Xquery Interpreter Xquery Processors

Total Page:16

File Type:pdf, Size:1020Kb

Xquery Interpreter Xquery Processors Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:29 XQuery Processors X 101 in Database Technology, Proc. 8th Int. Conf. on Extending is heavily influenced by several earlier XML query Database Technology, 2002, pp. 477–495. languages including Lorel, Quilt, XML-QL, and XQL. 8. XML Path Language (XPath) 2.0. W3C Recommendation. Avail- XQuery is a strongly-typed functional language, whose able at: http://www.w3.org/TR/xpath20/ 9. XQuery 1.0: An XML Query Language. W3C Recommendation. basic principals include simplicity, compositionality, Available at: http://www.w3.org/TR/xquery/ closure, schema conformance, XPath compatibility, 10. XQuery 1.0 and XPath 2.0 Data Model (XDM). W3C generality and completeness. Its type system is based Recommendation. Available at: http://www.w3.org/TR/xpath- on XML schema, and it contains XPath language as a datamodel/ subset. Over the years, several software vendors have 11. XQuery 1.0 and XPath 2.0 Full-Text 1.0. W3C Working Draft. Available at: http://www.w3.org/TR/xpath-full-text-10/ developed products based on XQuery in varying degrees 12. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Requirements. W3C of conformance. A current list of XQuery implementa- Working Draft. Available at: http://www.w3.org/TR/xpath-full- tions is maintained on the W3 XML Query working text-10-requirements/ group’s homepage (http://www.w3.org/XML/XQuery). 13. XQuery 1.0 and XPath 2.0 Full-Text 1.0 Use Cases. W3C Work- There are three main approaches of XQuery proces- ing Draft. Available at: http://www.w3.org/TR/xpath-full-text- sors. The first one is to leverage existing relational 10-use-cases/ database systems as much as possible, and evaluate XQuery in a purely relational way by translating queries into SQL queries, evaluating them using SQL XQuery Interpreter database engine, and reformatting the output tuples back into XML results. The second approach is to ▶ XQuery Processors retain the native structure of the XML data both in the storage component and during the query evalua- tion process. One native XQuery processor is Michael Kay’s Saxon, which provides one of the most complete XQuery Processors and conforming implementations of the language available at the time of writing. Compared with the 1 2 3 TORSTEN GRUST ,H.V.JAGADISH ,FATMA O¨ ZCAN , first approach, this native approach avoids the over- 4 CONG YU head of translating back and forth between XML and 1University of Tu¨bingen, Tu¨bingen, Germany relational structures, but it also faces the significant 2University of Michigan, Ann Arbor, MI, USA challenge of designing new indexing and evaluation 3IBM Almaden Research Center, San Jose, CA, USA techniques. Finally, the third approach is a hybrid 4Yahoo! Research, New York, NY, USA style that integrates native XML storage and XPath navigation techniques with existing relational techni- Synonyms ques for query processing. XML database system; XQuery compiler; XQuery interpreter Foundations Definition Pathfinder: Purely Relational XQuery XQuery processors are systems for efficient storage and The Pathfinder XQuery compiler has been developed retrieval of XML data using XML queries written in the under the main hypothesis that the well-understood XQuery language. A typical XQuery processor includes relational database kernels also make for efficient XQu- the data model, which dictates the storage component; ery processors. Such a relational account of XQuery the query model, which defines how queries are pro- processing can indeed yield scalable XQuery imple- cessed; and the optimization modules, which leverage mentations – provided that the system exploits suitable various algorithmic and indexing techniques to im- relational encodings of both, (i) the XQuery Data prove the performance of query processing. Model (XDM), i.e. tree fragments as well as ordered item sequences, and (ii) the dynamic semantics of Historical Background XQuery that allow the database back-end to play its The first W3C working draft of XQuery was published trump: set-oriented evaluation. Pathfinder deter- in early 2001 by a group of industrial experts. It minedly implements this approach, effectively Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:30 102 X XQuery Processors realizing the dashed path in Fig. 1b. Any relational items are laid out in a single table for all loop iterations, database system may assume the role of Pathfinder’s one item per row. A plan consuming this loop-lifted back-end database; the compiler does not rely on XQu- or ‘‘unrolled’’ representation of e may, effectively, ery-specific builtin functionality and requires no process the results of the individual iterated evaluations changes to the underlying database kernel. of e in any order it sees fit – or in parallel [10]. In some Internal XQuery and Data Model Representation. To sense, such a plan is the embodiment of the indepen- represent XML fragments, i.e. ordered unranked trees dence of the individual evaluations of an XQuery for- of XML nodes, Pathfinder can operate with