Amniotic Fluid and Placental Membranes: Unexpected Sources of Highly Multipotent Cells
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fetal Membrane Architecture, Aging and Inflammation in Pregnancy And
Placenta 79 (2019) 40–45 Contents lists available at ScienceDirect Placenta journal homepage: www.elsevier.com/locate/placenta Fetal membrane architecture, aging and inflammation in pregnancy and parturition T ∗ ∗∗ Ramkumar Menona, , Lauren S. Richardsona, Martha Lappasb,c, a Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA b Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia c Department of Obstetrics and Gynaecology, University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia ARTICLE INFO ABSTRACT Keywords: Preterm birth is the single major cause of infant mortality. Short and long term outcomes for infants are often Fetal membranes worse in cases of preterm premature rupture of the fetal membranes (pPROM). Thus, increased knowledge of the Structure structure characteristics of fetal membranes as well as the mechanisms of membrane rupture are essential if we Senescence are to develop effective treatment strategies to prevent pPROM. In this review, we focus on the role of in- Inflammation flammation and senescence in fetal membrane biology. 1. Introduction 2. Fetal membrane growth and microfractures Human fetal membranes (placental membranes or amniochorionic Amnion and chorion takes distinct growth trajectory upon embry- membranes) is the innermost tissue layer that forms the intrauterine ogenesis [9]. The development of amnion and chorion begins with cavity [1,2]. Fetal membranes are comprised of amnion (innermost embryogenesis although they do not participate in the formation of the layer of the intraamniotic cavity) and chorion (fetal tissue connected to embryo or fetus [10–12]. -
Infections at the Maternal–Fetal Interface: an Overview of Pathogenesis and Defence
REVIEWS Infections at the maternal–fetal interface: an overview of pathogenesis and defence Christina J. Megli 1 ✉ and Carolyn B. Coyne 2 ✉ Abstract | Infections are a major threat to human reproductive health, and infections in pregnancy can cause prematurity or stillbirth, or can be vertically transmitted to the fetus leading to congenital infection and severe disease. The acronym ‘TORCH’ (Toxoplasma gondii, other, rubella virus, cytomegalovirus, herpes simplex virus) refers to pathogens directly associated with the development of congenital disease and includes diverse bacteria, viruses and parasites. The placenta restricts vertical transmission during pregnancy and has evolved robust mechanisms of microbial defence. However, microorganisms that cause congenital disease have likely evolved diverse mechanisms to bypass these defences. In this Review, we discuss how TORCH pathogens access the intra- amniotic space and overcome the placental defences that protect against microbial vertical transmission. Infections during pregnancy can be associated with pathogen mediated, placenta mediated and/or can be devastating consequences to the pregnant mother and through inflammation induced previable delivery. developing fetus. Vertical transmission, defined as There are also outcomes of congenital infections that infection of the fetus from the maternal host, is a major do not manifest until after delivery. These can include cause of morbidity and mortality in pregnancy. In some hearing loss, developmental delays and/or blindness as cases, bacterial, viral and parasitic infections induce detailed below. dire outcomes in the fetus. The sequelae of infections Inflammation initiated by an infection of the mater in pregnancy include teratogenic effects, which cause nal host is also a known cause of preterm labour and can congenital anomalies; growth restriction, stillbirth, mis result in previable delivery or sequelae of prematurity10 carriage and neonatal death; prematurity; and maternal with lifelong consequences to the neonate. -
PRG2 and AQPEP Are Misexpressed in Fetal Membranes in Placenta Previa and Percreta Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyl
