Stalk Borer Phenology, Damage Syndrome, and Yield Loss Potential in Field Corn Wayne Charles Bailey Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Stalk Borer Phenology, Damage Syndrome, and Yield Loss Potential in Field Corn Wayne Charles Bailey Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1985 Stalk borer phenology, damage syndrome, and yield loss potential in field corn Wayne Charles Bailey Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons Recommended Citation Bailey, Wayne Charles, "Stalk borer phenology, damage syndrome, and yield loss potential in field corn " (1985). Retrospective Theses and Dissertations. 7817. https://lib.dr.iastate.edu/rtd/7817 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS Thi» reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or "target " for pages apparently lacking from the document photographed is "Missing Pagc(s>". If It was possible to obtain the mbslng page(s) or section, they are spliced Into the film along with adjacent pages. This may have necessitated cutting througti an Image and duplicating adjacent pages to assure complete continuity, 2. When an image on the film Is obliterated with a round black mark. It Is an Indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good ima^ of the page can be found In the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a defmite method of "sectioning" the material has been followed. It Is customary to begin filming at the upper left hand comer of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again-beginning below the first row and continuing on until compkte. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5 Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. Univefsi^ Micidilms bntemational 300 N-ZMb Road AmArt»r.UI48l06 8614369 Bailey, Wayn« Châtie# STALK BORER PHENOLOGY, DAMAGE SYNDROME, AND YIELD LOSS POTENTIAL IN FIELD CORN /owe Sff ft Untvtntty PH.D. 1989 University Microfilms intârnâtionsi a»»* z***»****»*,!*,.»**»!:* stalk borer phenology, damage syndrome, and yield loss potential in field corn by Wayne Charles Bailey A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Majort Entomology Approved Signature was redacted for privacy. T^e'ilarg^'of Major^ci; Signature was redacted for privacy. Signature was redacted for privacy. For the Graduate College Iowa State University Ames, Iowa 1985 il TABLE OF CONTENTS Page INTRODUCTION 1 LITERATURE REVIEW 3 Syjtomdtics 3 Life History and Ecology 4 PART I PHENOLOGY OF THE ADULT STALK BORER (LEPXDOPTERAi MOCTUIDAE) IN IOWA 25 ABSTRACT 26 INTRODUCTION 27 MATERIALS AND METHODS 23 RESULTS AND DISCUSSION 30 Phenology and Seasonal Abundance 30 Sex Ratio 30 Color Phase 31 Mating and Heproiuctive Statue 31 PART II STALK BORER (LEPIDOPTERA: NOCTUIDAE) INDUCED DAMAGE SYNDROME IN FIELD COR:; PLANTS 44 ABSTRACT 45 INTRODUCTION 46 MATERIALS AND METHODS 4B RESULTS 51 Stalk Tissue Yields 52 Grain Yields 52 Cob Yields 53 iii Pago Total Plant Yields 54 DISCUSSION 55 PART III REGROWTK AND YIELD RESPONSES OF CORN INJURED BY STALK BORER (LEPIDOPTERA: MOCTUIDAE) IN TERRACED FIELDS 63 ABSTRACT 64 INTRODUCTION 65 MATERIALS AND METHODS 67 RESULTS AND DISCUSSION u3 Larval Dispersion 59 Plant Population Reduction Model CD Barren Plant Model 7U Yield Model 71 Yield Responses 71 GENERAL CONCLUSIONS 79 LITERATURE CITED 32 ACKNOWLEDGMENTS 33 iv LIST OP TABLES PAGE Table 1. Adult stalk borer emergence dates 20 Table 2. Predaceous insects observed to feed upon stalk borer 21 Table 3. Parasitoid species reared from stalk borer 23 Table 4. Date and accumulated centigrade degrae days (COO) for occurrence of first moth, 50» flight, and last moth 35 Table 5. Percentage and number of adult stalk borer by color phase and sex 36 Table 6. Number and percentage of female stalk borers possessing a specific number of spermatophores for 1980 through 1983 37 Table 7. Mean stalk dry weight (grams/plant) of stalk borer infested corn planto by plant location and year 59 Table 8. ttean grain dry weight (grams/plant) of stalk borer infested corn plants by plant location and year Table 9. Mean cob dry weight (grams/plant) of stalk borer infested corn plants by plant location and year 61 Table 10. Mean total dry weight (grams/plant) of stalk borer infested corn plants by plant location and year o2 Table XI. Stalk borer infestations within corn fields located adjacent to brome grass terraces 74 Table 12, I-'.oan dry weights of stalk, ear, cob, and grain yields of stalk