any node- loop body. level tabular encoding of trees (node ^ row) that – Exploitation of Type and Schema Information. Path- ¼ along other XDM specifics like tag name, node kind, finder’s node-level tree encoding is schema-oblivious etc. – preserves node identity and document order. and does not depend on XML Schema information to A variety of such encodings are available, among represent XML documents or fragments. If the DTD of these are variations of pre/post region encodings [8] the XML documents consumed by an expression is avail- or ORDPATH identifiers [15]. Ordered sequences of able, the compiler annotates its plans with node location items are mapped into tables in which a dedicated and fan-out information that assists XPath location column preserves sequence order. path evaluation but is also used to reduce a query’s Pathfinder compiles incoming XQuery expression runtime effort invested in node construction and atomi- into plans of relational algebra operators. To actually zation. Pathfinder additionally infers static type infor- operate the database back-end in a set-oriented fashion, mation for a query to further prune plans, e.g. to Pathfinder draws the necessary amount of independent control the impact of polymorphic item sequences work from XQuery’s for-loops. The evaluation of a which present a challenge for the strictly typed table subexpression e in the scope of a for-loop yields an column content in standard relational database systems. ordered sequence of zero or more items in each loop Query Runtime. Internally, Pathfinder analyzes iteration. In Pathfinders relational encoding, these the data flow between the algebraic operators of the XQuery Processors. Figure 1. (a) DB2 XML system architecture. (b) Pathfinder: purely relational XQuery on top of vanilla database back-ends. (c) Timber architecture overview [11]. Comp. by: sunselvakumar Stage: Revises1 ChapterID: 000000A811 Date:15/6/09 Time:19:26:33 XQuery Processors X 103 generated plan to derive a series of operator annota- along with the labels, are stored natively, and in the tions (keys, multi-valued dependencies, etc.) that order of their start keys (which correspond to their drive plan simplification and reshaping. A number of document order), into the Timber storage backend. XQuery-specific optimization problems, e.g. the stable XQuery Representation. A central concept in the detection of value-based joins or XPath twigs and Timber system is the TLC (Tree Logical Class) algebra the exploitation of local order indifference, may be [12,18,17], which manipulates sets (or sequences) of approached with simple or well-known relational heterogeneous, ordered, labeled trees. Each operator query processing techniques. in the TLC algebra takes as input one or more sets The Pathfinder XQuery compiler is retargetable: (or sequences) of trees and produces as output a its internal table algebra has been designed to match set (sequence) of trees. The main operators in TLC the processing capabilities of modern SQL database include filter, select, project, join, reordering, duplicate- systems. Standard B-trees provide excellent index sup- elimination, grouping, construct, flatten, shadow/illumi- port. Code generators exist that emit sequences of nate. There are several important features of the TLC SQL:1999 statements [9] (no SQL/XML functionality algebra. First, like the relational algebra, TLC is a is used but the code benefits if OLAP primitives like ‘‘proper’’ algebra with compositionality and closure. DENSE_RANK are available). Bundled with its code Second, TLC efficiently manages the heterogeneity generator targeting the extensible column store kernel arising in XML query processing. In particular, heter- MonetDB, Pathfinder constitutes XQuery technology ogenous input trees are reduced to homogenous sets that processes XML documents in the Gigabyte-range for bulk manipulation through tree pattern matching. in interactive time [7]. This tree pattern matching mechanism is also useful in selecting portions of interest in a large XML tree. Timber: A Native XML Database System Third, TLC can efficiently handle both set and se- Timber [11] is an XML database system which man- quence semantics, as well as a hybrid semantics, ages XML data natively: i.e. the XML data instances are where part of the input collection of trees is ordered stored in their actual format and the XQueries are [17]. Finally, the TLC algebra covers a large fragment of processed directly. Because of this native representa- XQuery, including nested FLWOR expressions. Each tion, there is no overhead for converting the data incoming XQuery is parsed and compiled into the between the XML format and the relational represen- TLC algebra representation (i.e. logical query plans) tation or for translating queries from the XQuery for- before being evaluated against the data. mat into the SQL format. While many components of The Timber system, and its underlying algebra, the traditional database can be reused (for example, has been extended to deal with text manipulation [2] the transaction management facilities), other compo- and probabilistic data [14].
