Filamentous Bacteria Transport Electrons Over Centimetre Distances

Total Page:16

File Type:pdf, Size:1020Kb

Filamentous Bacteria Transport Electrons Over Centimetre Distances ARTICLE doi:10.1038/nature11586 Filamentous bacteria transport electrons over centimetre distances Christian Pfeffer1, Steffen Larsen2, Jie Song3, Mingdong Dong3, Flemming Besenbacher3, Rikke Louise Meyer2,3, Kasper Urup Kjeldsen1, Lars Schreiber1, Yuri A. Gorby4, Mohamed Y. El-Naggar5, Kar Man Leung4,5, Andreas Schramm1,2, Nils Risgaard-Petersen1 & Lars Peter Nielsen1,2 Oxygen consumption in marine sediments is often coupled to the oxidation of sulphide generated by degradation of organic matter in deeper, oxygen-free layers. Geochemical observations have shown that this coupling can be mediated by electric currents carried by unidentified electron transporters across centimetre-wide zones. Here we present evidence that the native conductors are long, filamentous bacteria. They abounded in sediment zones with electric currents and along their length they contained strings with distinct properties in accordance with a function as electron transporters. Living, electrical cables add a new dimension to the understanding of interactions in nature and may find use in technology development. Marine sediments become anoxic because oxygen is consumed by micro- identity to any cultured member of this family (Fig. 1d). Almost bial processes at the surface. Without available oxygen the microorgan- identical (. 99%) 16S rRNA sequences were detected in the suboxic isms living below the surface are supposed to depend on energetically less zones of three replicate cores (Fig. 1d), whereas they were absent in the favourable, anaerobic processes1. Recently, however, electric currents subjacent sulphidic zones. The filaments were identified and quan- have been found to directly connect oxygen reduction at the surface with tified in the sediments by fluorescence in situ hybridization (FISH) sulphide oxidation in the subsurface2, even when oxygen and sulphide with specific 16S rRNA-targeting probes (Fig. 1c). The length density are separated by more than 1 cm. Half of the sediment oxygen consump- of filaments was at least 117 m cm23 in the oxic and suboxic sediment tion can be driven by electrons transported from below2,3. The spatial zone and no filaments were detected in the deeper sulphidic zone. separation of oxidation and reduction processes invokes steep pH gra- With an average cell length of 3 mm, this length density corresponded dients leading to distinct dissolutions and precipitations of minerals3. to 4 3 107 cells cm23. Individual filaments were difficult to dissect out Microbial activity apparently drives the electrochemical half-reactions without breaking them, however, fragments up to 1.5 cm long were and the establishment of electron-conducting structures through the recorded, supporting that the bacteria had the length to span the sediment2. Bacterial nanowires, humus particles and semi-conductive entire suboxic zone. mineral grains are known to conduct electrons over nanometre to micro- metre distances, and alone or in combination they have been proposed to Desulfobulbaceae filaments qualify as conductors facilitate electron transport over centimetre distances in marine sedi- We demonstrated experimentally that electron transport through the ment2,4,5. Experimental tests and observations have failed to confirm suboxic zone was mediated by a coherent structure like a bacterial these proposals so far, and instead we have unexpectedly found long, filament and not by diffusive electron shuttles or casual contact filamentous bacteria structured like electric cables as reported below. between conductive elements. Evidence for solid conductors was found by passing a very thin tungsten wire (50 mm diameter) hori- Filamentous Desulfobulbaceae in electric sediment zontally through sediment 1–2 mm below the oxic–anoxic interface, When sulphidic defaunated marine sediment was incubated in the thus transiently interrupting the sediment continuum (see Sup- dark with overlying oxic sea water, the porewater chemistry gradually