Unification of Two Dimensional Special and General Relativity by Means of Hypercomplex Numbers

Total Page:16

File Type:pdf, Size:1020Kb

Unification of Two Dimensional Special and General Relativity by Means of Hypercomplex Numbers J-' %0O26q tmmmmmsmmsmmm ISSN/'1120 *5563 Dipartimento Energia ENEA-RT-ERG--95-// UNIFICATION OF TWO DIMENSIONAL SPECIAL AND GENERAL RELATIVITY BY MEANS OF HYPERCOMPLEX NUMBERS FRANCESCO CATONI Centro Ricerche Casaccia, Roma kv -%-* waJ? * Ik Lissa Lia& DiiC 0 41936 USTI ## 8mN IF IMS mWEM IS UKUWfEI FStoH SAU£ nimiTES 'ftg RT/ERG/95/11 ENTE PER LE NUOVE TECNOLOGIE, L'ENERGIA E L’AMBIENTE Dipartimento Energia UNIFICATION OF TWO DIMENSIONAL SPECIAL AND GENERAL RELATIVITY BY MEANS OF HYPERCOMPLEX NUMBERS FRANCESCO CATONI Centro Ricerche Casaccia, Roma RT/ERG/95/11 Testo pervenuto nell’ottobre 1995 I contenuti tecnico-scientifici dei rapporti tecnici dell'ENEA rispecchiano I'opinione degli autori e non necessariamente quella dell'Ente. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document ABSTRACT An extension of complex numbers arid functions of complex variable is proposed through the properties of the related finite and infinite Lie groups. This is accomplished by hypercomplex number systems following the elementary algebra rules. More precisely, the functions of such sys­ tems define an infinite Lie group. The functional transformations of a particular two dimensional hyper­ complex number system, holding the wave equation invariant (and, then, the speed of light constant) are considered as a generalization of Lorentz group describing accelerated frames. According to General Relativity, such frames can represent physical fields. A physical interpretation of a theorem due to Bianchi, by which hyper­ complex number systems are related to flat Riemann spaces, is shown to connect these systems to General Relativity. The investigations by generalized Special Relativity and by General Rel­ ativity give the same expected results allowing to speak of unification. [Special Relativity , G eneral Relativity , G raded Lie G roups , Hypercomplex Functions PACS numbers 03.30, 04.20, 02.20.T] RIASSUNTO Unificazione in due dimension! della Relativita Ristretta con la Generate Le proprieta di gruppo delle variaoili complesse e delle loro funzioni sono estese ai sistemi di numeri ipercomplessi che seguono le regole dell’algebra elementare. Le trasformazioni funzionali coilegate ad un particolare sistema a due unita lasciano invariante l’equazione delle onde e possono, quindi, essere considerate come una estensione delle trasformazioni di Lorentz in grade di descrivere i campi. Un’interpretazione fisica di un teorema dovuto a Bianchi, che collega i sistemi di numeri ipercomplessi agli spazi con curvatura nulla, permette di collegare questi sistemi alia Relativita Generate. I risultati ottenuti mediante la Relativita Ristretta e la Generale coinci- dono e questo permette di parlare di Unificazione. 3 Contents 1 Introduction 7 2 Hypercomplex variables and Lie groups 7 3 Unification of Special and General Relativity 11 A Lie groups and hypercomplex number systems 14 B The functions of hypercomplex variables 16 5 1 Introduction The wide use of complex numbers, far behind their algebraic introduction as square root of negative numbers, always stimulated their extensions. The most important ones are probably the N dimensional space complexification and Hamil­ ton’s quaternions. The former plays an important role in mathematical physics [1, 2]; the latters, though introduced [3, 4] from an algebraic point of view, have been used in a wider meaning [5]. Unfortunately, quaternions do not satisfy the product commutative property that is fundamental for the kind of extension of complex numbers we will treat ahead. In particular, complex numbers and functions of a complex variable can be related to finite and infinite Lie group and an extension preserving the group properties will be argued. This will be shown for the so called hyper complex numbers that follow the elementary algebra rules (associative, distributive and commutative) for the sum as well as for the product. A geometrical and physical interpretation of this extension will be given and a unification of two dimensional Special and General Relativity will be proposed as a first application. In fact, as well known, the Lorentz transformation of Special Relativity is linear and represents a change of inertial frames. It will be considered a generalization by