Random Walks Derived from Billiards
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Data Assimilation and Parameter Estimation for a Multiscale Stochastic System with Α-Stable Lévy Noise
Data assimilation and parameter estimation for a multiscale stochastic system with α-stable L´evy noise Yanjie Zhang1, Zhuan Cheng2, Xinyong Zhang3, Xiaoli Chen1, Jinqiao Duan2 and Xiaofan Li2 1Center for Mathematical Sciences & School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China 2Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA 3Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China E-mail: [email protected], [email protected], [email protected], [email protected], [email protected] and [email protected] . ∗This work was partly supported by the NSF grant 1620449, and NSFC grants 11531006, 11371367, and 11271290. Abstract. This work is about low dimensional reduction for a slow-fast data assimilation system with non-Gaussian α stable L´evy noise via stochastic averaging. − When the observations are only available for slow components, we show that the averaged, low dimensional filter approximates the original filter, by examining the corresponding Zakai stochastic partial differential equations. Furthermore, we demonstrate that the low dimensional slow system approximates the slow dynamics of the original system, by examining parameter estimation and most probable paths. Keywords: Multiscale systems, non-Gaussian L´evy noise, averaging principle, Zakai equation, parameter estimation, most probable paths arXiv:1801.02846v1 [math.DS] 9 Jan 2018 1. Introduction Data assimilation is a procedure to extract system state information with the help of observations [18]. The state evolution and the observations are usually under random fluctuations. The general idea is to gain the best estimate for the true system state, in terms of the probability distribution for the system state, given only some noisy observations of the system. -
Limit Theorems for Non-Stationary and Random
LIMIT THEOREMS FOR NON-STATIONARY AND RANDOM DYNAMICAL SYSTEMS by Yaofeng Su A dissertation submitted to the Department of Mathematics, College of Natural Sciences and Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mathematics Chair of Committee: Andrew T¨or¨ok Committee Member: Vaughn Climenhaga Committee Member: Gemunu Gunaratne Committee Member: Matthew Nicol University of Houston May 2020 Copyright 2020, Yaofeng Su ACKNOWLEDGMENTS This dissertation would not have been possible without the guidance and the help of several in- dividuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study. First, my utmost gratitude to my advisor Dr. Andrew T¨or¨okfor the support and help he provided me throughout my graduate education; my commit- tee members, Dr. Vaughn Climenhaga, Dr. Gemunu Gunaratne, and Dr. Matthew Nicol for their participation and their thoughtful comments; all professors in the dynamical system research group of University of Houston, Dr. Vaughn Climenhaga, Dr. Alan Haynes, Dr. Matthew Nicol, Dr. William Ott, and Dr. Andrew T¨or¨okfor organizing the wonderful \Houston Summer School on Dynamical Systems", where I learned a lot about dynamical systems, ergodic theory, number theory, and quantum mechanics. iii ABSTRACT We study the limit behavior of the non-stationary/random chaotic dynamical systems and prove a strong statistical limit theorem: (vector-valued) almost sure invariance principle for the non- stationary dynamical systems and quenched (vector-valued) almost sure invariance principle for the random dynamical systems. It is a matching of the trajectories of the dynamical system with a Brownian motion in such a way that the error is negligible in comparison with the Birkhoff sum. -
Math.DS] 5 Aug 2014 Etns E PK O Opeesv Uvyo H Ujc.I Subject
SYNCHRONIZATION PROPERTIES OF RANDOM PIECEWISE ISOMETRIES VICTOR KLEPTSYN AND ANTON GORODETSKI Abstract. We study the synchronization properties of the random double rotations on tori. We give a criterion that show when synchronization is present in the case of random double rotations on the circle and prove that it is always absent in dimensions two and higher. 1. Introduction The observation of a synchronization effect goes back at least to 17th century, when Huygens [Hu] discovered the synchronization of two linked pendulums. Since then, synchronization phenomena have been observed in numerous systems and settings, see [PRK] for a comprehensive survey of the subject. In the theory of dynamical systems, synchronization usually refers to random dynamical system trajectories of different initial points converging to each other under the applica- tion of a sequence of random transformations. A first such result is the famous Furstenberg’s Theorem [Fur1], stating that under some very mild assumptions, the angle (mod π) between the images of any two vectors under a long product of random matrices (exponentially) tends to zero. Projectivizing the dynamics, it is easy to see that this theorem in fact states that random trajectories of the quotient system on the projective space (exponentially) approach each other. For random dynamical systems on the circle, several results are known. Surely, in random projective dynamics there is a synchronization due to the simplest pos- sible case of Furstenberg’s Theorem. In 1984, this result was generalized to the setting of homeomorphisms (with some very mild and natural assumptions of min- imality of the action and the presence of a North-South map) in the work of a physicist V. -