plementary Information for details). The cut resulted in an immediate developed in accordance with the establishment of an electron trans- and lasting halt of the electron transport, as indicated by a significant port mechanism that coupled oxygen reduction at the sediment sur- drop in oxygen consumption (Tukey’s test under analysis of variance face to sulphide oxidation in deeper anoxic layers (Fig. 1a). As (ANOVA); P , 0.001; alpha 5 0.05; n 5 27), attenuation of the pH described previously2,3, the electric coupling of spatially segregated peak in the oxic zone and contraction of the suboxic zone (Fig. 2), the processes was evident from (1) the presence of a distinct pH peak latter being similar to the response to momentary oxygen removal demonstrating aerobic proton consumption—an indicator of electro- observed in a previous study2. The role of bacteria in establishing a chemical oxygen reduction2,3—and (2) the formation of a 12–15-mm centimetre-long electron transport mechanism was further investi- deep suboxic zone separating sulphide oxidation from the associated gated in incubations, where filters with defined pore sizes were oxygen reduction2,3. When sediment from the top 20 mm was gently inserted into sediment cores to selectively exclude or permit vertical washed, tufts of entangled filamentous bacteria appeared (Fig. 1b). growth or migration of bacteria. Manifestations of long-distance elec- Reverse transcription, cloning and sequencing of 16S ribosomal RNA tron transport appeared in cores containing filter barriers with pore from dissected filaments identified them as novel members of the sizes of 2.0 mm (Fig. 3), but did not appear in cores containing filter deltaproteobacterial family Desulfobulbaceae with , 92% sequence barriers with pore sizes # 0.8 mm as indicated from significantly lower 1Center for Geomicrobiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark. 2Section for Microbiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark. 3Centre for DNA Nanotechnology (CDNA), Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark. 4Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA. 5Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA. 00 MONTH 2012 | VOL 000 | NATURE | 1 ©2012 Macmillan Publishers Limited. All rights reserved RESEARCH ARTICLE O2 consumption rate O2 consumption rate O2 consumption rate a 0 b (μmol cm–3 d–1) (μmol cm–3 d–1) (μmol cm–3 d–1) 02040600 2040600 204060 μ μ μ O2 concentration ( M) O2 concentration ( M) O2 concentration ( M) 0 100 200 300 400 0 100 200 300 400 0 100 200 300 400 5 a b c 0 0 0 1 1 1 2 2 2 10 O2 Before cutting 10–60 minutes after cutting 1 day after cutting 3 3 3 pH 5678 Σ Depth (mm) 5 5 H2S pH Depth (mm) 15 c 10 10 O2 consumption rate O2 concentration 15 pH 15 Σ H2 S concentration Sediment surfaces 20 200 μm 20 Cut line 20 5678 5678 pH pH 0 1020304050 0 1020304050 25 Σ μ Σ μ H2S ( M) H2S ( M) 678 pH Figure 2 | Biogeochemical impacts of filament cutting. a–c, Microprofiles of oxygen, sulphide and pH measured in undisturbed sediment cores (a), 10–60 min (b) and 1 day (c) after passing a thin tungsten wire (50 mm diameter) 0 100 200 300 horizontally through the sediment near the oxic–anoxic interface. Data are Σ μ [O2] or H2S ( M) presented as mean values 6 s.e.m. (oxygen and pH, n 5 9; sulphide, n 5 6). 5 μm Volume-specific rates of oxygen consumption rates (grey areas) are calculated from numerical modelling of the measured oxygen concentration profiles. Structure of Desulfobulbaceae filaments d Desulfobulbaceae DSB706 The multicellular Desulfobulbaceae filaments showed a unique struc- ture with uniform ridges running along their entire length (Fig. 5a). Desulfocapsa sulfexigens Transmission electron microscopy of thin sections showed two types Desulfonema Desulfurivibrio alkaliphilus of filaments that either had 15 ridges and were about 400 nm wide or magnum Desulfobacter had 17 ridges and were about 700 nm wide (Fig. 5b, c). Each ridge Desulfobulbus japonicus postgatei Desulfobulbus propionicus contained a filled, 70–100 nm wide channel between the cytoplasmic and the outer membrane. The adjacent cells within the filaments were Desulfovibrio Filament DNA separated by 200 nm wide gaps bridged by the ridge filling and tightly desulfuricans Filament RNA Sediment RNA wrapped up by the outer membrane, which seemed to encase the 0.10 Glass microsphere DNA entire filament (Fig. 5d, e). A similar collective outer membrane of ELF645 the filamentous multicellular cyanobacterium Anabaena sp. has been suggested to ease exchange of nutrients between cells without leakage Figure 1 | Filamentous Desulfobulbaceae in current-producing sediments. 