Diagnosis and Management of Rhinosinusitis: a Practice Parameter Update
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Saline Irrigation for Chronic Rhinosinusitis (Review)
Cochrane Database of Systematic Reviews Saline irrigation for chronic rhinosinusitis (Review) Chong LY, Head K, Hopkins C, Philpott C, Glew S, Scadding G, Burton MJ, Schilder AGM Chong LY, Head K, Hopkins C, Philpott C, Glew S, Scadding G, Burton MJ, Schilder AGM. Saline irrigation for chronic rhinosinusitis. Cochrane Database of Systematic Reviews 2016, Issue 4. Art. No.: CD011995. DOI: 10.1002/14651858.CD011995.pub2. www.cochranelibrary.com Saline irrigation for chronic rhinosinusitis (Review) Copyright © 2016 The Cochrane Collaboration. Published by John Wiley & Sons, Ltd. TABLE OF CONTENTS HEADER....................................... 1 ABSTRACT ...................................... 1 PLAINLANGUAGESUMMARY . 2 SUMMARY OF FINDINGS FOR THE MAIN COMPARISON . ..... 4 BACKGROUND .................................... 7 OBJECTIVES ..................................... 8 METHODS ...................................... 8 RESULTS....................................... 12 Figure1. ..................................... 14 Figure2. ..................................... 17 Figure3. ..................................... 18 ADDITIONALSUMMARYOFFINDINGS . 22 DISCUSSION ..................................... 25 AUTHORS’CONCLUSIONS . 26 ACKNOWLEDGEMENTS . 27 REFERENCES ..................................... 27 CHARACTERISTICSOFSTUDIES . 31 DATAANDANALYSES. 42 Analysis 1.1. Comparison 1 Nasal saline (hypertonic, 2%, large-volume) versus usual treatment, Outcome 1 Disease- specific HRQL - measured using RSDI (range 0 to 100). ........ 43 Analysis 1.2. Comparison -
Nasal Hygiene
Nasal Hygiene This brochure will guide you through the steps to be followed in order to adequately perform nasal hygiene on your child and will answer any questions you might have. Why perform nasal hygiene? The nose helps you filter, humidify and warm up the air you breathe. In order to fulfill its role this “filter” should be clean! A congested nose prevents the child from easily breathing and can hinder his/her sleep and alimentation. Did you know? Children produce on average one liter (4 cups) of nasal secretions every day and even more when they suffer from colds or respiratory allergies (pollen, dust, etc.) It is not easy for children to take care of these secretions when they cannot efficiently blow their nose. Thus, they need the support of their parents to help them breathe properly. In Canada, children suffer from approximately 6 to 8 colds each year, specially between the months of October and May. Each cold can develop into an ear infection (otitis), sinus infection (sinusitis), chronic cough or breathing problems. As well, 20% of children suffer 3 from allergic rhinitis* (nasal congestion with clear mucus, dry cough, sneezing with nose and throat itching or tingling). Regular nasal hygiene with a saline solution will eliminate secre- tions and small particles (dust, pollen, animal dander, etc.). This will diminish congestion, humidify the nose and prevent nosebleeds. It will also promote: ◗ Better feeding and better sleep; ◗ Less colds and colds of shorter duration; ◗ Less otitis, sinusitis and coughs; ◗ Less use of antibiotics; ◗ For children suffering from asthma, a better control of their condition; ◗ Less absences from day care or school for the children and from work for their parents. -
Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US). -
1 COVID-19 Pandemic: Staged Management of Surgical Services