Recommended publications
  • Semantics Developer's Guide
    MarkLogic Server Semantic Graph Developer’s Guide 2 MarkLogic 10 May, 2019 Last Revised: 10.0-8, October, 2021 Copyright © 2021 MarkLogic Corporation. All rights reserved. MarkLogic Server MarkLogic 10—May, 2019 Semantic Graph Developer’s Guide—Page 2 MarkLogic Server Table of Contents Table of Contents Semantic Graph Developer’s Guide 1.0 Introduction to Semantic Graphs in MarkLogic ..........................................11 1.1 Terminology ..........................................................................................................12 1.2 Linked Open Data .................................................................................................13 1.3 RDF Implementation in MarkLogic .....................................................................14 1.3.1 Using RDF in MarkLogic .........................................................................15 1.3.1.1 Storing RDF Triples in MarkLogic ...........................................17 1.3.1.2 Querying Triples .......................................................................18 1.3.2 RDF Data Model .......................................................................................20 1.3.3 Blank Node Identifiers ..............................................................................21 1.3.4 RDF Datatypes ..........................................................................................21 1.3.5 IRIs and Prefixes .......................................................................................22 1.3.5.1 IRIs ............................................................................................22
    [Show full text]
  • XSAMS: XML Schema for Atomic, Molecular and Solid Data
    XSAMS: XML Schema for Atomic, Molecular and Solid Data Version 0.1.1 Draft Document, January 14, 2011 This version: http://www-amdis.iaea.org/xsams/docu/v0.1.1.pdf Latest version: http://www-amdis.iaea.org/xsams/docu/ Previous versions: http://www-amdis.iaea.org/xsams/docu/v0.1.pdf Editors: M.L. Dubernet, D. Humbert, Yu. Ralchenko Authors: M.L. Dubernet, D. Humbert, Yu. Ralchenko, E. Roueff, D.R. Schultz, H.-K. Chung, B.J. Braams Contributors: N. Moreau, P. Loboda, S. Gagarin, R.E.H. Clark, M. Doronin, T. Marquart Abstract This document presents a proposal for an XML schema aimed at describing Atomic, Molec- ular and Particle Surface Interaction Data in distributed databases around the world. This general XML schema is a collaborative project between International Atomic Energy Agency (Austria), National Institute of Standards and Technology (USA), Universit´ePierre et Marie Curie (France), Oak Ridge National Laboratory (USA) and Paris Observatory (France). Status of this document It is a draft document and it may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use this document as reference materials or to cite them as other than “work in progress”. Acknowledgements The authors wish to acknowledge all colleagues and institutes, atomic and molecular database experts and physicists who have collaborated through different discussions to the building up of the concepts described in this document. Change Log Version 0.1: June 2009 Version 0.1.1: November 2010 Contents 1 Introduction 11 1.1 Motivation..................................... 11 1.2 Limitations..................................... 12 2 XSAMS structure, types and attributes 13 2.1 Atomic, Molecular and Particle Surface Interaction Data XML Schema Structure 13 2.2 Attributes ....................................