6 2 22 to the surroundings . It is possible that the outer membrane of the a, Microprofiles of O2, pH and SH2S(SH2S 5 ([H2S] 1 [HS ] 1 [S ]). Desulfobulbaceae filaments has a similar function with respect to b, Tuft of filamentous Desulfobulbaceae collected from the sulphide-free zone. c, Filamentous Desulfobulbaceae identified by fluorescence in situ electrons. On the basis of all the morphological data, we propose that hybridization targeting 16S rRNA. Filament cells appear yellow from overlay of O2 consumption rate O2 consumption rate O2 consumption rate images obtained with probe DSB706 (labelled green) and probe ELF654 (μmol cm–3 d–1) (μmol cm–3 d–1) (μmol cm–3 d–1) (labelled red); other cells appear blue from DNA-staining with 49,6-diamidino- 020406002040600204060
Recommended publications
  • Supplementary Information for Microbial Electrochemical Systems Outperform Fixed-Bed Biofilters for Cleaning-Up Urban Wastewater
    Electronic Supplementary Material (ESI) for Environmental Science: Water Research & Technology. This journal is © The Royal Society of Chemistry 2016 Supplementary information for Microbial Electrochemical Systems outperform fixed-bed biofilters for cleaning-up urban wastewater AUTHORS: Arantxa Aguirre-Sierraa, Tristano Bacchetti De Gregorisb, Antonio Berná, Juan José Salasc, Carlos Aragónc, Abraham Esteve-Núñezab* Fig.1S Total nitrogen (A), ammonia (B) and nitrate (C) influent and effluent average values of the coke and the gravel biofilters. Error bars represent 95% confidence interval. Fig. 2S Influent and effluent COD (A) and BOD5 (B) average values of the hybrid biofilter and the hybrid polarized biofilter. Error bars represent 95% confidence interval. Fig. 3S Redox potential measured in the coke and the gravel biofilters Fig. 4S Rarefaction curves calculated for each sample based on the OTU computations. Fig. 5S Correspondence analysis biplot of classes’ distribution from pyrosequencing analysis. Fig. 6S. Relative abundance of classes of the category ‘other’ at class level. Table 1S Influent pre-treated wastewater and effluents characteristics. Averages ± SD HRT (d) 4.0 3.4 1.7 0.8 0.5 Influent COD (mg L-1) 246 ± 114 330 ± 107 457 ± 92 318 ± 143 393 ± 101 -1 BOD5 (mg L ) 136 ± 86 235 ± 36 268 ± 81 176 ± 127 213 ± 112 TN (mg L-1) 45.0 ± 17.4 60.6 ± 7.5 57.7 ± 3.9 43.7 ± 16.5 54.8 ± 10.1 -1 NH4-N (mg L ) 32.7 ± 18.7 51.6 ± 6.5 49.0 ± 2.3 36.6 ± 15.9 47.0 ± 8.8 -1 NO3-N (mg L ) 2.3 ± 3.6 1.0 ± 1.6 0.8 ± 0.6 1.5 ± 2.0 0.9 ± 0.6 TP (mg
    [Show full text]
  • Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M
    Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, R. Guyoneaud To cite this version: Yannick Colin, M. Goñi-Urriza, C. Gassie, E. Carlier, M. Monperrus, et al.. Distribution of Sulfate- Reducing Communities from Estuarine to Marine Bay Waters. Microbial Ecology, Springer Verlag, 2017, 73 (1), pp.39-49. 10.1007/s00248-016-0842-5. hal-01499135 HAL Id: hal-01499135 https://hal.archives-ouvertes.fr/hal-01499135 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Microb Ecol (2017) 73:39–49 DOI 10.1007/s00248-016-0842-5 MICROBIOLOGY OF AQUATIC SYSTEMS Distribution of Sulfate-Reducing Communities from Estuarine to Marine Bay Waters Yannick Colin 1,2 & Marisol Goñi-Urriza1 & Claire Gassie1 & Elisabeth Carlier 1 & Mathilde Monperrus3 & Rémy Guyoneaud1 Received: 23 May 2016 /Accepted: 17 August 2016 /Published online: 31 August 2016 # Springer Science+Business Media New York 2016 Abstract Estuaries are highly dynamic ecosystems in which gradient. The concentration of cultured sulfidogenic microor- freshwater and seawater mix together.