Ergodic Theory
MATH41112/61112 Ergodic Theory Charles Walkden 4th January, 2018 MATH4/61112 Contents Contents 0 Preliminaries 2 1 An introduction to ergodic theory. Uniform distribution of real se- quences 4 2 More on uniform distribution mod 1. Measure spaces. 13 3 Lebesgue integration. Invariant measures 23 4 More examples of invariant measures 38 5 Ergodic measures: definition, criteria, and basic examples 43 6 Ergodic measures: Using the Hahn-Kolmogorov Extension Theorem to prove ergodicity 53 7 Continuous transformations on compact metric spaces 62 8 Ergodic measures for continuous transformations 72 9 Recurrence 83 10 Birkhoff’s Ergodic Theorem 89 11 Applications of Birkhoff’s Ergodic Theorem 99 12 Solutions to the Exercises 108 1 MATH4/61112 0. Preliminaries 0. Preliminaries 0.1 Contact details § The lecturer is Dr Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email: [email protected]. My office hour is: Monday 2pm-3pm. If you want to see me at another time then please email me first to arrange a mutually convenient time. 0.2 Course structure § This is a reading course, supported by one lecture per week. I have split the notes into weekly sections. You are expected to have read through the material before the lecture, and then go over it again afterwards in your own time. In the lectures I will highlight the most important parts, explain the statements of the theorems and what they mean in practice, and point out common misunderstandings. As a general rule, I will not normally go through the proofs in great detail (but they are examinable unless indicated otherwise). -
A Model of Gene Expression Based on Random Dynamical Systems Reveals Modularity Properties of Gene Regulatory Networks†
A Model of Gene Expression Based on Random Dynamical Systems Reveals Modularity Properties of Gene Regulatory Networks† Fernando Antoneli1,4,*, Renata C. Ferreira3, Marcelo R. S. Briones2,4 1 Departmento de Informática em Saúde, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brasil 2 Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), SP, Brasil 3 College of Medicine, Pennsylvania State University (Hershey), PA, USA 4 Laboratório de Genômica Evolutiva e Biocomplexidade, EPM, UNIFESP, Ed. Pesquisas II, Rua Pedro de Toledo 669, CEP 04039-032, São Paulo, Brasil Abstract. Here we propose a new approach to modeling gene expression based on the theory of random dynamical systems (RDS) that provides a general coupling prescription between the nodes of any given regulatory network given the dynamics of each node is modeled by a RDS. The main virtues of this approach are the following: (i) it provides a natural way to obtain arbitrarily large networks by coupling together simple basic pieces, thus revealing the modularity of regulatory networks; (ii) the assumptions about the stochastic processes used in the modeling are fairly general, in the sense that the only requirement is stationarity; (iii) there is a well developed mathematical theory, which is a blend of smooth dynamical systems theory, ergodic theory and stochastic analysis that allows one to extract relevant dynamical and statistical information without solving -
Detection of Time Reversibility in Time Series by Ordinal Patterns Analysis J
Detection of time reversibility in time series by ordinal patterns analysis J. H. Mart´ınez,1, a) J. L. Herrera-Diestra,2 and M. Chavez3 1)INSERM-UM1127, Sorbonne Universit´e,Institut du Cerveau et de la Moelle Epini`ere. France 2)ICTP South American Institute for Fundamental Research, IFT-UNESP. Brazil 3)CNRS UMR7225, H^opitalPiti´eSalp^etri`ere. France (Dated: 13 September 2018) Time irreversibility is a common signature of nonlinear processes, and a fundamental property of non- equilibrium systems driven by non-conservative forces. A time series is said to be reversible if its statistical properties are invariant regardless of the direction of time. Here we propose the Time Reversibility from Ordinal Patterns method (TiROP) to assess time-reversibility from an observed finite time series. TiROP captures the information of scalar observations in time forward, as well as its time-reversed counterpart by means of ordinal patterns. The method compares both underlying information contents by quantifying its (dis)-similarity via Jensen-Shannon divergence. The statistic is contrasted with a population of divergences coming from a set of surrogates to unveil the temporal nature and its involved time scales. We tested TiROP in different synthetic and real, linear and non linear time series, juxtaposed with results from the classical Ramsey's time reversibility test. Our results depict a novel, fast-computation, and fully data-driven method- ology to assess time-reversibility at different time scales with no further assumptions over data. This approach adds new insights about the current non-linear analysis techniques, and also could shed light on determining new physiological biomarkers of high reliability and computational efficiency. -