    [Show full text]
  • Rdfa in XHTML: Syntax and Processing Rdfa in XHTML: Syntax and Processing
    RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing RDFa in XHTML: Syntax and Processing A collection of attributes and processing rules for extending XHTML to support RDF W3C Recommendation 14 October 2008 This version: http://www.w3.org/TR/2008/REC-rdfa-syntax-20081014 Latest version: http://www.w3.org/TR/rdfa-syntax Previous version: http://www.w3.org/TR/2008/PR-rdfa-syntax-20080904 Diff from previous version: rdfa-syntax-diff.html Editors: Ben Adida, Creative Commons [email protected] Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. [email protected] Steven Pemberton, CWI Please refer to the errata for this document, which may include some normative corrections. This document is also available in these non-normative formats: PostScript version, PDF version, ZIP archive, and Gzip’d TAR archive. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The current Web is primarily made up of an enormous number of documents that have been created using HTML. These documents contain significant amounts of structured data, which is largely unavailable to tools and applications. When publishers can express this data more completely, and when tools can read it, a new world of user functionality becomes available, letting users transfer structured data between applications and web sites, and allowing browsing applications to improve the user experience: an event on a web page can be directly imported - 1 - How to Read this Document RDFa in XHTML: Syntax and Processing into a user’s desktop calendar; a license on a document can be detected so that users can be informed of their rights automatically; a photo’s creator, camera setting information, resolution, location and topic can be published as easily as the original photo itself, enabling structured search and sharing.
    [Show full text]
  • Rdf Repository Replacing Relational Database
    RDF REPOSITORY REPLACING RELATIONAL DATABASE 1B.Srinivasa Rao, 2Dr.G.Appa Rao 1,2Department of CSE, GITAM University Email:[email protected],[email protected] Abstract-- This study is to propose a flexible enable it. One such technology is RDF (Resource information storage mechanism based on the Description Framework)[2]. RDF is a directed, principles of Semantic Web that enables labelled graph for representing information in the information to be searched rather than queried. Web. This can be perceived as a repository In this study, a prototype is developed where without any predefined structure the focus is on the information rather than the The information stored in the traditional structure. Here information is stored in a RDBMS’s requires structure to be defined structure that is constructed on the fly. Entities upfront. On the contrary, information could be in the system are connected and form a graph, very complex to structure upfront despite the similar to the web of data in the Internet. This tremendous potential offered by the existing data is persisted in a peculiar way to optimize database systems. In the ever changing world, querying on this graph of data. All information another important characteristic of information relating to a subject is persisted closely so that in a system that impacts its structure is the reqeusting any information of a subject could be modification/enhancement to the system. This is handled in one call. Also, the information is a big concern with many software systems that maintained in triples so that the entire exist today and there is no tidy approach to deal relationship from subject to object via the with the problem.
    [Show full text]
  • Robust Web Content Extraction Marek Kowalkiewicz Maria E
    Robust Web Content Extraction Marek Kowalkiewicz Maria E. Orlowska Tomasz Kaczmarek Witold Abramowicz Department of Management Department of Information Department of Management Department of Management Information Systems Technology and Electrical Information Systems Information Systems The Poznan University of Engineering The Poznan University of The Poznan University of Economics The University of Economics Economics Al. Niepodleglosci 10 Queensland Al. Niepodleglosci 10 Al. Niepodleglosci 10 60-967 Poznan, Poland Brisbane, St. Lucia 60-967 Poznan, Poland 60-967 Poznan, Poland +48 (61) 8543631 QLD 4072, Australia +48 (61) 8543631 +48 (61) 8543381 +61 (7) 33652989 [email protected] [email protected] [email protected] [email protected] ABSTRACT There is a number of technologies to extract information from We present an empirical evaluation and comparison of two webpages. For a state of the art analysis, see previously content extraction methods in HTML: absolute XPath expressions mentioned paper [2] and an extensive study by Laender et al. [3]. and relative XPath expressions. We argue that the relative XPath Robustness of content extraction methods, with a focus on XPath, expressions, although not widely used, should be used in has been presented in a work by Abe and Hori [1]. The authors preference to absolute XPath expressions in extracting content proposed four content anchoring approaches and tested them on from human-created Web documents. Evaluation of robustness documents from four Web sites. The samples used in theory study covers four thousand queries executed on several hundred were too small to be statistically valid. However the authors make webpages. We show that in referencing parts of real world a significant step towards establishing an understanding of the dynamic HTML documents, relative XPath expressions are on applicability of content extraction methods in real world Web average significantly more robust than absolute XPath ones.