    [Show full text]
  • Advance View Proofs
    Microbes Environ. Vol. 00, No. 0, 000-000, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18153 Stratification of Sulfur Species and Microbial Community in Launched Marine Sediment by an Improved Sulfur-Fractionation Method and 16S rRNA Gene Sequencing HIDEYUKI IHARA1,2, TOMOYUKI HORI2*, TOMO AOYAGI2, HIROKI HOSONO3†, MITSURU TAKASAKI4, and YOKO KATAYAMA3††* 1United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; 2Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16–1 Onogawa, Tsukuba, Ibaraki 305–8569, Japan; 3Institute of Agriculture, Tokyo University of Agriculture and Technology, 3–5–8 Saiwai-cho, Fuchu, Tokyo 183–8509, Japan; and 4Department of Food and Environmental Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, 1 Shinmito, Minamisakai, Ishinomaki, Miyagi 986–8580, Japan (Received November 10, 2018—Accepted March 6, 2019—Published online June 11, 2019) With a focus on marine sediment launched by the tsunami accompanying the Great East Japan Earthquake, we examined the vertical (i.e., depths of 0–2, 2–10, and 10–20 mm) profiles of reduced inorganic sulfur species and microbial community using a newly improved sulfur-fractionation method and 16S rRNA gene sequencing. S0 accumulated at the largest quantities at a depth of 2–10 mm, while the reduced forms of sulfur, such as iron(II) sulfide and pyrite, were abundant below 2 mm of the sediment. Operational taxonomic units (OTUs) related to chemolithotrophically sulfur-oxidizing Sulfurimonas denitrificans and Sulfurimonas autotrophica were only predominant at 2–10 mm, suggesting the involvement of these OTUs in the oxidation of sulfide to S0.
    [Show full text]
  • Full Text in Pdf Format
    Vol. 648: 79–94, 2020 MARINE ECOLOGY PROGRESS SERIES Published August 27 https://doi.org/10.3354/meps13421 Mar Ecol Prog Ser OPEN ACCESS Microbiome analyses and presence of cable bacteria in the burrow sediment of Upogebia pugettensis Cheng Li1,*, Clare E. Reimers1, John W. Chapman2 1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA 2Department of Fisheries and Wildlife, Oregon State University, Hatfield Marine Science Center, 2030 SE Marine Science Dr. Newport, Oregon 97365, USA ABSTRACT: We utilized methods of sediment cultivation, catalyzed reporter deposition− fluorescence in situ hybridization, scanning electron microscopy, and 16s rRNA gene sequencing to investigate the presence of novel filamentous cable bacteria (CB) in estuarine sediments bioturbated by the mud shrimp Upogebia pugettensis Dana and also to test for trophic connections between the shrimp, its commensal bivalve (Neaeromya rugifera), and the sediment. Agglutinated sediments from the linings of shrimp burrows exhibited higher abundances of CB compared to surrounding suboxic and anoxic sediments. Furthermore, CB abundance and activity increased in these sedi- ments when they were incubated under oxygenated seawater. Through core microbiome analy- sis, we found that the microbiomes of the shrimp and bivalve shared 181 taxa with the sediment bacterial community, and that these shared taxa represented 17.9% of all reads. Therefore, bac- terial biomass in the burrow sediment lining is likely a major food source for both the shrimp and the bivalve. The biogeochemical conditions created by shrimp burrows and other irrigators may help promote the growth of CB and select for other dominant members of the bacterial commu- nity, particularly a variety of members of the Proteobacteria.
