Prepared for submission to JHEP The FZZ duality with boundary Thomas Creutzig,a Yasuaki Hikidab and Peter B. Rønnec aDepartment of Physics and Astronomy, University of North Carolina, Phillips Hall, CB 3255, Chapel Hill, NC 27599-3255, USA bDepartment of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi, Yokohama 223-8521, Japan cNational Institute for Theoretical Physics and Centre for Theoretical Physics, University of the Witwatersrand, Wits, 2050, South Africa E-mail:
[email protected],
[email protected],
[email protected] Abstract: The Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality relates Witten’s cigar model to sine-Liouville theory. This duality was proven in the path integral formulation and extended to the case of higher genus closed Riemann surfaces by Schomerus and one of the authors. In this note we further extend the duality to the case with boundary. Specif- ically, we relate D1-branes in the cigar model to D2-branes in the sine-Liouville theory. In particular, the boundary action for D2-branes in the sine-Liouville theory is constructed. We also consider the fermionic version of the FZZ duality. This duality was proven as a mirror symmetry by Hori and Kapustin, but we give an alternative proof in the path integral formulation which directly relates correlation functions. Also here the case with boundary is investigated and the results are consistent with those for branes in = 2 N super Liouville field theory obtained by Hosomichi. Keywords: Conformal Field Models