functional transformations that keep the speed of light constant. If we refer space-time to cartesian coordinates the inertial motion is represented by straight lines and, by the linear Lorentz transformation, these lines remain straight. From a geo­ metrical point of view a functional transformation represents a transformation of curvilinear coordinates by which the straight lines in one reference frame become curved lines in the other. From a physical point of view, these lines represent a non inertial motion, i.e. a motion in a field. The question arising is whether such fields have a physical meaning: this will be proved in the two-dimensional case (one spatial coordinate and time). This can lead to a generalized Special Relativity that will be extended to General Relativity. As most reference books on traditional Lie groups and hypercomplex number systems have been neither reprinted nor translated from the original editions, some basic concepts on these subjects are reported in appendix A, that it is advisable to read before sec. 2. In Sec. 2 a geometrical and physical interpretation of the relation between finite Lie groups and hypercomplex systems is proposed and applied to the two dimensional numbers; then, the infinite group properties of functions of complex and hypercomplex variables (and their physical interpretation) are shown. In the last section (3) a first application of these ideas is described. The two dimensional Special Relativity is generalized by an infinite group of functions of hypercomplex variable and the General Relativity is related to hypercomplex systems by a physical interpretation of a theorem due to Bianchi. Both approches lead to the same result. 2 Hypercomplex variables and Lie groups The definitions of traditional Lie groups [6, 7] and hypercomplex systems [8, 9] (and their relations) are recalled in App. A. Let us see now their geometrical and physical meaning. Complex numbers are known to be used for the representation of plane vectors and the related linear algebra [10]: z =■ x + iy is interpreted as a vector of components x and y, 7 and versors 1 and i. In vector form, it can be written z — la; + iy, where x and y are the current coordinates of the plane. In order to show how this is related to finite group properties of complex numbers, consider the multiplicative group (18) that can be expressed as z\ = az = (or + + iy) and, in the familiar linear algebra, as: ( X\ \ _ ( Or ~di \ ( X \ \y\ ) V ar j \yj The constant a play the role of an operator representing an orthogonal axis rotation with a homogeneous dilatation (homothety). These are the permissible vector transformations in a Euclidean plane. Then we can use complex numbers to describe plane vector algebra because the vectors are, usually, represented in an orthogonal coordinate system and the complex number multiplica­ tive group is, with unitary dilatation, the Euclidean one. It is known that the multiplicative group is usually studied in complex analysis by a polar coordinate system. The reason is that polar coordinates are equivalent to complex exponential transformations and so on a loga­ rithmic plane the multiplication is transformed into a sum. The exponential transformation will be the best way to study the multiplicative group for all hypercomplex systems. In order to study the multiplicative groups (appendix A) of other hypercomplex numbers, Klein’s relation (“Erlangen Program”) [11] between “geometries” and continuous groups needs now to be recalled. In fact all the geometries (elementary, projective, etc.) are based on an equivalence principle. All transformations producing equivalent forms can be regarded as a group. Klein’s idea was to consider geometries as theories of related group invariants. This idea can be inverted and applied to hypercomplex systems because (18) is a linear transformation and most geometries are related to linear transformations [11]. The general linear transformation y1 = cjgX13, with the only condition |c$| / 0, defines the N2 parameter affine geometry whose invariant is the quadratic form of two point distance. The allowed transformations are equivalent to arbitrary changes of coordinate axes. To assume the Pythagorean form of the distance as invariant, the allowed transformations must be the orthogonal ones, the parameters become N(N—1)/2 and the_Euclidean geometry is obtained. Note that adding the N parameters of the translational group, the N(N + l)/2 resulting number of parameters can be related