borer infested corn plants by damage categories 75 V LIST OF FIGURES IMS. Figure 1. Adult stalk borer phenology from 1980 through 1983 39 Figure 2. Number of spormatophores (mean/female/ week) from 1980 through 1983 41 Figure 3. Adult stalk borer reproductive stage (females/status/week) from 1980 through 1983 43 Figure 4. Numbers of larval stalk borer in corn rows adjacent to brome terraces 78 1 INTRODUCTION The Noctuidae includes numerous pest insect species important to North American agriculture, included in this family of nocturnal moths is the stalk borer, Papaipema nebris Gn. This insect has long been reported as a pest of various agricultural crops, especially small grains and field corn (Decker 1931). Stalk borer damage has been sporadic in the past, although localized severe infestations were found from year to year. During the last few summers, however, reports of stalk borer infestations have increased as more acres of corn have been grown by conservation tillage methods (Rubink and McCartney 1982, Stinner et al. 1984). This increase in damage reports can be attributed to increased grass and weed infestations associated with conservation tillage fields. Because stalk borer moths preferentially select dried perennial grasses and weeds as ovipositional sites, weedy conservation tilled fields generally support greater numbers of stalk borer larvae (Stinner et al. 1994). Although Lowry (1927) and Decker (1931) authored extensive publications concerning the basic biology of the stalk borer, numerous questions remain unanswered. To better understand the importance of this insect as it applies to modern agriculture, a merging of historical and current knowledge is required. I therefore determined 2 broad qoals for ray research. The first was to review and verify existing 2 pertinent knowledge about the stalk borer. My second goal was to conduct research concerning the phenology, damage syndrome, and damage potential of this agricultural pest. To achiuve those goals my specific objectives were as follows: 1. To review the literature and verify pertinent information. 2. To determine the phenology and seasonal abundance of stalk borer moths. 3. To describe the plant damage syndrome associated with larval stalk borer infestations. 4. To determine yield loss potential of field corn plants damaged by stalk borer larvae. 3 LITERATURE REVIEW Systematics. The stalk borer, Papainema nebris (Guenee), was first described by Guenee (1852) from 5 specimens sent to France from Illinois (Lintnor 1882, Forbes 1905, Decker 1931). The white-marked-wing form of moth was described as Gortyna nebris and the unmarked-wing form as a distinct species, Gortyna nitela (Lowry 1927). This confusion existed until Riley (1881) demonstrated, through rearing experiments, that the two forms were actually varieties of the same species (Lintner 1882, Smith 1905). The generic name of the stalk borer changed frequently in the early literature between Gortyna and Hydroecia, with Papaipema emerging when Smith (1899) divided Hydroecia into two subgenera, Hydroecia and Papaipema (Decker 1931). Although Guenee (1852) gave nebris priority as the species name of the stalk borer, numerous later authors (e.g., Riley 1867, 1881; Smith 1877; Lintner 1382; Smith 1893, 1899; Bird 1398, 1902; Dyar 1902; Forbes 1905; Bruner and Swenk 1907; Franklin 1908; Washburn 1908, 1910a, 1910b) incorrectly used nitela to designate the species, because the nitela form was often in greater abundance tnan the nebris form. Additional confusion concerning the correct scientific name of the stalk borer developed when Lyman (1901) and Smith (1905) correctly used nebris as the species name, but used a genus name other than Papaipema when discussing stalk borer classification and 4 life history. Hampson (1910) corrected this inconsistency and confusion in the literature by initiating the use of Papaipema nebris (Guenee), the currently accepted scientific name of the stalk borer. Life History and Ecology. Early work on the biology of this insect was reported by Riley (1867, 1869) when ho described larval characteristics and presented a partially correct account of the stalk borer life cycle. Riley (1867, 1869) determined that stalk borers produce 1 generation annually, with larvae feeding throughout the summer. Adults were found to emerge in late summer and early autumn, but Riley (1869) erroneously reported that stalk borer moths overwinter in a state of torpor.