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.14.248807; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 1 PRG2 and AQPEP are misexpressed in fetal membranes in placenta previa and percreta 2 3 Elisa T. Zhang1, Roberta L. Hannibal1,6, Keyla M. Badillo Rivera1,7, Janet H.T. Song1,8, Kelly 4 McGowan1, Xiaowei Zhu1,2, Gudrun Meinhardt3, Martin Knöfler3, Jürgen Pollheimer3, Alexander 5 E. Urban1,2, Ann K. Folkins4, Deirdre J. Lyell5, Julie C. Baker1,5* 6 7 1DepartMent of Genetics, Stanford University School of Medicine, Stanford, California, United 8 States of AMerica. 9 2DepartMent of Psychiatry and Behavioral Sciences, Stanford University School of 10 Medicine, Stanford, California, United States of AMerica. 11 3DepartMent of Obstetrics and Gynaecology, Reproductive Biology Unit, Medical University of 12 Vienna, Vienna, Austria. 13 4DepartMent of Pathology, Stanford University School of Medicine, Stanford, California, United 14 States of AMerica. 15 5DepartMent of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, 16 California, United States of AMerica. 17 6Present address: Second GenoMe, Inc., Brisbane, California, United States of AMerica. 18 7Present address: Eversana Consulting, South San Francisco, California, United States of 19 AMerica. 20 8Present address: Division of Genetics and GenoMics, Boston Children’s Hospital, Harvard 21 Medical School, Boston, Massachusetts, United States of AMerica. 22 23 *Correspondence: [email protected] 24 300 Pasteur Dr. -
Self-Organized Amniogenesis by Human Pluripotent Stem Cells in a Biomimetic Implantation-Like Niche
LETTERS PUBLISHED ONLINE: 12 DECEMBER 2016 | DOI: 10.1038/NMAT4829 Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche Yue Shao1†, Kenichiro Taniguchi2†, Katherine Gurdziel3, Ryan F. Townshend2, Xufeng Xue1, Koh Meng Aw Yong1, Jianming Sang1, Jason R. Spence2, Deborah L. Gumucio2* and Jianping Fu1,2,4* Amniogenesis—the development of amnion—is a critical factors seen in the in vivo amniogenic niche: a three-dimensional developmental milestone for early human embryogenesis (3D) extracellular matrix (ECM) that is provided by the basement and successful pregnancy1,2. However, human amniogenesis membrane surrounding the epiblast during implantation11; and a is poorly understood due to limited accessibility to peri- soft tissue bed provided by the uterine wall and trophoblast to implantation embryos and a lack of in vitro models. Here support the developing amnion (Fig. 1a,b). Since amniogenesis ini- we report an ecient biomaterial system to generate human tiates from the expanding pluripotent epiblast, we utilized mTeSR1 amnion-like tissue in vitro through self-organized development medium and basement membrane matrix (Geltrex) to render the of human pluripotent stem cells (hPSCs) in a bioengineered culture permissive for pluripotency maintenance. niche mimicking the in vivo implantation environment. We In this culture system, H9 human embryonic stem cells (hESCs) show that biophysical niche factors act as a switch to toggle were plated as single cells at 30,000 cells cm−2 onto a thick, hPSC self-renewal versus amniogenesis under self-renewal- soft gel bed of Geltrex (with thickness ≥100 µm, bulk Young's permissive biochemical conditions. We identify a unique modulus ∼900 Pa, coated on a glass coverslip), in mTeSR1 medium molecular signature of hPSC-derived amnion-like cells and supplemented with the ROCK inhibitor Y27632 (Fig. -
Increased Apoptosis in Chorionic Trophoblasts of Human Fetal Membranes with Labor at Term*
International Journal of Clinical Medicine, 2012, 3, 136-142 http://dx.doi.org/10.4236/ijcm.2012.32027 Published Online March 2012 (http://www.SciRP.org/journal/ijcm) Increased Apoptosis in Chorionic Trophoblasts of Human * Fetal Membranes with Labor at Term Hassan M. Harirah1#, Mostafa A. Borahay1, Wahidu Zaman1, Mahmoud S. Ahmed1, Ibrahim G. Hager2, Gary D. V. Hankins1 1The Department of Obstetrics & Gynecology, The University of Texas Medical Branch, Galveston, USA; 2The Department of Ob- stetrics & Gynecology, Zagazig University, Zagazig, Egypt. Email: #[email protected] Received December 7th, 2011; revised January 17th, 2012; accepted February 8th, 2012 ABSTRACT Objective: To determine the association of apoptosis in the layers of human fetal membranes distal to rupture site with labor at term. Study Design: Fetal membranes were collected from elective cesarean sections (n = 8) and spontaneous vaginal deliveries (n = 8) at term. The extent of apoptosis within fetal membrane layers was determined using terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) assay and western blots for pro-apoptotic active caspase-3 and anti-apoptotic Bcl-2. Results: Apoptotic index in chorionic trophoblasts of membranes distal to rupture site obtained after vaginal delivery was 3-fold higher than those obtained from elective cesarean (11.57% ± 4.98% and 4.05% ± 2.4% respectively; p = 0.012). The choriodecidua layers after vaginal deliveries had higher expression of the pro-apoptotic active caspase-3 and less expression of the anti-apoptotic Bcl-2 than those obtained from elective cesar- ean sections. Conclusions: Labor at term is associated with increased apoptosis in chorionic trophoblast cells of human fetal membranes distal to rupture site. -