to all of the allowed movements in a homogeneous space. It is now interesting to compare, for various dimensions (N) the parameter number of Euclidean geometry (PEG) with the one related to the geometry associable to multiplicative groups of hypercomplex systems (PHG): PHG[N} 2 3 4 5 6 PEG[N(N - l)/2] 1 3 6 10 15 The parameter number is the same only for N = 3 but, as will be shown ahead, there is no equivalence between the two “geometries”. For N > 3 the PHG shows less permissible transformations, thus representing the allowed movements in an unomogeneous space. Let us now study what “geometry” can be related to the “hyperbolic number ” system (see App. A). From now on, the second unit of these numbers will be
Recommended publications
  • A Mathematical Derivation of the General Relativistic Schwarzschild
    A Mathematical Derivation of the General Relativistic Schwarzschild Metric An Honors thesis presented to the faculty of the Departments of Physics and Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors Scholar and Honors-in-Discipline Programs for a Bachelor of Science in Physics and Mathematics by David Simpson April 2007 Robert Gardner, Ph.D. Mark Giroux, Ph.D. Keywords: differential geometry, general relativity, Schwarzschild metric, black holes ABSTRACT The Mathematical Derivation of the General Relativistic Schwarzschild Metric by David Simpson We briefly discuss some underlying principles of special and general relativity with the focus on a more geometric interpretation. We outline Einstein’s Equations which describes the geometry of spacetime due to the influence of mass, and from there derive the Schwarzschild metric. The metric relies on the curvature of spacetime to provide a means of measuring invariant spacetime intervals around an isolated, static, and spherically symmetric mass M, which could represent a star or a black hole. In the derivation, we suggest a concise mathematical line of reasoning to evaluate the large number of cumbersome equations involved which was not found elsewhere in our survey of the literature. 2 CONTENTS ABSTRACT ................................. 2 1 Introduction to Relativity ...................... 4 1.1 Minkowski Space ....................... 6 1.2 What is a black hole? ..................... 11 1.3 Geodesics and Christoffel Symbols ............. 14 2 Einstein’s Field Equations and Requirements for a Solution .17 2.1 Einstein’s Field Equations .................. 20 3 Derivation of the Schwarzschild Metric .............. 21 3.1 Evaluation of the Christoffel Symbols .......... 25 3.2 Ricci Tensor Components .................
    [Show full text]
  • Hypercomplex Algebras and Their Application to the Mathematical
    Hypercomplex Algebras and their application to the mathematical formulation of Quantum Theory Torsten Hertig I1, Philip H¨ohmann II2, Ralf Otte I3 I tecData AG Bahnhofsstrasse 114, CH-9240 Uzwil, Schweiz 1 [email protected] 3 [email protected] II info-key GmbH & Co. KG Heinz-Fangman-Straße 2, DE-42287 Wuppertal, Deutschland 2 [email protected] March 31, 2014 Abstract Quantum theory (QT) which is one of the basic theories of physics, namely in terms of ERWIN SCHRODINGER¨ ’s 1926 wave functions in general requires the field C of the complex numbers to be formulated. However, even the complex-valued description soon turned out to be insufficient. Incorporating EINSTEIN’s theory of Special Relativity (SR) (SCHRODINGER¨ , OSKAR KLEIN, WALTER GORDON, 1926, PAUL DIRAC 1928) leads to an equation which requires some coefficients which can neither be real nor complex but rather must be hypercomplex. It is conventional to write down the DIRAC equation using pairwise anti-commuting matrices. However, a unitary ring of square matrices is a hypercomplex algebra by definition, namely an associative one. However, it is the algebraic properties of the elements and their relations to one another, rather than their precise form as matrices which is important. This encourages us to replace the matrix formulation by a more symbolic one of the single elements as linear combinations of some basis elements. In the case of the DIRAC equation, these elements are called biquaternions, also known as quaternions over the complex numbers. As an algebra over R, the biquaternions are eight-dimensional; as subalgebras, this algebra contains the division ring H of the quaternions at one hand and the algebra C ⊗ C of the bicomplex numbers at the other, the latter being commutative in contrast to H.
