John von Neumann Institute for Computing Quantum Monte Carlo Methods on Lattices: The Determinantal Approach Fakher F. Assaad published in Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes, J. Grotendorst, D. Marx, A. Muramatsu (Eds.), John von Neumann Institute for Computing, Julich,¨ NIC Series, Vol. 10, ISBN 3-00-009057-6, pp. 99-156, 2002. c 2002 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/volume10 Quantum Monte Carlo Methods on Lattices: The Determinantal Approach Fakher F. Assaad 1 Institut fur¨ Theoretische Physik III, Universitat¨ Stuttgart Pfaffenwaldring 57, 70550 Stuttgart, Germany 2 Max Planck Institute for Solid State Research Heisenbergstr. 1, 70569, Stuttgart, Germany E-mail:
[email protected] We present a review of the auxiliary field (i.e. determinantal) Quantum Monte Carlo method applied to various problems of correlated electron systems. The ground state projector method, the finite temperature approach as well as the Hirsch-Fye impurity algorithm are described in details. It is shown how to apply those methods to a variety of models: Hubbard Hamiltonians, periodic Anderson model, Kondo lattice and impurity problems, as well as hard core bosons and the Heisenberg model. An introduction to the world-line method with loop upgrades as well as an appendix on the Monte Carlo method is provided.