BMP-Treated Human Embryonic Stem Cells Transcriptionally Resemble Amnion Cells in the Monkey Embryo
bioRxiv preprint doi: https://doi.org/10.1101/2021.01.21.427650; this version posted January 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. BMP-treated human embryonic stem cells transcriptionally resemble amnion cells in the monkey embryo Sapna Chhabra1,2,3, Aryeh Warmflash2,4* 1Systems Synthetic and Physical Biology graduate program, 2Department of Biosciences, 4Department of Bioengineering, Rice University, Houston, TX 77005 3Present address: Developmental Biology Unit, EMBL Heidelberg. *Correspondence to AW: [email protected] Abstract Human embryonic stem cells (hESCs) possess an immense potential to generate clinically relevant cell types and unveil mechanisms underlying early human development. However, using hESCs for discovery or translation requires accurately identifying differentiated cell types through comparison with their in vivo counterparts. Here, we set out to determine the identity of much debated BMP-treated hESCs by comparing their transcriptome to the recently published single cell transcriptomes of early human embryos in the study Xiang et al 2019. Our analyses reveal several discrepancies in the published human embryo dataset, including misclassification of putative amnion, intermediate and inner cell mass cells. These misclassifications primarily resulted from similarities in pseudogene expression, highlighting the need to carefully consider gene lists when making comparisons between cell types. In the absence of a relevant human dataset, we utilized the recently published single cell transcriptome of the early post implantation monkey embryo to discern the identity of BMP-treated hESCs. -
The Science of Amnioexcite™ Three Layer Placental Membrane Allograft
The Science of AmnioExcite™ Three Layer Placental Membrane Allograft REV. 10-2020 The Science of AmnioExcite™ Placental Membrane Allograft AmnioExcite™ is a full-thickness decellularized placental membrane. AmnioExcite™ is a lyophilized, full-thickness placental membrane allograft decellularized with LifeNet Health’s proprietary Matracell® process and patent pending technology and intended for homologous use as a barrier membrane.(1) Inclusion of the intact amniotic and chorionic membranes, as well as the trophoblast layer, makes it thicker than most available amniotic-only or amniotic-chorionic allografts, and provides a robust protective covering while also delivering superior handling. AmnioExcite™ retains the placental membrane’s naturally occurring growth factors, cytokines, protease inhibitors, and extracellular matrix components, such as proteoglycans, collagen and fibronectin(2) In vitro studies have shown that these endogenous factors are capable of inducing cellular proliferation and migration, mitigating inflammation, and inhibiting protein degradation(3-5) STRUCTURE OF THE THREE LAYER PLACENTAL MEMBRANE AMNIOTIC MEMBRANE CHORIONIC MEMBRANE TROPHOBLAST LAYER The placental membrane is comprised of the amnion and chorion (6). The amnion, also called amniotic membrane (AM) has five layers, including the epithelium, basement membrane, compact layer, fibroblast layer, and the spongy layer(6), which provide important extracellular membrane components, as well as a wide variety of growth factors, cytokines, and other proteins.(7) While these characteristics are important, the AM by itself lacks substantial structure for providing a protective covering and contains only a small portion of the biological factors found in the full-thickness placental membrane. AM-only grafts can also be difficult to apply and may migrate away from the intended site of application.(8) The chorion is comprised of four layers, including the cellular layer, reticular layer, the pseudobasement membrane and the trophoblast layer (TL) (6). -
Pluripotent Stem Cells: the Search for the "Perfect" Source