    [Show full text]
  • JOHN EARMAN* and CLARK GL YMUURT the GRAVITATIONAL RED SHIFT AS a TEST of GENERAL RELATIVITY: HISTORY and ANALYSIS
    JOHN EARMAN* and CLARK GL YMUURT THE GRAVITATIONAL RED SHIFT AS A TEST OF GENERAL RELATIVITY: HISTORY AND ANALYSIS CHARLES St. John, who was in 1921 the most widely respected student of the Fraunhofer lines in the solar spectra, began his contribution to a symposium in Nncure on Einstein’s theories of relativity with the following statement: The agreement of the observed advance of Mercury’s perihelion and of the eclipse results of the British expeditions of 1919 with the deductions from the Einstein law of gravitation gives an increased importance to the observations on the displacements of the absorption lines in the solar spectrum relative to terrestrial sources, as the evidence on this deduction from the Einstein theory is at present contradictory. Particular interest, moreover, attaches to such observations, inasmuch as the mathematical physicists are not in agreement as to the validity of this deduction, and solar observations must eventually furnish the criterion.’ St. John’s statement touches on some of the reasons why the history of the red shift provides such a fascinating case study for those interested in the scientific reception of Einstein’s general theory of relativity. In contrast to the other two ‘classical tests’, the weight of the early observations was not in favor of Einstein’s red shift formula, and the reaction of the scientific community to the threat of disconfirmation reveals much more about the contemporary scientific views of Einstein’s theory. The last sentence of St. John’s statement points to another factor that both complicates and heightens the interest of the situation: in contrast to Einstein’s deductions of the advance of Mercury’s perihelion and of the bending of light, considerable doubt existed as to whether or not the general theory did entail a red shift for the solar spectrum.
    [Show full text]
  • The Theory of Relativity and Applications: a Simple Introduction
    The Downtown Review Volume 5 Issue 1 Article 3 December 2018 The Theory of Relativity and Applications: A Simple Introduction Ellen Rea Cleveland State University Follow this and additional works at: https://engagedscholarship.csuohio.edu/tdr Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons How does access to this work benefit ou?y Let us know! Recommended Citation Rea, Ellen. "The Theory of Relativity and Applications: A Simple Introduction." The Downtown Review. Vol. 5. Iss. 1 (2018) . Available at: https://engagedscholarship.csuohio.edu/tdr/vol5/iss1/3 This Article is brought to you for free and open access by the Student Scholarship at EngagedScholarship@CSU. It has been accepted for inclusion in The Downtown Review by an authorized editor of EngagedScholarship@CSU. For more information, please contact [email protected]. Rea: The Theory of Relativity and Applications What if I told you that time can speed up and slow down? What if I told you that everything you think you know about gravity is a lie? When Albert Einstein presented his theory of relativity to the world in the early 20th century, he was proposing just that. And what’s more? He’s been proven correct. Einstein’s theory has two parts: special relativity, which deals with inertial reference frames and general relativity, which deals with the curvature of space- time. A surface level study of the theory and its consequences followed by a look at some of its applications will provide an introduction to one of the most influential scientific discoveries of the last century.