Recommended publications
  • Maize Stem/Stalk Borer Busseola Fusca and Chilo Partellus Hurtuu Agadaa/Agada Borbur/Kancha Fehari Prevention Monitoring Direct Control Direct Control Restrictions
    PEST MANAGEMENT DECISION GUIDE: GREEN AND YELLOW LIST Maize Stem/Stalk Borer Busseola fusca and Chilo partellus Hurtuu Agadaa/Agada borbur/Kancha fehari Prevention Monitoring Direct Control Direct Control Restrictions l Remove crop residues after l Check the field l Remove l When using a pesticide or botanical, always wear protective clothing and follow harvest to kill larvae and pupae weekly staring from 2 seriously affected the instructions on the product label left in old stems to prevent carry weeks after plants and feed over to next season crop. emergence to livestock or l Do not use chemicals with the same mode of action year after year as this can lead to resistance These can be used immediately l Look for leaf burn for animal feed or fuel windowing, holes l Apply well sieved l Always consult the most recent list of registered pesticides of MoA, Plant Health Larvae feeding on young l Plough (20cm deep) to kill and tunnelling in the cool wood ash to Regulatory Directorate, Ethiopia leaves (Hiwot Lemma, MOA, larvae and pupae by burying stems and cover of funnels when Ethiopia) stems and exposing pupae to the maize cob 5-10% damage is l Lambda Cyhalothrin (Bravo 5% l WHO II; moderately hazardous, Pyrethroid natural enemies and heat observed, a l Look for caterpillars EC W/V, Datrate 5% EC, Karto 5 with contact and stomach activity. Apply pinch (2.5 gms) l Remove alternative host such of different stages of EC, Lamdex 5% EC, 1-2 times per season starting from 3-4 per plant as wild sorghums and thick development inside Lambdahock 5% EC, Modan 5% weeks after emergence stemmed grasses such as the growing shoot l Apply dry ground EC) 320ml/Ha or 16g ai/Ha, Napier grass and stem ripe neem seed REI-1 day, PH-7 days l Intercrop with legumes such as l Look for deadhearts powder to funnel cowpeas, soya, haricot or faba in maize whorls when 5-10% l Cypermethrin (Cymbush 1% l WHO II; moderately hazardous, Pyrethroid Adult stemborer moth (Hiwot damage is Granules) 2.5 Kg/Ha (apinch per with contact and stomach activity.
    [Show full text]
  • Evaluation and Prediction of Maize Response to Early-Season Injury from Stalk Borer Paula Marie Davis Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1990 Evaluation and prediction of maize response to early-season injury from stalk borer Paula Marie Davis Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Biostatistics Commons, and the Entomology Commons Recommended Citation Davis, Paula Marie, "Evaluation and prediction of maize response to early-season injury from stalk borer " (1990). Retrospective Theses and Dissertations. 9359. https://lib.dr.iastate.edu/rtd/9359 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • BIOLOGY and MANAGEMENT of the SOYBEAN STEM BORER, Dectes Texanus Leconte, in KENTUCKY
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2019 BIOLOGY AND MANAGEMENT OF THE SOYBEAN STEM BORER, Dectes texanus LeConte, IN KENTUCKY Izabela Gomes University of Kentucky, [email protected] Digital Object Identifier: https://doi.org/10.13023/etd.2019.448 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Gomes, Izabela, "BIOLOGY AND MANAGEMENT OF THE SOYBEAN STEM BORER, Dectes texanus LeConte, IN KENTUCKY" (2019). Theses and Dissertations--Entomology. 49. https://uknowledge.uky.edu/entomology_etds/49 This Master's Thesis is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Ganado Site Visit: Mexican Rice Borer and Sugarcane Borer Sugarcane and Rice Research
