguish two main ways to implement such features which are the Per-Pixel and the Per-Vertex approach. + = Macrostructure Surface Height Map Mesostructure Surface Per-Pixel Approach Per-Vertex Approach Per-Pixel displacement mapping on the GPU can be conceptually Per-Vertex displacement mapping on the GPU increase the inter- seen as an optical illusion: the sense of depth is given by displacing nal mesh geometry by a tessellation process and then uses the the mesh texture coordinates that the viewer is looking at. vertices as control points to displace the surface S along its nor- ~ This approach translates to a ray tracing problem. mal direction nS based on the height map h values. visible surface ~ nS (u0, v 0) ~v h ~S ~u S~ (u, v)=~S (u, v)+h (u, v) n~ (u, v) The execution is made by the fragment shader. Most of the algo- 0 ⇤ S rithms of this family use ray marching to find the intersection point The execution is made before the rasterization process and it can with the height map h (u, v). One of them is Parallax Occlusion involve vertex, geometry and/or tessellation shaders. The OpenGL Mapping that was used to generate the left mesh in Preliminary 4 tessellation stage was used to generate the right mesh in Prelim- Results below. inary Results below with a uniform quad tessellation level.
    [Show full text]
  • Hardware Displacement Mapping
    Hardware Displacement Mapping matrox.com/mga Under NDA until May 14, 2002 Hardware Displacement Mapping Matrox's revolutionary new surface generation technology, Hardware Displacement Mapping (HDM), equates a giant leap in the pursuit of 3D realism. Matrox is the first to develop a hardware implementation of displacement mapping and has contributed elements of this technology for inclusion as a standard feature in Microsoft®'s DirectX® 9 API. Introduced in the Matrox Parhelia™-512 GPU, Hardware Displacement Mapping enables developers of 3D applications, such as games, to provide consumers with a more realistic and immer- sive 3D experience. “Matrox's Hardware Displacement Mapping is a unique and innovative new technology that delivers increased realism for 3D games," said Kenny Mitchell, director 3D graphics software engineering, Westwood Studios®."The fact that it only took me a few hours to get up and running with the technology to attain excellent results was really encouraging and I look forward to integrating the technology more widely in future Westwood titles." Introduction I The challenge of creating highly realistic 3D scenes is fuelled by Hardware Displacement Mapping (HDM), a powerful surface our desire to experience compelling virtual environments— generation technology, combines two Matrox initiatives—Depth- whether they form part of 3D-rendered movies or interactive 3D Adaptive Tessellation and Vertex Texturing—to deliver extraordinary games. How well a 3D-rendered scene reflects reality depends 3D realism through increased geometry detail, while providing the on the accuracy of its shapes, or geometry, in addition to the most simple and compact representation for high-resolution geo- fidelity of its colors and textures.
    [Show full text]
  • Advanced Renderman 3: Render Harder
    Advanced RenderMan 3: Render Harder SIGGRAPH 2001 Course 48 course organizer: Larry Gritz, Exluna, Inc. Lecturers: Tony Apodaca, Pixar Animation Studios Larry Gritz, Exluna, Inc. Matt Pharr, Exluna, Inc. Christophe Hery, Industrial Light + Magic Kevin Bjorke, Square USA Lawrence Treweek, Sony Pictures Imageworks August 2001 ii iii Desired Background This course is for graphics programmers and technical directors. Thorough knowledge of 3D image synthesis, computer graphics illumination models and previous experience with the RenderMan Shading Language is a must. Students must be facile in C. The course is not for those with weak stomachs for examining code. Suggested Reading Material The RenderMan Companion: A Programmer’s Guide to Realistic Computer Graphics, Steve Upstill, Addison-Wesley, 1990, ISBN 0-201-50868-0. This is the basic textbook for RenderMan, and should have been read and understood by anyone attending this course. Answers to all of the typical, and many of the extremely advanced, questions about RenderMan are found within its pages. Its failings are that it does not cover RIB, only the C interface, and also that it only covers the 10-year- old RenderMan Interface 3.1, with no mention of all the changes to the standard and to the products over the past several years. Nonetheless, it still contains a wealth of information not found anyplace else. Advanced RenderMan: Creating CGI for Motion Pictures, Anthony A. Apodaca and Larry Gritz, Morgan-Kaufmann, 1999, ISBN 1-55860-618-1. A comprehensive, up-to-date, and advanced treatment of all things RenderMan. This book covers everything from basic RIB syntax to the geometric primitives to advanced topics like shader antialiasing and volumetric effects.