    [Show full text]
  • The Floating Body in Real Space Forms
    THE FLOATING BODY IN REAL SPACE FORMS Florian Besau & Elisabeth M. Werner Abstract We carry out a systematic investigation on floating bodies in real space forms. A new unifying approach not only allows us to treat the important classical case of Euclidean space as well as the recent extension to the Euclidean unit sphere, but also the new extension of floating bodies to hyperbolic space. Our main result establishes a relation between the derivative of the volume of the floating body and a certain surface area measure, which we called the floating area. In the Euclidean setting the floating area coincides with the well known affine surface area, a powerful tool in the affine geometry of convex bodies. 1. Introduction Two important closely related notions in affine convex geometry are the floating body and the affine surface area of a convex body. The floating body of a convex body is obtained by cutting off caps of volume less or equal to a fixed positive constant δ. Taking the right-derivative of the volume of the floating body gives rise to the affine surface area. This was established for all convex bodies in all dimensions by Schütt and Werner in [62]. The affine surface area was introduced by Blaschke in 1923 [8]. Due to its important properties, which make it an effective and powerful tool, it is omnipresent in geometry. The affine surface area and its generalizations in the rapidly developing Lp and Orlicz Brunn–Minkowski theory are the focus of intensive investigations (see e.g. [14,18, 20,21, 45, 46,65, 67,68, 70,71]).
    [Show full text]
  • Albert Einstein and Relativity
    The Himalayan Physics, Vol.1, No.1, May 2010 Albert Einstein and Relativity Kamal B Khatri Department of Physics, PN Campus, Pokhara, Email: [email protected] Albert Einstein was born in Germany in 1879.In his the follower of Mach and his nascent concept helped life, Einstein spent his most time in Germany, Italy, him to enter the world of relativity. Switzerland and USA.He is also a Nobel laureate and worked mostly in theoretical physics. Einstein In 1905, Einstein propounded the “Theory of is best known for his theories of special and general Special Relativity”. This theory shows the observed relativity. I will not be wrong if I say Einstein a independence of the speed of light on the observer’s deep thinker, a philosopher and a real physicist. The state of motion. Einstein deduced from his concept philosophies of Henri Poincare, Ernst Mach and of special relativity the twentieth century’s best David Hume infl uenced Einstein’s scientifi c and known equation, E = m c2.This equation suggests philosophical outlook. that tiny amounts of mass can be converted into huge amounts of energy which in deed, became the Einstein at the age of 4, his father showed him a boon for the development of nuclear power. pocket compass, and Einstein realized that there must be something causing the needle to move, despite Einstein realized that the principle of special relativity the apparent ‘empty space’. This shows Einstein’s could be extended to gravitational fi elds. Since curiosity to the space from his childhood. The space Einstein believed that the laws of physics were local, of our intuitive understanding is the 3-dimensional described by local fi elds, he concluded from this that Euclidean space.
    [Show full text]
  • Derivation of Generalized Einstein's Equations of Gravitation in Some
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 February 2021 doi:10.20944/preprints202102.0157.v1 Derivation of generalized Einstein's equations of gravitation in some non-inertial reference frames based on the theory of vacuum mechanics Xiao-Song Wang Institute of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan Province, 454000, China (Dated: Dec. 15, 2020) When solving the Einstein's equations for an isolated system of masses, V. Fock introduces har- monic reference frame and obtains an unambiguous solution. Further, he concludes that there exists a harmonic reference frame which is determined uniquely apart from a Lorentz transformation if suitable supplementary conditions are imposed. It is known that wave equations keep the same form under Lorentz transformations. Thus, we speculate that Fock's special harmonic reference frames may have provided us a clue to derive the Einstein's equations in some special class of non-inertial reference frames. Following this clue, generalized Einstein's equations in some special non-inertial reference frames are derived based on the theory of vacuum mechanics. If the field is weak and the reference frame is quasi-inertial, these generalized Einstein's equations reduce to Einstein's equa- tions. Thus, this theory may also explain all the experiments which support the theory of general relativity. There exist some differences between this theory and the theory of general relativity. Keywords: Einstein's equations; gravitation; general relativity; principle of equivalence; gravitational aether; vacuum mechanics. I. INTRODUCTION p. 411). Theoretical interpretation of the small value of Λ is still open [6]. The Einstein's field equations of gravitation are valid 3.