    [Show full text]
  • Microbial Corrosion of C1018 Mild Steel by a Halotolerant Consortium of Sulfate Reducing Bacteria Isolated from an Egyptian Oil Field
    111 Egypt. J. Chem. Vol. 63, No. 4, pp.1461-1468 (2020) Egyptian Journal of Chemistry http://ejchem.journals.ekb.eg/ Microbial Corrosion of C1018 Mild Steel by A Halotolerant Consortium of Sulfate Reducing Bacteria Isolated from an Egyptian Oil Field Wafaa A. Koush*1, Ahmed Labena1, Tarek M Mohamed2, Hany Elsawy2 and Laila A. Farahat1 1Process Design & Development Department, Egyptian Petroleum Research Institute, Cairo, Egypt. 2Faculty of Science, Tanta University, Tanta, Egypt. N THIS study, a consortium of halotolerant sulfate reducing bacteria (SRB) was obtained from Ia water sample collected from an Egyptian oil-field. North Bahreyia Petroleum Company (NORPETCO) is one of the petroleum companies that suffer from severe corrosion. The present study aim to investigate the microbial structures of this consortium and their potential contributed to microbial corrosion. Dissimilatory sulfite reductase dsrAB gene sequences analysis indicated that the mixed bacterial consortium contained two main phylotypes: members of the Proteobacteria (Desulfomicrobium sp., Desulforhopalus sp., and Desulfobulbus sp.) and Firmicutes (Desulfotomaculum sp.). Mild steel C1018 coupons were incubated in the presence of SRB consortium for a period of 35 days, the evolution of corrosion was studied using weight loss and dissolved sulfide production of SRB consortium. Results indicated that, the corrosion rate in the presences of SRB was approximately 15 times of that for the control. Furthermore, sessile cells (biofilm) and subsequent corrosion products that developed were characterized by scanning electron microscope coupled with energy dispersive X-ray spectroscopy (EDX). Keywords: Microbial corrosion, Sulfate-reducing bacteria, Dissimilatory sulfite reductase; dsrAB, dissolved sulfide. Introduction reducing bacteria (SRB), the genes encoding Dsr are commonly organized in a dsrAB operon, Metal corrosion is considered as a major problem where dsrA and dsrB encode the α and β -subunits affecting oil and gas industry that leading for of Dsr, respectively [3].
    [Show full text]
  • Phototropic Sulfur and Sulfate-Reducing Bacteria in the Chemocline of Meromictic Lake Cadagno, Switzerland
    J. Limnol., 63(2): 161-170, 2004 Phototropic sulfur and sulfate-reducing bacteria in the chemocline of meromictic Lake Cadagno, Switzerland Mauro TONOLLA1)*, Sandro PEDUZZI1,2), Antonella DEMARTA1), Raffaele PEDUZZI1) and Dittmar HAHN2) 1)Cantonal Institute of Microbiology, Via Mirasole 22A, CH-6500 Bellinzona, Switzerland 2)Dept. of Chemical Engineering, New Jersey Institute of Technology (NJIT), and Dept. of Biological Sciences, Rutgers University, 101 Warren Street, Smith Hall 135, Newark, NJ, USA *e-mail corresponding author: [email protected] ABSTRACT Lake Cadagno, a crenogenic meromictic lake located in the catchment area of a dolomite vein rich in gypsum in the Piora Valley in the southern Alps of Switzerland, is characterized by a compact chemocline with high concentrations of sulfate, steep gradients of oxygen, sulfide and light and a turbidity maximum that correlates to large numbers of bacteria (up to 107 cells ml-1). The most abun- dant taxa in the chemocline are large- and small-celled purple sulfur bacteria, which account for up to 35% of all bacteria, and sul- fate-reducing bacteria that represent up to 23% of all bacteria. Depending on the season, as much as 45% of all bacteria in the chemocline are associated in aggregates consisting of different populations of small-celled purple sulfur bacteria of the genus Lam- procystis (up to 35% of all bacteria) and sulfate-reducing bacteria of the family Desulfobulbaceae (up to 12% of all bacteria) that are almost completely represented by bacteria closely related to Desulfocapsa thiozymogenes. Their association in aggregates is re- stricted to small-celled purple sulfur bacteria of the genus Lamprocystis, but not obligate since non-associated cells of bacteria re- lated to D.