    [Show full text]
  • CURIE Syntax 1.0 CURIE Syntax 1.0
    CURIE Syntax 1.0 CURIE Syntax 1.0 CURIE Syntax 1.0 A syntax for expressing Compact URIs W3C Working Draft 26 November 2007 This version: http://www.w3.org/TR/2007/WD-curie-20071126 Latest version: http://www.w3.org/TR/curie Previous version: http://www.w3.org/TR/2007/WD-curie-20070307 Diff from previous version: curie-diff.html Editors: Mark Birbeck, x-port.net Ltd. Shane McCarron, Applied Testing and Technology, Inc. This document is also available in these non-normative formats: PostScript version, PDF version. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The aim of this document is to outline a syntax for expressing URIs in a generic, abbreviated syntax. While it has been produced in conjunction with the HTML Working Group, it is not specifically targeted at use by XHTML Family Markup Languages. Note that the target audience for this document is Language designers, not the users of those Languages. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. - 1 - Table of Contents CURIE Syntax 1.0 This document is an updated working draft based upon comments received since the last draft.
    [Show full text]
  • CURIE Syntax 1.0 CURIE Syntax 1.0
    CURIE Syntax 1.0 CURIE Syntax 1.0 CURIE Syntax 1.0 A syntax for expressing Compact URIs W3C Working Group Note 16 December 2010 This version: http://www.w3.org/TR/2010/NOTE-curie-20101216 Latest version: http://www.w3.org/TR/curie Previous version: http://www.w3.org/TR/2009/CR-curie-20090116 Diff from previous version: curie-diff.html Editors: Mark Birbeck, Sidewinder Labs [email protected] Shane McCarron, Applied Testing and Technology, Inc. This document is also available in these non-normative formats: PostScript version, PDF version. Copyright © 2007-2010 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract This document defines a generic, abbreviated syntax for expressing URIs. This syntax is intended to be used as a common element by language designers. Target languages include, but are not limited to, XML languages. The intended audience for this document is Language designers, not the users of those Languages. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. - 1 - Table of Contents CURIE Syntax 1.0 This document is a Working Group Note. The XHTML2 Working Group's charter expired before it could complete work on this document. It is possible that the work will be continued by another group in the future. This version is based upon comments received during the Candidate Recommendation period, upon work done in the definition of [XHTML2 [p.17] ], and upon work done by the RDF-in-HTML Task Force, a joint task force of the Semantic Web Best Practices and Deployment Working Group and XHTML 2 Working Group.