    [Show full text]
  • Matrices for Fenchel–Nielsen Coordinates
    Annales Academi½ Scientiarum Fennic½ Mathematica Volumen 26, 2001, 267{304 MATRICES FOR FENCHEL{NIELSEN COORDINATES Bernard Maskit The University at Stony Brook, Mathematics Department Stony Brook NY 11794-3651, U.S.A.; [email protected] Abstract. We give an explicit construction of matrix generators for ¯nitely generated Fuch- sian groups, in terms of appropriately de¯ned Fenchel{Nielsen (F-N) coordinates. The F-N coordi- nates are de¯ned in terms of an F-N system on the underlying orbifold; this is an ordered maximal set of simple disjoint closed geodesics, together with an ordering of the set of complementary pairs of pants. The F-N coordinate point consists of the hyperbolic sines of both the lengths of these geodesics, and the lengths of arc de¯ning the twists about them. The mapping from these F-N coordinates to the appropriate representation space is smooth and algebraic. We also show that the matrix generators are canonically de¯ned, up to conjugation, by the F-N coordinates. As a corol- lary, we obtain that the TeichmullerÄ modular group acts as a group of algebraic di®eomorphisms on this Fenchel{Nielsen embedding of the TeichmullerÄ space. 1. Introduction There are several di®erent ways to describe a closed Riemann surface of genus at least 2; these include its representation as an algebraic curve; its representation as a period matrix; its representation as a Fuchsian group; its representation as a hyperbolic manifold, in particular, using Fenchel{Nielsen (F-N) coordinates; its representation as a Schottky group; etc. One of the major problems in the overall theory is that of connecting these di®erent visions.
    [Show full text]
  • Voigt Transformations in Retrospect: Missed Opportunities?
    Voigt transformations in retrospect: missed opportunities? Olga Chashchina Ecole´ Polytechnique, Palaiseau, France∗ Natalya Dudisheva Novosibirsk State University, 630 090, Novosibirsk, Russia† Zurab K. Silagadze Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090, Novosibirsk, Russia.‡ The teaching of modern physics often uses the history of physics as a didactic tool. However, as in this process the history of physics is not something studied but used, there is a danger that the history itself will be distorted in, as Butterfield calls it, a “Whiggish” way, when the present becomes the measure of the past. It is not surprising that reading today a paper written more than a hundred years ago, we can extract much more of it than was actually thought or dreamed by the author himself. We demonstrate this Whiggish approach on the example of Woldemar Voigt’s 1887 paper. From the modern perspective, it may appear that this paper opens a way to both the special relativity and to its anisotropic Finslerian generalization which came into the focus only recently, in relation with the Cohen and Glashow’s very special relativity proposal. With a little imagination, one can connect Voigt’s paper to the notorious Einstein-Poincar´epri- ority dispute, which we believe is a Whiggish late time artifact. We use the related historical circumstances to give a broader view on special relativity, than it is usually anticipated. PACS numbers: 03.30.+p; 1.65.+g Keywords: Special relativity, Very special relativity, Voigt transformations, Einstein-Poincar´epriority dispute I. INTRODUCTION Sometimes Woldemar Voigt, a German physicist, is considered as “Relativity’s forgotten figure” [1].