    [Show full text]
  • Desulfocapsa Sulfexigens
    Standards in Genomic Sciences (2013) 8:58-68 DOI:10.4056/sigs.3777412 Complete genome sequence of Desulfocapsa sulfexigens, a marine deltaproteobacterium specialized in disproportionating inorganic sulfur compounds Kai Waldemar Finster1, Kasper Urup Kjeldsen2, Michael Kube3, Richard Reinhardt3, Marc Mussmann4, Rudolf Amann4 and Lars Schreiber2 1Bioscience-Microbiology Section, Aarhus University, Ny Munkegade 116, Dk-8000 Aarhus C, Denmark 2Center for Geomicrobiology, Bioscience, Ny Munkegade 116, Dk-8000 Aarhus C, Denmark 3MPI -Molecular Genetics. Ihnestrasse 63-73. D-14195 Berlin-Dahlem. Germany 4MPI -Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany Keywords: Sulfur-cycle, thiosulfate, sulfite, sulfur disproportionation, marine, sediment Desulfocapsa sulfexigens SB164P1 (DSM 10523) belongs to the deltaproteobacterial family Desulfobulbaceae and is one of two validly described members of its genus. This strain was selected for genome sequencing, because it is the first marine bacterium reported to thrive on the dispropor- tionation of elemental sulfur, a process with a unresolved enzymatic pathway in which elemental sulfur serves both as electron donor and electron acceptor. Furthermore, in contrast to its phylogenetically closest relatives, which are dissimilatory sulfate-reducers, D. sulfexigens is unable to grow by sulfate reduction and appears metabolically specialized in growing by disproportionating elemental sulfur, sulfite or thiosulfate with CO as the sole carbon source. The genome of D. 2 sulfexigens contains the set of genes that is required for nitrogen fixation. In an acetylene assay it could be shown that the strain reduces acetylene to ethylene, which is indicative for N-fixation. The circular chromosome of D. sulfexigens SB164P1 comprises 3,986,761 bp and harbors 3,551 protein- coding genes of which 78% have a predicted function based on auto-annotation.
    [Show full text]
  • Inducing the Attachment of Cable Bacteria on Oxidizing Electrodes Cheng Li1, Clare E
    Inducing the Attachment of Cable Bacteria on Oxidizing Electrodes Cheng Li1, Clare E. Reimers1, and Yvan Alleau1 1College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA 5 Correspondence to: Cheng Li ([email protected]) Abstract. Cable bacteria (CB) are multicellular, filamentous bacteria within the family of Desulfobulbaceae that transfer electrons longitudinally from cell to cell to couple sulfide oxidation and oxygen reduction in surficial aquatic sediments. In the present study, electrochemical reactors that contain natural sediments are introduced as a tool for investigating the growth of CB on electrodes poised at an oxidizing potential. Our experiments utilized sediments 10 from Yaquina Bay, Oregon, USA, and we include new phylogenetic analyses of separated filaments to confirm that CB from this marine location cluster with the genus, Candidatus Electrothrix. These CB may belong to a distinctive lineage, however, because their filaments contain smaller cells and a lower number of longitudinal ridges compared to cables described from other locales. Results of a 135-day bioelectrochemical reactor experiment confirmed that these CB can migrate out of reducing sediments and grow on oxidatively poised electrodes suspended in anaerobic 15 seawater. CB filaments and several other morphologies of Desulfobulbaceae cells were observed by scanning electron microscopy and fluorescence in situ hybridization on electrode surfaces, although in low densities and often obscured by mineral precipitation. These findings provide new information to suggest what conditions will induce CB to perform electron donation to an electrode surface, further informing future experiments to culture CB apart from a sediment matrix. 20 1 Introduction Long distance electron transfer (LDET) is a mechanism used by certain microorganisms to generate energy through the transfer of electrons over distances greater than a cell-length.