COVID-19 Pandemic: Staged Management of Surgical Services for Gynecology and Obstetrics Emily E. WEBER LEBRUN, MD, MS; Nash S. MOAWAD, MD, MS; E I. ROSENBERG, MD, Timothy E. MOREY, MD; Laurie Davies, MD; William O. COLLINS, MD; and John C. SMULIAN, MD, MPH Emily E. WEBER LEBRUN, MD, MS University of Florida College of Medicine, Department of Obstetrics & Gynecology Nash S. MOAWAD, MD, MS University of Florida College of Medicine, Department of Obstetrics & Gynecology Eric I. ROSENBERG, MD University of Florida College of Medicine, Department of Medicine Timothy E. MOREY, MD University of Florida College of Medicine, Department of Anesthesiology Laurie Davies, MD University of Florida College of Medicine, Department of Anesthesiology William O. COLLINS, MD University of Florida College of Medicine, Department of Otolaryngology John C. SMULIAN, MD, MPH University of Florida College of Medicine, Department of Obstetrics & Gynecology Acknowledgements: We would like to acknowledge the thoughtful contributions of Islam MD, Brian Hoh MD, Brent Carr MD, Jeffrey White MD, Laurie Davies MD and Parker Gibbs MD, all from the University of Florida College of Medicine without compensation. Disclosures: The authors have no relevant conflicts of interest or financial disclosures. Word Count: Abstract 168; Text 2043 1 Condensation: During the COVID-19 pandemic, a staged reduction in gynecologic and obstetric surgical services is needed to protect patients and the healthcare workforce, conserve personal protective equipment, and allow redeployment of facility resources. Short Title: Staged Surgical Postponement during COVID-19 Pandemic ABSTRACT: The COVID-19 pandemic has required an unprecedented global healthcare response requiring maintenance of existing hospital-based services while simultaneously preparing for high-acuity care for infected and sick individuals. -
Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients
antibodies Review Pharmacologic Considerations in the Disposition of Antibodies and Antibody-Drug Conjugates in Preclinical Models and in Patients Andrew T. Lucas 1,2,3,*, Ryan Robinson 3, Allison N. Schorzman 2, Joseph A. Piscitelli 1, Juan F. Razo 1 and William C. Zamboni 1,2,3 1 University of North Carolina (UNC), Eshelman School of Pharmacy, Chapel Hill, NC 27599, USA; [email protected] (J.A.P.); [email protected] (J.F.R.); [email protected] (W.C.Z.) 2 Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] 3 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-919-966-5242; Fax: +1-919-966-5863 Received: 30 November 2018; Accepted: 22 December 2018; Published: 1 January 2019 Abstract: The rapid advancement in the development of therapeutic proteins, including monoclonal antibodies (mAbs) and antibody-drug conjugates (ADCs), has created a novel mechanism to selectively deliver highly potent cytotoxic agents in the treatment of cancer. These agents provide numerous benefits compared to traditional small molecule drugs, though their clinical use still requires optimization. The pharmacology of mAbs/ADCs is complex and because ADCs are comprised of multiple components, individual agent characteristics and patient variables can affect their disposition. To further improve the clinical use and rational development of these agents, it is imperative to comprehend the complex mechanisms employed by antibody-based agents in traversing numerous biological barriers and how agent/patient factors affect tumor delivery, toxicities, efficacy, and ultimately, biodistribution. -
Respiratory Syncytial Virus Bronchiolitis in Children DUSTIN K
Respiratory Syncytial Virus Bronchiolitis in Children DUSTIN K. SMITH, DO; SAJEEWANE SEALES, MD, MPH; and CAROL BUDZIK, MD Naval Hospital Jacksonville, Jacksonville, Florida Bronchiolitis is a common lower respiratory tract infection in infants and young children, and respiratory syncytial virus (RSV) is the most common cause of this infection. RSV is transmitted through contact with respiratory droplets either directly from an infected person or self-inoculation by contaminated secretions on surfaces. Patients with RSV bronchiolitis usually present with two to four days of upper respiratory tract symptoms such as fever, rhinorrhea, and congestion, followed by lower respiratory tract symptoms such as increasing cough, wheezing, and increased respira- tory effort. In 2014, the American Academy of Pediatrics updated its clinical practice guideline for diagnosis and man- agement of RSV bronchiolitis to minimize unnecessary diagnostic testing and interventions. Bronchiolitis remains a clinical diagnosis, and diagnostic testing is not routinely recommended. Treatment of