    [Show full text]
  • + Gravity Probe B
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Gravity Probe B Experiment “Testing Einstein’s Universe” Press Kit April 2004 2- Media Contacts Donald Savage Policy/Program Management 202/358-1547 Headquarters [email protected] Washington, D.C. Steve Roy Program Management/Science 256/544-6535 Marshall Space Flight Center steve.roy @msfc.nasa.gov Huntsville, AL Bob Kahn Science/Technology & Mission 650/723-2540 Stanford University Operations [email protected] Stanford, CA Tom Langenstein Science/Technology & Mission 650/725-4108 Stanford University Operations [email protected] Stanford, CA Buddy Nelson Space Vehicle & Payload 510/797-0349 Lockheed Martin [email protected] Palo Alto, CA George Diller Launch Operations 321/867-2468 Kennedy Space Center [email protected] Cape Canaveral, FL Contents GENERAL RELEASE & MEDIA SERVICES INFORMATION .............................5 GRAVITY PROBE B IN A NUTSHELL ................................................................9 GENERAL RELATIVITY — A BRIEF INTRODUCTION ....................................17 THE GP-B EXPERIMENT ..................................................................................27 THE SPACE VEHICLE.......................................................................................31 THE MISSION.....................................................................................................39 THE AMAZING TECHNOLOGY OF GP-B.........................................................49 SEVEN NEAR ZEROES.....................................................................................58
    [Show full text]
  • 19710025511.Pdf
    ORBIT PERTLJFEATION THEORY USING HARMONIC 0SCII;LCITOR SYSTEPE A DISSERTATION SUBMITTED TO THE DEPARTbIEllT OF AJ3RONAUTICS AND ASTROW-UTICS AND THE COMMITTEE ON GRADUATE STUDDS IN PAEMlIAL FULFI-NT OF THE mQUIREMENTS I FOR THE DEGREE OF DOCTOR OF PHILOSOPHY By William Byron Blair March 1971 1;"= * ..--"".-- -- -;.- . ... - jlgpsoijed f~:;c2ilc e distribution unlinl:;&. --as:.- ..=-*.;- .-, . - - I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy. d/c fdd&- (Principal Adviser) I certify that I have read this thesis and that in my opinion it is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosoph~ ., ., I certify that I have read this thesis and that in my opinion it is fully adequate, in scop: and quality, as a dissertation for the degree of Doctor of Philosophy. Approved for the University Cormnittee on Graduate Studies: Dean of Graduate Studies ABSTRACT Unperturbed two-body, or Keplerian motion is transformed from the 1;inie domain into the domains of two ur,ique three dimensional vector harmonic oscillator systems. One harmoriic oscillator system is fully regularized and hence valid for all orbits including the rectilinear class up to and including periapsis passage, The other system is fdly as general except that the solution becomes unbounded at periapsis pas- sage of rectilinear orbits. The natural frequencies of the oscillator systems are related to certain Keplerian orbit scalar constants, while the independent variables are related to well-known orbit angular measurements, or anomalies.
    [Show full text]
  • Lecture 17 Relativity A2020 Prof. Tom Megeath What Are the Major Ideas
    4/1/10 Lecture 17 Relativity What are the major ideas of A2020 Prof. Tom Megeath special relativity? Einstein in 1921 (born 1879 - died 1955) Einstein’s Theories of Relativity Key Ideas of Special Relativity • Special Theory of Relativity (1905) • No material object can travel faster than light – Usual notions of space and time must be • If you observe something moving near light speed: revised for speeds approaching light speed (c) – Its time slows down – Its length contracts in direction of motion – E = mc2 – Its mass increases • Whether or not two events are simultaneous depends on • General Theory of Relativity (1915) your perspective – Expands the ideas of special theory to include a surprising new view of gravity 1 4/1/10 Inertial Reference Frames Galilean Relativity Imagine two spaceships passing. The astronaut on each spaceship thinks that he is stationary and that the other spaceship is moving. http://faraday.physics.utoronto.ca/PVB/Harrison/Flash/ Which one is right? Both. ClassMechanics/Relativity/Relativity.html Each one is an inertial reference frame. Any non-rotating reference frame is an inertial reference frame (space shuttle, space station). Each reference Speed limit sign posted on spacestation. frame is equally valid. How fast is that man moving? In contrast, you can tell if a The Solar System is orbiting our Galaxy at reference frame is rotating. 220 km/s. Do you feel this? Absolute Time Absolutes of Relativity 1. The laws of nature are the same for everyone In the Newtonian universe, time is absolute. Thus, for any two people, reference frames, planets, etc, 2.
    [Show full text]