    Ganado Site Visit: Mexican Rice Borer and Sugarcane Borer Sugarcane and Rice Research Project Investigators: Gene Reagan, LSU AgCenter M.O. Way, Texas A&M AgriLIFE Research Graduate Assistant: Julien Beuzelin Graduate Associate: Waseem Akbar Graduate Assistant: Blake Wilson Cooperators: Texas A&M University AgriLIFE Research Mike Hiller, Jackson County Extension Agent Marvin Lesikar, Jackson County Extension Agent (Retd.) Jack Vawter, Farm Services Manager and Rebecca Pearson, Technician II 8 September, 2009 This work has been supported by grants for the USDA/CSREES Southern Region IPM, SRIPM Center, and Crops at Risk IPM Programs. We also thank the Texas Rice Research Foundation, the American Sugar Cane League, participating Agricultural Chemical Companies, the Texas Department of Agriculture and the Louisiana Department of Agriculture and Forestry for their support. Comparison of Sugarcane Borer and Mexican Rice Borer (a) Adult female sugarcane borer (b) Adult female Mexican rice borer (c) Sugarcane borer eggs (d) Mexican rice borer eggs (e) Sugarcane borer larva (f) Mexican rice borer larva Photos: (a) (e) Boris Castro; (b) Chris Carlton; (c) (d) Robert Saldaña (f) Anna Meszaros. 2 Table of Contents Comparison of sugarcane borer and Mexican rice borer…………………………… 2 Table of Contents…………………………………………………………………… 3 Field research announcement……………………………………………………… 4 Best management practices for Mexican rice borer in sugarcane………………….. 5-6 Monitoring Mexican rice borer movement …………………………………………. 7-9 Resistance to the Mexican rice borer among experimental Louisiana sugarcane cultivars at Ganado in 2009………………………………………………………… 10-11 Seasonal role of non-crop grasses in stem borer population dynamics…………… 12-13 Small plot assessment of insecticides against the Mexican rice borer in Raymondville, TX, 2008…………………………………………………………….
    [Show full text]
  • Maize Stalk Borer (Nkongwa)
    FACTSHEETS FOR FARMERS Created in Rwanda, May 2012 www.plantwise.org Maize Stalk Borer (Nkongwa) Recognize the problem Damage of leaves and stem (holes) by maize stalk borer. (Photo by Maize stalk borer also known as Nkongwa in Kinyarwanda is an insect which Anne Bruntse) attacks maize. It makes holes on the leaves and moves into the stem. You can often see lumps of chewed plant material (frass) left by the insect. The leaves turn yellow and the plant dries. The plant might not grow to full size. Sometimes young leaves which are damaged by stalk borer can be pulled off easily. If the stem is split open, the stalk borer can be seen inside. Background The stalk borer is an insect which attacks maize and sorghum. The adult (a moth) lays eggs on the leaves and the hatched caterpillars then enter the stem. The caterpillar which is cream in colour with a dark brown band around the body causes most of the damage. Damaged grains can be easily attacked by other diseases. The crop is more susceptible when grown by itself and on poor soil. Stalk borer caterpillars inside maize Management stem. Notice brown chewed plant • Crop rotation: Plant maize one season, a legume the next season and material. (Photo by Anne Bruntse) a tuber crop after that. This will stop the spread of the insect. Using the legume also improves the nitrogen of the soil, which is good for the plant. • Improve soil fertility: Increase nitrogen level in the soil by applying farm yard manure or green manure at the base of the plant.