RSV infection is mainly sup- portive, and modalities such as bronchodilators, epinephrine, corticosteroids, hypertonic saline, and antibiotics are generally not useful. Evidence supports using supplemental oxygen to maintain adequate oxygen saturation; however, continuous pulse oximetry is no longer required. The other mainstay of therapy is intravenous or nasogastric admin- istration of fluids for infants who cannot maintain their hydration status with oral fluid intake. Educating parents on reducing the risk of infection is one of the most important things a physician can do to help prevent RSV infection, especially early in life. Children at risk of severe lower respiratory tract infection should receive immunoprophy- laxis with palivizumab, a humanized monoclonal antibody, in up to five monthly doses. -
Allergic Reactions After Vaccination: Translating Guidelines Into Clinical Practice
R E V I E W EUR ANN ALLERGY CLIN IMMUNOL VOL 51, N 2, 51-61, 2019 A. RADICE1, G. CARLI2, D. MACCHIA1, A. FARSI2 Allergic reactions after vaccination: translating guidelines into clinical practice 1SOS Allergologia e Immunologia, Firenze, Azienda USL Toscana Centro, Italy 2SOS Allergologia e Immunologia, Prato, Azienda USL Toscana Centro, Italy KEYWORDS Summary vaccine; vaccination; allergic reactions; Vaccination represents one of the most powerful medical interventions on global health. anaphylaxis; vaccine hesitancy; vaccine Despite being safe, sustainable, and effective against infectious and in some cases also components; desensitization non-infectious diseases, it’s nowadays facing general opinion’s hesitancy because of a false perceived risk of adverse events. Adverse reactions to vaccines are relatively rare, instead, and those recognizing a hypersensitivity mechanism are even rarer. Corresponding author The purpose of this review is to offer a practical approach to adverse events after vaccina- Anna Radice Ospedale San Giovanni di Dio tion, focusing on immune-mediated reactions with particular regard to their recognition, Via Torregalli 3, 50143 Firenze diagnosis and management. Phone: +39 055 6932304 According to clinical features, we propose an algorythm for allergologic work-up, which E-mail: [email protected] helps in confirming hypersensitivity to vaccine, nonetheless ensuring access to vaccination. Finally, a screening questionnaire is included, providing criteria for immunisation in spe- Doi cialized care settings. 10.23822/EurAnnACI.1764-1489.86 Introduction The gain from vaccination is not just about human health, but it is also a matter of financial resources for health systems. “Smallpox is dead” stated the magazine of the World Health It has been calculated that for every dollar spent in vaccines, Organisation (WHO) in 1980. -
Where Do Novel Drugs of 2016 Fit In?
FORMULARY JEOPARDY: WHERE DO NOVEL DRUGS OF 2016 FIT IN? Maabo Kludze, PharmD, MBA, CDE, BCPS, Associate Director Elizabeth A. Shlom, PharmD, BCPS, SVP & Director Clinical Pharmacy Program Acurity, Inc. Privileged and Confidential August 15, 2017 Privileged and Confidential Program Objectives By the end of the presentation, the pharmacist or pharmacy technician participant will be able to: ◆ Identify orphan drugs and first-in-class medications approved by the FDA in 2016. ◆ Describe the role of new agents approved for use in oncology patients. ◆ Identify and discuss the role of novel monoclonal antibodies. ◆ Discuss at least two new medications that address public health concerns. Neither Dr. Kludze nor Dr. Shlom have any conflicts of interest in regards to this presentation. Privileged and Confidential 2016 NDA Approvals (NMEs/BLAs) ◆ Nuplazid (primavanserin) P ◆ Adlyxin (lixisenatide) ◆ Ocaliva (obeticholic acid) P, O ◆ Anthim (obitoxaximab) O ◆ Rubraca (rucaparib camsylate) P, O ◆ Axumin (fluciclovive F18) P ◆ Spinraza (nusinersen sodium) P, O ◆ Briviact (brivaracetam) ◆ Taltz (ixekizumab) ◆ Cinqair (reslizumab) ◆ Tecentriq (atezolizumab) P ◆ Defitelio (defibrotide sodium) P, O ◆ Venclexta (venetoclax) P, O ◆ Epclusa (sofosburvir and velpatasvir) P ◆ Xiidra (lifitigrast) P ◆ Eucrisa (crisaborole) ◆ Zepatier (elbasvir and grazoprevir) P ◆ Exondys 51 (eteplirsen) P, O ◆ Zinbyrta (daclizumab) ◆ Lartruvo (olaratumab) P, O ◆ Zinplava (bezlotoxumab) P ◆ NETSTPOT (gallium Ga 68 dotatate) P, O O = Orphan; P = Priority Review; Red = BLA Privileged and Confidential History of FDA Approvals Privileged and Confidential Orphan Drugs ◆FDA Office of Orphan Products Development • Orphan Drug Act (1983) – drugs and biologics . “intended for safe and effective treatment, diagnosis or prevention of rare diseases/disorders that affect fewer than 200,000 people in the U.S. -