    [Show full text]
  • Ecophysiology of Sulfate-Reducing Bacteria and Syntrophic Communities in Marine Anoxic Sediments” Derya Özüölmez Wageningen, 12 September 2017
    Propositions 1. Prolonged incubation is a key strategy toward the enrichment of marine syntrophs. (this thesis) 2. Hydrogen-consuming methanogens can effectively compete with hydrogen- consuming sulfate reducers even at high sulfate concentration. (this thesis) 3. The plastic-eating wax worm, Galleria mellonella, can help cleaning up existing plastic mass (Bombelli et al. 2017, Current Biology 27(8): 292-293), but the real solution to environmental pollution still relies on shifting from disposable plastics to reusable and biodegradable materials. 4. With the discovery of abundant molecular hydrogen in Enceladus’ salty ocean (Waite et al. (2017) Science 356:6334, 155-159) extraterrestrial life in our solar system has become highly probable, and should shift our life-hunting focus from distant stars to our nearby neighbors. 5. With the "Help me to do it myself" motto, the Montessori education leads children to grow into mature, creative and self-confident adults. 6. Nothing is impossible as long as the dream is held close to the heart and patience and persistence are applied for the accomplishment. Propositions belonging to the PhD thesis entitled: “Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments” Derya Özüölmez Wageningen, 12 September 2017 Ecophysiology of sulfate-reducing bacteria and syntrophic communities in marine anoxic sediments Derya Özüölmez Thesis committee Promotor Prof. Dr Alfons J.M. Stams Personal chair at the Laboratory of Microbiology Wageningen University & Research Co-promotor Dr Caroline M. Plugge Associate professor, Laboratory of Microbiology Wageningen University & Research Other members Prof. Dr Tinka Murk, Wageningen University & Research Prof. Dr Gerard Muyzer, University of Amsterdam, The Netherlands Prof.
    [Show full text]
  • Complete Genome Sequence of Desulfurivibrio Alkaliphilus Strain
    Melton et al. Standards in Genomic Sciences (2016) 11:67 DOI 10.1186/s40793-016-0184-4 EXTENDED GENOME REPORT Open Access Complete genome sequence of Desulfurivibrio alkaliphilus strain AHT2T,a haloalkaliphilic sulfidogen from Egyptian hypersaline alkaline lakes Emily Denise Melton1, Dimitry Y. Sorokin2,3, Lex Overmars1, Olga Chertkov4, Alicia Clum5, Manoj Pillay6, Natalia Ivanova5, Nicole Shapiro5, Nikos C. Kyrpides5,7, Tanja Woyke5, Alla L. Lapidus8 and Gerard Muyzer1* Abstract Desulfurivibrio alkaliphilus strain AHT2T is a strictly anaerobic sulfidogenic haloalkaliphile isolated from a composite sediment sample of eight hypersaline alkaline lakes in the Wadi al Natrun valley in the Egyptian Libyan Desert. D. alkaliphilus AHT2T is Gram-negative and belongs to the family Desulfobulbaceae within the Deltaproteobacteria. Here we report its genome sequence, which contains a 3.10 Mbp chromosome. D. alkaliphilus AHT2T is adapted to survive under highly alkaline and moderately saline conditions and therefore, is relevant to the biotechnology industry and life under extreme conditions. For these reasons, D. alkaliphilus AHT2T was sequenced by the DOE Joint Genome Institute as part of the Community Science Program. Keywords: Deltaproteobacteria, Soda lake, Sediment, Sulfur cycle, Sulfur disproportionation Abbreviations: acsA, Carbon monoxide dehydrogenase; acsB, Acetyl-CoA synthase; acsC, Corrinoid iron-sulfur protein large subunit; Formate DH, Formate dehydrogenase; fhs,Formyl-H4-folate synthase; folD,Formyl-H4folate cyclohydrolase/methylene-H4folate dehydrogenase; mthfr/acsD,Methylene-H4folate reductase/corrinoid iron-sulfur protein small subunit fusion; pulE, Type II secretory pathway ATPase PulE; THF, Tetrahydrofolate; WL, Wood Ljungdahl Introduction understanding how haloalkaliphilic organisms survive Soda lakes are extreme environments with high salinity and thrive under dual extreme conditions.