    [Show full text]
  • Arxiv:2103.03851V2 [Cs.CR] 26 Apr 2021
    SoK: Cryptojacking Malware Ege Tekiner∗, Abbas Acar∗, A. Selcuk Uluagac∗, Engin Kirday, and Ali Aydin Selcukz ∗Florida International University, Email:fetekiner, aacar001, suluagacg@fiu.edu yNortheastern University, Email: [email protected] zTOBB University of Economics and Technology, Email: [email protected] Abstract—Emerging blockchain and cryptocurrency-based According to a recent Kaspersky report [2], 19% of technologies are redefining the way we conduct business the world’s population have bought some cryptocurrency in cyberspace. Today, a myriad of blockchain and cryp- before. However, buying cryptocurrency is not the only tocurrency systems, applications, and technologies are widely way of investing. Investors can also build mining pools to available to companies, end-users, and even malicious ac- generate new coins to make a profit. Profitability in mining tors who want to exploit the computational resources of regular users through cryptojacking malware. Especially operations also attracted attackers to this swiftly-emerging with ready-to-use mining scripts easily provided by service ecosystem. providers (e.g., Coinhive) and untraceable cryptocurrencies Cryptojacking is the act of using the victim’s com- (e.g., Monero), cryptojacking malware has become an in- putational power without consent to mine cryptocurrency. dispensable tool for attackers. Indeed, the banking indus- This unauthorized mining operation costs extra electricity try, major commercial websites, government and military consumption and decreases the victim host’s computa- servers (e.g., US Dept. of Defense), online video sharing platforms (e.g., Youtube), gaming platforms (e.g., Nintendo), tional efficiency dramatically. As a result, the attacker critical infrastructure resources (e.g., routers), and even transforms that unauthorized computational power into recently widely popular remote video conferencing/meeting cryptocurrency.
    [Show full text]
  • CURIE Syntax 1.0 CURIE Syntax 1.0
    CURIE Syntax 1.0 CURIE Syntax 1.0 CURIE Syntax 1.0 A syntax for expressing Compact URIs W3C Working Draft 2 April 2008 This version: http://www.w3.org/TR/2008/WD-curie-20080402 Latest version: http://www.w3.org/TR/curie Previous version: http://www.w3.org/TR/2007/WD-curie-20071126 Diff from previous version: curie-diff.html Editors: Mark Birbeck, webBackplane [email protected] Shane McCarron, Applied Testing and Technology, Inc. This document is also available in these non-normative formats: PostScript version, PDF version. The English version of this specification is the only normative version. Non-normative translations may also be available. Copyright © 2007-2008 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark and document use rules apply. Abstract The aim of this document is to outline a syntax for expressing URIs in a generic, abbreviated syntax. While it has been produced in conjunction with the XHTML 2 Working Group, it is not specifically targeted at use by XHTML Family Markup Languages. Note that the target audience for this document is Language designers, not the users of those Languages. Status of this Document This section describes the status of this document at the time of its publication. Other documents may supersede this document. A list of current W3C publications and the latest revision of this technical report can be found in the W3C technical reports index at http://www.w3.org/TR/. - 1 - Table of Contents CURIE Syntax 1.0 This document is a Working Draft of the CURIE Syntax specification. Originally this document was based upon work done in the definition of [XHTML2 [p.15] ], and work done by the RDF-in-HTML Task Force, a joint task force of the Semantic Web Best Practices and Deployment Working Group and XHTML 2 Working Group.
    [Show full text]
  • Efficient Peer-To-Peer Data Management
    Université Paris-Sud 11 Ecole Doctorale d’Informatique de Paris-Sud THÈSE Présentée en vue d’obtention du grade de DOCTEUR EN SCIENCES Discipline : Informatique par Spyros Zoupanos Sujet de la thèse : Efficient peer-to-peer data management (Gestion des données efficace en pair-à-pair) Directeurs de thèse : Serge ABITEBOUL et Ioana MANOLESCU Soutenue le 9 décembre 2009 devant le jury composé de : Rapporteurs : M. Bernd AMANN LIP6 - Univ. de Pierre et Marie Curie M. Vasilis VASSALOS Athens Univ. of Economics and Business Examinateurs : Mme. Geneviève JOMIER Univ. Paris-Dauphine M. Patrick VALDURIEZ INRIA Sophia Antipolis - Méditerranée et Univ. de Nantes Directeurs de thèse : M. Serge ABITEBOUL INRIA Saclay–Île-de-France et LRI, Université de Paris Sud Mme. Ioana MANOLESCU INRIA Saclay–Île-de-France et LRI, Université de Paris Sud Acknowledgements There were many people that stood by me during these three years and that I would like to thank. First of all, I would like to thank my parents who were always next to me, doing their best to support me in my studies and my life in general. Their help and advices are very important. I would also like to thank my girlfriend Ana who also supported me and was next to me during all the difficult moments of this thesis. I would like to thank my supervisor, Ioana Manolescu, for her help, guid- ance and support. She was always next to me whenever I needed her. She was next to me even during difficult times for her, like during her pregnancy. I believe that part of this work would not have existed if she had not been so passionate with our common work.