MA427 Ergodic Theory
MA427 Ergodic Theory Course Notes (2012-13) 1 Introduction 1.1 Orbits Let X be a mathematical space. For example, X could be the unit interval [0; 1], a circle, a torus, or something far more complicated like a Cantor set. Let T : X ! X be a function that maps X into itself. Let x 2 X be a point. We can repeatedly apply the map T to the point x to obtain the sequence: fx; T (x);T (T (x));T (T (T (x))); : : : ; :::g: We will often write T n(x) = T (··· (T (T (x)))) (n times). The sequence of points x; T (x);T 2(x);::: is called the orbit of x. We think of applying the map T as the passage of time. Thus we think of T (x) as where the point x has moved to after time 1, T 2(x) is where the point x has moved to after time 2, etc. Some points x 2 X return to where they started. That is, T n(x) = x for some n > 1. We say that such a point x is periodic with period n. By way of contrast, points may move move densely around the space X. (A sequence is said to be dense if (loosely speaking) it comes arbitrarily close to every point of X.) If we take two points x; y of X that start very close then their orbits will initially be close. However, it often happens that in the long term their orbits move apart and indeed become dramatically different. -
Conformal Fractals – Ergodic Theory Methods
Conformal Fractals – Ergodic Theory Methods Feliks Przytycki Mariusz Urba´nski May 17, 2009 2 Contents Introduction 7 0 Basic examples and definitions 15 1 Measure preserving endomorphisms 25 1.1 Measurespacesandmartingaletheorem . 25 1.2 Measure preserving endomorphisms, ergodicity . .. 28 1.3 Entropyofpartition ........................ 34 1.4 Entropyofendomorphism . 37 1.5 Shannon-Mcmillan-Breimantheorem . 41 1.6 Lebesguespaces............................ 44 1.7 Rohlinnaturalextension . 48 1.8 Generalized entropy, convergence theorems . .. 54 1.9 Countabletoonemaps.. .. .. .. .. .. .. .. .. .. 58 1.10 Mixingproperties . .. .. .. .. .. .. .. .. .. .. 61 1.11 Probabilitylawsand Bernoulliproperty . 63 Exercises .................................. 68 Bibliographicalnotes. 73 2 Compact metric spaces 75 2.1 Invariantmeasures . .. .. .. .. .. .. .. .. .. .. 75 2.2 Topological pressure and topological entropy . ... 83 2.3 Pressureoncompactmetricspaces . 87 2.4 VariationalPrinciple . 89 2.5 Equilibrium states and expansive maps . 94 2.6 Functionalanalysisapproach . 97 Exercises ..................................106 Bibliographicalnotes. 109 3 Distance expanding maps 111 3.1 Distance expanding open maps, basic properties . 112 3.2 Shadowingofpseudoorbits . 114 3.3 Spectral decomposition. Mixing properties . 116 3.4 H¨older continuous functions . 122 3 4 CONTENTS 3.5 Markov partitions and symbolic representation . 127 3.6 Expansive maps are expanding in some metric . 134 Exercises .................................. 136 Bibliographicalnotes. 138 4 -
The Mathematics of Critical Shifts in Ecological Networks with Alternative Stable State Theory, a Potential Framework for Early Warning Indicators
The Mathematics of Critical Shifts in Ecological Networks with Alternative Stable State Theory, A Potential Framework for Early Warning Indicators by Michael Kupperman A THESIS submitted to Oregon State University Honors College in partial fulfillment of the requirements for the degree of Honors Bachelors of Science in Mathematics (Honors Scholar) Honors Bachelors of Science in Biochemistry & Molecular Biology (Honors Scholar) Presented June 14, 2019 Commencement June 2020 AN ABSTRACT OF THE THESIS OF Michael Kupperman for the degree of Honors Bachelors of Science in Mathematics and Honors Bachelors of Science in Biochemistry & Molecular Biology presented on June 14, 2019. Title: The Mathematics of Critical Shifts in Ecological Networks with Alternative Stable State Theory, A Potential Framework for Early Warning Indicators Abstract approved: David Koslicki A long running problem in mathematical biology is the prediction of extinction events, a specialized case of the larger global stability problem found in differential equations and dynamical systems theory. A central technical question is how to introduce the randomness observed in real ecological systems not accounted for in deterministic models. This work introduces the SP-system as a new mathematical object in which ecological parameters are treated as sequences of random variables that attain values over intervals of random lengths of time. The SP-system characterization of ecological networks leads to two differ- ent novel approaches for the simulation and extinction prediction. The first approach uses a construct new to modeling literature to describe the probability of a parameter transition event into an extinction event. The second approach utilizes Markov chains for both sim- ulation and extinction prediction. -