    [Show full text]
  • Review of Displacement Mapping Techniques and Optimization
    BLEKINGE TEKNISKA HÖGSKOLA Review of Displacement Mapping Techniques and Optimization Ermin Hrkalovic Mikael Lundgren 2012-05-01 Contents 1 Introduction .......................................................................................................................................... 3 2 Purpose and Objectives ........................................................................................................................ 4 3 Research Questions .............................................................................................................................. 4 4 Research Methodology ........................................................................................................................ 4 5 Normal Mapping ................................................................................................................................... 4 6 Relief Mapping ..................................................................................................................................... 5 7 Parallax Occlusion Mapping ................................................................................................................. 7 8 Quadtree Displacement Mapping ........................................................................................................ 8 9 Implementation .................................................................................................................................... 8 9.1 Optimization ...............................................................................................................................
    [Show full text]
  • IMAGE-BASED MODELING TECHNIQUES for ARTISTIC RENDERING Bynum Murray Iii Clemson University, [email protected]
    Clemson University TigerPrints All Theses Theses 5-2010 IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING Bynum Murray iii Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Fine Arts Commons Recommended Citation Murray iii, Bynum, "IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING" (2010). All Theses. 777. https://tigerprints.clemson.edu/all_theses/777 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. IMAGE-BASED MODELING TECHNIQUES FOR ARTISTIC RENDERING A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Arts Digital Production Arts by Bynum Edward Murray III May 2010 Accepted by: Timothy Davis, Ph.D. Committee Chair David Donar, M.F.A. Tony Penna, M.F.A. ABSTRACT This thesis presents various techniques for recreating and enhancing two- dimensional paintings and images in three-dimensional ways. The techniques include camera projection modeling, digital relief sculpture, and digital impasto. We also explore current problems of replicating and enhancing natural media and describe various solutions, along with their relative strengths and weaknesses. The importance of artistic skill in the implementation of these techniques is covered, along with implementation within the current industry applications Autodesk Maya, Adobe Photoshop, Corel Painter, and Pixologic Zbrush. The result is a set of methods for the digital artist to create effects that would not otherwise be possible.
    [Show full text]
  • An Overview Study of Game Engines
    Faizi Noor Ahmad Int. Journal of Engineering Research and Applications www.ijera.com ISSN : 2248-9622, Vol. 3, Issue 5, Sep-Oct 2013, pp.1673-1693 RESEARCH ARTICLE OPEN ACCESS An Overview Study of Game Engines Faizi Noor Ahmad Student at Department of Computer Science, ACNCEMS (Mahamaya Technical University), Aligarh-202002, U.P., India ABSTRACT We live in a world where people always try to find a way to escape the bitter realities of hubbub life. This escapism gives rise to indulgences. Products of such indulgence are the video games people play. Back in the past the term ―game engine‖ did not exist. Back then, video games were considered by most adults to be nothing more than toys, and the software that made them tick was highly specialized to both the game and the hardware on which it ran. Today, video game industry is a multi-billion-dollar industry rivaling even the Hollywood. The software that drives these three dimensional worlds- the game engines-have become fully reusable software development kits. In this paper, I discuss the specifications of some of the top contenders in video game engines employed in the market today. I also try to compare up to some extent these engines and take a look at the games in which they are used. Keywords – engines comparison, engines overview, engines specification, video games, video game engines I. INTRODUCTION 1.1.2 Artists Back in the past the term ―game engine‖ did The artists produce all of the visual and audio not exist. Back then, video games were considered by content in the game, and the quality of their work can most adults to be nothing more than toys, and the literally make or break a game.
    [Show full text]