    [Show full text]
  • Controlling Access to XML Documents Over XML Native and Relational Databases
    Controlling Access to XML Documents over XML Native and Relational Databases Lazaros Koromilas, George Chinis, Irini Fundulaki, and Sotiris Ioannidis FORTH-ICS, Greece {koromil,gchinis,fundul,sotiris}@ics.forth.gr Abstract. In this paper we investigate the feasibility and efficiency of mapping XML data and access control policies onto relational and native XML databases for storage and querying. We developed a re-annotation algorithm that computes the XPath query which designates the XML nodes to be re-annotated when an update operation occurs. The algo- rithm uses XPath static analysis and our experimental results show that our re-annotation solution is on the average 7 times faster than annotat- ing the entire document. Keywords: XML, access control, XML to relational mapping. 1 Introduction XML has become an extremely popular format for publishing, exchanging and sharing data by users on the Web. Often this data is sensitive in nature and there- fore it is necessary to ensure selective access, based on access control policies. For this purpose flexible access control frameworks must be built that permit secure XML querying while at the same time respecting the access control poli- cies. Furthermore such a framework must be efficient enough to scale with the number of documents, users, and queries. In this paper we study how to control access to XML documents stored in a relational database and in a native XML store. Prior work proposed the use of RDBMS for storing and querying XML documents [1], to combine the flexibility and the usability of XML with the efficiency and the robustness of a relational schema.
    [Show full text]
  • Conference Proceedings
    XML LONDON 2014 CONFERENCE PROCEEDINGS UNIVERSITY COLLEGE LONDON, LONDON, UNITED KINGDOM JUNE 7–8, 2014 XML London 2014 – Conference Proceedings Published by XML London Copyright © 2014 Charles Foster ISBN 978-0-9926471-1-7 Table of Contents General Information. 7 Sponsors. 8 Preface. 9 Benchmarking XSLT Performance - Michael Kay and Debbie Lockett. 10 Streaming Design Patterns or: How I Learned to Stop Worrying and Love the Stream - Abel Braaksma. 24 From monolithic XML for print/web to lean XML for data: realising linked data for dictionaries - Matt Kohl, Sandro Cirulli and Phil Gooch. 53 XML Processing in Scala - Dino Fancellu and William Narmontas. 63 XML Authoring On Mobile Devices - George Bina. 76 Engineering a XML-based Content Hub for Enterprise Publishing - Elias Weingärtner and Christoph Ludwig. 83 A Visual Comparison Approach to Automated Regression Testing - Celina Huang. 88 Live XML Data - Steven Pemberton. 96 Schematron - More useful than you’d thought - Philip Fennell. 103 Linked Data in a .NET World - Kal Ahmed. 113 Frameless for XML - The Reactive Revolution - Robbert Broersma and Yolijn van der Kolk. 128 Product Usage Schemas - Jorge Luis Williams. 133 An XML-based Approach for Data Preprocessing of Multi-Label Classification Problems - Eduardo Corrêa Gonçalves and Vanessa Braganholo. 148 Using Abstract Content Model and Wikis to link Semantic Web, XML, HTML, JSON and CSV - Lech Rzedzicki. 152 JSON and XML: a new perspective - Eric van der Vlist. 157 MarkLogic- DataLeadershipEvent-A4-v01b.pdf 1 11/21/2013 3:29:18 PM Are you stuck xing YESTERDAY Or are you solving for TOMORROW? The world’s largest banks use MarkLogic to get a 360-degree view of the enterprise, reduce risk and operational costs, and provide better customer service.
    [Show full text]