Intranasal Ipratropium Bromide Reduced Rhinorrhea and Improved Cold Symptoms
/:*-..= S Evid Based Med: first published as 10.1136/ebm.1996.1.205 on 1 December 1996. Downloaded from Intranasal ipratropium bromide reduced rhinorrhea and improved cold symptoms Hayden FG, Diamond L, Wood PB, 0.06% in a buffered salt solution (P = 0.003). {This 17% absolute dif- KortsDC, Wecker MT. Effectiveness (2 sprays/nostril [84 u,g] 3 times/d ference in improvement between the and safety of intranasal ipratropium for 4 d) (n = 137), the same nasal ipratropium and placebo groups bromide in common colds. A ran- spray without ipratropium in = 137), means that 6 patients (95% CI, 4 to domized, double-blind, placebo- or no medication (n = 137). No cold 16) would need to be treated with controlled trial. Ann Intern Med. medications other than analgesics ipratropium (rather than placebo) for 1996JullS;12S:89-91. and antitussives were allowed. 4 days to result in improvement for 1 additional patient; the relative risk Main outcome measures improvement was 26%, CI 9% to Objective 47%* }. Rates of nasal dryness (12% To determine whether intxanasal ipra- The main outcome measure was a vs 4%), blood-tinged mucus (17% vs tropium bromide is effective and safe global assessment of overall improve- 4%), and headache (9% vs 2%) were for reducing common cold symptoms. ment (report by patients of being better or much better). Rhinorrhea greater in the ipratropium group than Design was monitored in the clinic hourly in the placebo group. 6-day, randomized, double-blind, for the first 6 hours on day 1 and Conclusion placebo-controlled trial. hourly for 3 hours on day 2. -
Topical Management of Chronic Rhinosinusitis
Open Access Advanced Treatments in ENT Disorders Review Article Topical Management of chronic rhinosinusitis - A literature review ISSN 1 2 2640-2777 Aremu Shuaib Kayode * and Tesleem Olayinka Orewole 1ENT Department, Federal Teaching Hospital, Ido-Ekiti/Afe Babalola University, Ado Ekiti, Nigeria 2Department of Anaesthesia, Federal Teaching Hospital, Ido Ekiti/Afe Babalola University, Ado Ekiti, Nigeria *Address for Correspondence: Dr. Aremu Shuaib Introduction Kayode, ENT Department, Federal Teaching Chronic rhinosinusitis (CRS) is an inlammatory condition involving nasal passages Hospital, Ido-Ekiti/Afe Babalola University, Ado Ekiti, Nigeria, Tel: +2348033583842; and the paranasal sinuses for 12 weeks or longer [1]. It can be subdivided into three Email: [email protected] types: CRS with nasal polyposis (CRS with NP), CRS without nasal polyposis (CRS Submitted: 08 April 2019 without NP), and Allergic fungal rhinosinusitis (AFRS). To diagnose CRS we require Approved: 25 April 2019 at least two of four of its cardinal signs/symptoms (nasal obstruction, mucopurulent Published: 26 April 2019 discharge, facial pain/pressure, and decreased sense of smell). In addition, direct Copyright: © 2019 Aremu SK, et al. This is visualization or imaging for objective documentation of mucosal inlammation is an open access article distributed under the required. CRS therapy is aimed to reduce its symptoms and improve quality of life as it Creative Commons Attribution License, which cannot be cured in most patients. Thus, the goals of its therapy include the following: permits unrestricted use, distribution, and reproduction in any medium, provided the 1: Control mucosal edema and inlammation of nasal and paranasal sinuses original work is properly cited 2: Maintain adequate sinus ventilation and drainage 3: Treat any infecting or colonizing micro-organisms, if present 4: Reduce the number of acute exacerbations Mucosal remodeling is the most likely underlying mechanism causing irreversible chronic sinus disease, similar to that occur in severe asthma. -
Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ
REVIEWS Allergic Fungal Airway Disease Rick EM, Woolnough K, Pashley CH, Wardlaw AJ Institute for Lung Health, Department of Infection, Immunity & Inflammation, University of Leicester and Department of Respiratory Medicine, University Hospitals of Leicester NHS Trust, Leicester, UK J Investig Allergol Clin Immunol 2016; Vol. 26(6): 344-354 doi: 10.18176/jiaci.0122 Abstract Fungi are ubiquitous and form their own kingdom. Up to 80 genera of fungi have been linked to type I allergic disease, and yet, commercial reagents to test for sensitization are available for relatively few species. In terms of asthma, it is important to distinguish between species unable to grow at body temperature and those that can (thermotolerant) and thereby have the potential to colonize the respiratory tract. The former, which include the commonly studied Alternaria and Cladosporium genera, can act as aeroallergens whose clinical effects are predictably related to exposure levels. In contrast, thermotolerant species, which include fungi from the Candida, Aspergillus, and Penicillium genera, can cause a persistent allergenic stimulus independent of their airborne concentrations. Moreover, their ability to germinate in the airways provides a more diverse allergenic stimulus, and may result in noninvasive infection, which enhances inflammation. The close association between IgE sensitization to thermotolerant filamentous fungi and fixed airflow obstruction, bronchiectasis, and lung fibrosis suggests a much more tissue-damaging process than that seen with aeroallergens. This review provides an overview of fungal allergens and the patterns of clinical disease associated with exposure. It clarifies the various terminologies associated with fungal allergy in asthma and makes the case for a new term (allergic fungal airway disease) to include all people with asthma at risk of developing lung damage as a result of their fungal allergy. -
Fungal Sinusitis Clinical Presentation, Latest Management: a Review Update
www.banglajol.info/index.php/JSF Journal of Science Foundation, January 2014, Vol. 12, No.1 ISSN 1728-7855 Review Article Fungal sinusitis clinical presentation, latest management: A Review Update Bithi Bhowmik1 Abstract Fungal sinusitis is a relatively common, often misdiagnosed disease process involving the paranasal sinuses. It is a serious condition, as certain forms of fungal sinusitis are associated with a high rate of mortality. Successful treatment requires a prompt diagnosis and frequently relies on radiologic imaging, specifically computed tomography (CT) and magnetic resonance (MR) imaging. The classification of fungal sinusitis is ever changing, but under the most current and widely accepted classification fungal sinusitis is broadly categorized as either invasive or noninvasive. Invasive fungal sinusitis is defined by the presence of fungal hyphae within the mucosa, submucosa, bone, or blood vessels of the paranasal sinuses. Invasive fungal sinusitis is subdivided into acute invasive fungal sinusitis, chronic invasive fungal sinusitis, and chronic granulomatous invasive fungal sinusitis. Conversely, noninvasive fungal sinusitis is defined by the absence of hyphae within the mucosal and other tissues of the paranasal sinuses. Noninvasive fungal sinusitis is subdivided into allergic fungal sinusitis and fungus ball (fungal mycetoma).[Journal of Science Foundation, 2014;12(1):16-19] Keywords: Fungal sinusitis; clinical presentation; management 1.0. Introduction Chronic sinusitis is a very common problem , and occurs even more frequently in people with allergies. A large number of people with chronic sinusitis are actually suffering from fungal sinus infections, which would not get better with typical antibiotics (Ferguson et al., 2000). Fungal infections of the sinuses have recently been blamed for causing most cases of chronic rhinosinusitis.