Minnesota Journal of Law, Science & Technology Volume 12 Issue 2 Article 10 2011 Pluripotent Stem Cells: The Search for the "Perfect" Source Nancy M.P. King Christine Nero Coughlin Anthony Atala Follow this and additional works at: https://scholarship.law.umn.edu/mjlst Recommended Citation Nancy M. King, Christine N. Coughlin & Anthony Atala, Pluripotent Stem Cells: The Search for the "Perfect" Source, 12 MINN. J.L. SCI. & TECH. 715 (2011). Available at: https://scholarship.law.umn.edu/mjlst/vol12/iss2/10 The Minnesota Journal of Law, Science & Technology is published by the University of Minnesota Libraries Publishing. King NMP, Coughlin CN, Atala A. Pluripotent Stem Cells: The Search for the “Perfect” Source. Minnesota Journal of Law, Science & Technology. 2011;12(2):715-30. Pluripotent Stem Cells: The Search for the “Perfect” Source Nancy M.P. King*, Christine Nero Coughlin** & Anthony Atala*** Anyone who dreamed that the public controversy over human embryonic stem cell (hESC) research had begun to die down was rudely awakened by the decision in Sherley v. Sebelius.1 On August 23, District of Columbia District Court Judge Royce Lamberth issued a preliminary injunction halting federal funding of research using newly created hESC lines until the plaintiffs’ challenge to the 2009 liberalization of funding guidelines can be heard.2 On September 9, 2010, the Court of Appeals for the District of Columbia temporarily stayed Judge Lamberth’s order,3 and on September 28, 2010, the Court of Appeals ordered that the appeal be expedited and granted the Obama administration’s motion to permit federally © 2011 Nancy M.P. -
From Trophoblast to Human Placenta
From Trophoblast to Human Placenta (from The Encyclopedia of Reproduction) Harvey J. Kliman, M.D., Ph.D. Yale University School of Medicine I. Introduction II. Formation of the placenta III. Structure and function of the placenta IV. Complications of pregnancy related to trophoblasts and the placenta Glossary amnion the inner layer of the external membranes in direct contact with the amnionic fluid. chorion the outer layer of the external membranes composed of trophoblasts and extracellular matrix in direct contact with the uterus. chorionic plate the connective tissue that separates the amnionic fluid from the maternal blood on the fetal surface of the placenta. chorionic villous the final ramification of the fetal circulation within the placenta. cytotrophoblast a mononuclear cell which is the precursor cell of all other trophoblasts. decidua the transformed endometrium of pregnancy intervillous space the space in between the chorionic villi where the maternal blood circulates within the placenta invasive trophoblast the population of trophoblasts that leave the placenta, infiltrates the endo– and myometrium and penetrates the maternal spiral arteries, transforming them into low capacitance blood channels. Sunday, October 29, 2006 Page 1 of 19 From Trophoblasts to Human Placenta Harvey Kliman junctional trophoblast the specialized trophoblast that keep the placenta and external membranes attached to the uterus. spiral arteries the maternal arteries that travel through the myo– and endometrium which deliver blood to the placenta. syncytiotrophoblast the multinucleated trophoblast that forms the outer layer of the chorionic villi responsible for nutrient exchange and hormone production. I. Introduction The precursor cells of the human placenta—the trophoblasts—first appear four days after fertilization as the outer layer of cells of the blastocyst. -
Abundant Expression of Parathyroid Hormone-Related Protein in Human Amnion and Its Association with Labor (Pregnancy/Myometrium/Decidua/Placenta/Amniotic Fluid) J
Proc. Nati. Acad. Sci. USA Vol. 89, pp. 8384-8388, September 1992 Physiology Abundant expression of parathyroid hormone-related protein in human amnion and its association with labor (pregnancy/myometrium/decidua/placenta/amniotic fluid) J. E. FERGUSON II*, JANET V. GORMAN*, DAVID E. BRUNS*, ELEANOR C. WEIRt, WILLIAM J. BURTISt, T. J. MARTINt, AND M. ELIZABETH BRUNS*§ *Departments of Obstetrics & Gynecology and Pathology, University of Virginia Medical School, Charlottesville, VA 22908; tDepartments of Medicine and Comparative Medicine, Yale University Medical School, New Haven, CT 06510; and tDepartment of Medicine, University of Melbourne, Melbourne 3065 Australia Communicated by Robert H. Wasserman, June 1, 1992 (receivedfor review December 12, 1991) ABSTRACT In animal models, parathyroid hormone- and reaches a peak 48 hr prior to parturition (4). A peak in related protein (PTHrP) increases placental calcium transport peptide content has also been demonstrated by