    [Show full text]
  • Inducing the Attachment of Cable Bacteria on Oxidizing Electrodes
    Biogeosciences, 17, 597–607, 2020 https://doi.org/10.5194/bg-17-597-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Inducing the attachment of cable bacteria on oxidizing electrodes Cheng Li, Clare E. Reimers, and Yvan Alleau College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, USA Correspondence: Cheng Li ([email protected]) Received: 22 August 2019 – Discussion started: 2 September 2019 Revised: 17 December 2019 – Accepted: 14 January 2020 – Published: 6 February 2020 Abstract. Cable bacteria (CB) are multicellular, filamentous membrane cytochromes, and/or mineral nanoparticles to bacteria within the family of Desulfobulbaceae that transfer connect extracellular electron donors and acceptors (Li et al., electrons longitudinally from cell to cell to couple sulfide ox- 2017; Lovley, 2016). Recently, a novel type of LDET ex- idation and oxygen reduction in surficial aquatic sediments. hibited by filamentous bacteria in the family of Desulfobul- In the present study, electrochemical reactors that contain baceae was discovered in the uppermost centimeters of var- natural sediments are introduced as a tool for investigating ious aquatic, but mainly marine, sediments (Malkin et al., the growth of CB on electrodes poised at an oxidizing poten- 2014; Trojan et al., 2016). These filamentous bacteria, also tial. Our experiments utilized sediments from Yaquina Bay, known as “cable bacteria” (CB), electrically connect two spa- Oregon, USA, and we include new phylogenetic analyses of tially separated redox half reactions and generate electrical separated filaments to confirm that CB from this marine loca- current over distances that can extend to centimeters, which tion cluster with the genus “Candidatus Electrothrix”.
    [Show full text]
  • Desulfoprunum Benzoelyticum Gen. Nov., Sp. Nov., a Gram-Negative Benzoate-Degrading Sulfate-Reducing Bacterium Isolated From
    Erschienen in: International Journal of Systematic and Evolutionary Microbiology ; 65 (2015), 1. - S. 77-84 Desulfoprunum benzoelyticum gen. nov., sp. nov., a Gram-stain-negative, benzoate-degrading, sulfate-reducing bacterium isolated from a wastewater treatment plant Madan Junghare1,2 and Bernhard Schink2 1Konstanz Research School of Chemical Biology, University of Konstanz, Konstanz D-78457, Germany 2Department of Biology, Microbial Ecology, University of Konstanz, Konstanz D-78457, Germany A strictly anaerobic, mesophilic, sulfate-reducing bacterium, strain KoBa311T, isolated from the wastewater treatment plant at Konstanz, Germany, was characterized phenotypically and phylogenetically. Cells were Gram-stain-negative, non-motile, oval to short rods, 3–5 mm long and 0.8–1.0 mm wide with rounded ends, dividing by binary fission and occurring singly or in pairs. The strain grew optimally in freshwater medium and the optimum temperature was 30 6C. Strain KoBa311T showed optimum growth at pH 7.3 7.6. Organic electron donors were oxidized completely to carbon dioxide concomitant with sulfate reduction to sulfide. At excess substrate supply, substrates were oxidized incompletely and acetate (mainly) and/or propionate accumulated. The strain utilized short-chain fatty acids, alcohols (except methanol) and benzoate. Sulfate and DMSO were used as terminal electron acceptors for growth. The genomic DNA G+C content was 52.3 mol% and the respiratory quinone was menaquinone MK-5 (V-H2). The major fatty acids were C16 : 0,C16 : 1v7c/v6c and C18 : 1v7c. Phylogenetic analysis based on 16S rRNA gene sequences placed strain KoBa311T within the family Desulfobulbaceae in the class Deltaproteobacteria. Its closest related bacterial species on the basis of the distance matrix were Desulfobacterium catecholicum DSM 3882T (93.0 % similarity), Desulfocapsa thiozymogenes (93.1 %), Desulforhopalus singaporensis (92.9 %), Desulfopila aestuarii (92.4 %), Desulfopila inferna JS_SRB250LacT (92.3 %) and Desulfofustis glycolicus (92.3 %).
    [Show full text]