AN INTRODUCTION to DYNAMICAL BILLIARDS Contents 1
AN INTRODUCTION TO DYNAMICAL BILLIARDS SUN WOO PARK 2 Abstract. Some billiard tables in R contain crucial references to dynamical systems but can be analyzed with Euclidean geometry. In this expository paper, we will analyze billiard trajectories in circles, circular rings, and ellipses as well as relate their charactersitics to ergodic theory and dynamical systems. Contents 1. Background 1 1.1. Recurrence 1 1.2. Invariance and Ergodicity 2 1.3. Rotation 3 2. Dynamical Billiards 4 2.1. Circle 5 2.2. Circular Ring 7 2.3. Ellipse 9 2.4. Completely Integrable 14 Acknowledgments 15 References 15 Dynamical billiards exhibits crucial characteristics related to dynamical systems. Some billiard tables in R2 can be understood with Euclidean geometry. In this ex- pository paper, we will analyze some of the billiard tables in R2, specifically circles, circular rings, and ellipses. In the first section we will present some preliminary background. In the second section we will analyze billiard trajectories in the afore- mentioned billiard tables and relate their characteristics with dynamical systems. We will also briefly discuss the notion of completely integrable billiard mappings and Birkhoff's conjecture. 1. Background (This section follows Chapter 1 and 2 of Chernov [1] and Chapter 3 and 4 of Rudin [2]) In this section, we define basic concepts in measure theory and ergodic theory. We will focus on probability measures, related theorems, and recurrent sets on certain maps. The definitions of probability measures and σ-algebra are in Chapter 1 of Chernov [1]. 1.1. Recurrence. Definition 1.1. Let (X,A,µ) and (Y ,B,υ) be measure spaces. -
Engel-M-2018-Phd-Thesis.Pdf
Imperial College London, Department of Mathematics Local phenomena in random dynamical systems: bifurcations, synchronisation, and quasi-stationary dynamics A thesis presented for the degree of Doctor of Philosophy of Imperial College London by Maximilian Engel Supervisors: Prof. Jeroen S. W. Lamb, Dr. Martin Rasmussen January 2018 Declaration I declare that this thesis is entirely my own work and that where any material could be construed as the work of others, it is fully cited and referenced, and/or with appropriate acknowledgement given. Maximilian Engel 2 Copyright The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 3 Acknowledgements I would like to express my gratitude to the following people who have supported me in accomplishing the present work. First of all, I would like to thank my supervisors Jeroen Lamb and Martin Rasmussen for the numerous passionate discussions we have had throughout the past three years, for encouraging me in difficult times and being enthusiastic but still critical in times of apparent breakthroughs. I am extremely grateful for their guidance, support and trust in me as a PhD student. In particular, I have to emphasize their willingness to enable many inspiring research connections and visits to different parts of the world. -
Stability and Random Attractors for a Reaction-Diffusion Equation with Multiplicative Noise
DISCRETE AND CONTINUOUS Website: http://AIMsciences.org DYNAMICAL SYSTEMS Volume 6, Number 4, October 2000 pp. 875{892 STABILITY AND RANDOM ATTRACTORS FOR A REACTION-DIFFUSION EQUATION WITH MULTIPLICATIVE NOISE Tomas¶ Caraballo & Jose¶ A. Langa Dpto. Ecuaciones Diferenciales y An¶alisisNum¶erico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain. James C. Robinson Mathematics Institute, University of Warwick Coventry CV4 7AL, U.K. Abstract. We study the asymptotic behaviour of a reaction-di®usion equation, and prove that the addition of multiplicative white noise (in the sense of It^o)stabilizes the stationary solution x ´ 0. We show in addition that this stochastic equation has a ¯nite-dimensional random attractor, and from our results conjecture a possible bifurcation scenario. 1. Introduction. The study of the asymptotic behaviour of evolution equations is one of the most important problems in the ¯eld of di®erential equations, as the vast literature on the subject shows. Perhaps the ¯rst step in this programme is to investigate the stability of the stationary solutions, and this is at present a well-developed branch of the theory of stochastic ordinary and partial di®erential equations (see, among others, Has'minskii [20], Mao [23], [24], Caraballo and Liu [5]). Such a stability analysis is essentially a local study, as we obtain information on the dynamics only around these points. A more complete analysis of the quali- tative properties of the system as a whole requires information relating not only to the stationary points but also, for example, to the stability or instability of the as- sociated invariant manifolds of these points.