biological and and inhibits contraction ofuterine smooth muscle. The present immunological assays. As PTHrP and PTH have been shown studies were undertaken to characterize the expression of to be vasodilators and to relax smooth muscles, including PTHrP in human uteroplacental tissues. PTHrP mRNA was uterine smooth muscle (7-9), PTHrP may play a role in (i) identified by Northern analysis as a single species (:1.8 vasodilation in the uteroplacental unit, (ii) expansion of the kilobases) in human amnion, chorion, placenta, decidua, and uterus to accommodate fetal growth, (iii) maintenance ofthe myometrium. The most abundant signal was seen in amnion, pregnant uterus in a quiescent, relaxed state prior to the onset where it was 10-400 times that in the other uteroplacental of labor, and/or (iv) relaxation of the uterine cervix to allow tissues. -
Scientists Prove Bioengineered Uteri Support Pregnancy 29 June 2020
Scientists prove bioengineered uteri support pregnancy 29 June 2020 regenerative medicine and a number of the basic principles of tissue engineering and regenerative medicine were first developed at the institute. Their strategy to bioengineer functional tissues using a patient's own cells seeded onto biodegradable scaffolds has been effectively explored in preclinical studies and applied successfully in human patients to restore function in tubular and in hollow non-tubular organs. Regenerative medicine and tissue engineering technologies have emerged as an attractive option for overcoming donor organ A CT image of a bioengineered rabbit uterus with a shortages and other limitations of transplantation fetus, proving the organ supported fertilization, fetal from donors. The scientists used the same development. Credit: Wake Forest Institute for bioengineering strategy to engineer the uterus, a Regenerative Medicine (WFIRM) more complex organ with higher functional requirements involving support of embryo implantation and fetal development. In new research from the Wake Forest Institute for For this study, rabbits were randomly assigned to Regenerative Medicine (WFIRM), scientists have four groups: (1) a tissue-engineered uteri group that shown that bioengineered uteri supported received a cell-seeded scaffold using the animals' fertilization, fetal development, and live birth with own cells; (2) a non-seeded scaffold group, that normal offspring. With further development, this received a polymer scaffold only; (3) a subtotal approach may someday provide a regenerative uterine excision-only control group, where the medicine solution for women with the inability to subtotal excision was repaired by suturing and (4) a get pregnant due to uterine dysfunctional infertility normal control group, where animals underwent a sham laparotomy. -
Management of Spontaneous Rupture of the Amnion with an Intact Chorion Jenny A
Jacob et al. Obstet Gynecol cases Rev 2015, 2:5 ISSN: 2377-9004 Obstetrics and Gynaecology Cases - Reviews Case Report: Open Access Management of Spontaneous Rupture of the Amnion with an Intact Chorion Jenny A. Jacob1, Norman A. Ginsberg2, Lee P. Shulman2* and Leeber Cohen2 1Albert-Ludwigs-University School of Medicine, Germany 2Northwestern Feinberg School of Medicine, USA *Corresponding author: Prof. Lee P. Shulman MD, 250 E. Superior Street, Prentice Women’s Hospital, Room 05- 2174, Chicago, IL, USA 60611, Tel: 1.312.730.8694, Email: [email protected] weeks‘gestation with an AFI of 1cm. The patient reported no history Abstract of vaginal amniotic fluid leakage. Speculum examination showed Idiopathic severe preterm oligohydamnios as a result of spontaneous no evidence of vaginal pooling. The fetal kidneys were visualized at rupture of the amnion with an intact chorion is a rare event with a the time of the ultrasound and were considered functioning since scarcity of reports found in the literature. We evaluated the impact the fetal bladder was visualized at the time of ultrasound. Chorionic of serial amnioinfusions on this unusual occurrence. This is a follow- villus sampling (CVS) was performed after the 18-week scan and up of a 37-year-old woman with idiopathic severe oligohydramnios diagnosed at 18 weeks of gestation. We performed five serial showed a normal 46,XX complement. amnioinfusions with the purpose of improving fetal lung maturity The patient was informed of the complications accompanied and to prevent Potter anomalad. At 31 weeks‘gestation the patient with oligohydramnios and was offered pregnancy termination.