    [Show full text]
  • Chilo Suppressalis
    Chilo suppressalis Scientific name Chilo suppressalis Walker Synonyms Jartheza simplex, Chilo oryzae, Chilo simplex, and Crambus suppressalis Common names Asiatic rice borer, striped rice stem borer, striped rice stalk borer, rice stem borer, rice chilo, purple-lined borer, rice borer, sugarcane moth borer, pale-headed striped borer, and rice stalk borer. Type of pest Moth Taxonomic position Class: Insecta, Order: Lepidoptera, Family: Crambidae Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List – 2009 & 2010 Figure 1. Chilo suppresalis egg masses. Image Pest Description courtesy of International Eggs: Eggs (Fig. 1) are fish scale-like, about 0.9 x 0.5 Rice Research Institute mm, turning from translucent-white to dark-yellow as Archive. www.bugwood.org they mature. They are laid in flat, overlapping rows containing up to 70 eggs. Eggs of other Chilo spp. are quite similar and cannot be easily distinguished (UDSA, 1988). Larvae: First-instar larvae are grayish-white with a black head capsule and are about 1.5 mm long (CABI, 2007). The head capsule of later instars becomes lighter in color, changing to brown. Last instar larvae (Fig. 2) are 20-26 mm long, taper slightly toward each end, and are dirty- white, with five longitudinal purple to brown stripes running down the dorsal surface of the body (Hill, 1983). Pupae: Pupae are reddish-brown, 11-13 mm Figure 2. Chilo suppresalis larva. long, 2.5 mm wide (Hill, 1983) and have two Image courtesy of Probodelt, SL. ribbed crests on the pronotal margins and two short horns on the head. The cremaster (the terminal spine of the abdomen) bears several small spines (Hattori and Siwi, 1986).
    [Show full text]
  • Chilo Partellus
    CAPS Pest Datasheets provide pest-specific information to support planning and completing early detection surveys. Chilo partellus Scientific Name Chilo partellus (Swinhoe, 1886) Synonyms: Chilo zonellus (Swinhoe, 1884) Crambus zonellus Swinhoe, 1885 Crambus partellus Swinhoe, 1885 Argyria lutulentalis Tams, 1932 Chilo lutulentalis Tams, 1932 Common Name Spotted stem borer, spotted stemborer, Figure 1. Adult female Chilo partellus moth. maize and jowar borer, maize stem borer, Photo by Paul-Andre Calatayud, IRD-ICIPE, Nairobi. Used with permission. durra stalk borer, spotted stalk borer, spotted sorghum stem borer, pink borer Type of Pest Moth, stem borer Taxonomic Position Class: Insecta, Order: Lepidoptera, Family: Crambidae Reason for Inclusion in Manual Priority pest for Corn Commodity Survey, 2017 - present Pest Description Eggs: Eggs are flat, scale-like, and cream colored (Whittle and Ferguson, 1988). They are laid in clusters of 10 to 80 (Harris, 1990) and darken in color as they develop (Fig. 2). Larvae: Caterpillars are cream-colored with four longitudinal stripes (Meijerman and Ulenberg, 1998) (Fig. 3). Diapausing larvae may not have Figure 2. Stages of egg development: i. stripes. Larvae have obvious dark brown spots newly laid. ii. brownheads. iii. blackheads. on their backs (Meijerman and Ulenberg, 1998). Photo by Dr. K. V. Seshu Reddy. Used The head capsule, prothoracic shield, and anal with permission. Version 1 June 14, 2019 1 shield are brown. The crochets1 on the prolegs2 form a circle with three alternating lengths in some parts. Spiracles are black and oval-shaped (Meijerman and Ulenberg, 1998). Pupae: The edges of abdominal segments 5, 6, and 7 have rough patches (Whittle and Ferguson, 1988) and the last segment of the abdomen has eight to nine prominent points (Whittle and Ferguson, 1988).
    [Show full text]
  • Dunber: Armyworm Insect Injury to Corn Following
    Journal of Economic Entomology, 109(4), 2016, 1691–1697 doi: 10.1093/jee/tow101 Advance Access Publication Date: 20 June 2016 Field and Forage Crops Research article Increased Risk of Insect Injury to Corn Following Rye Cover Crop Mike W. Dunbar,1 Matthew E. O’Neal, and Aaron J. Gassmann Department of Entomology, Iowa State University, Ames, IA 50011 ([email protected]; [email protected]; [email protected]), and 1Corresponding author, e-mail: [email protected] Received 16 February 2016; Accepted 19 April 2016 Abstract Decreased pest pressure is sometimes associated with more diverse agroecosystems, including the addition of a rye cover crop (Secale cereale L.). However, not all pests respond similarly to greater vegetational diversity. Polyphagous pests, such as true armyworm (Mythimna unipuncta Haworth), black cutworm (Agrotis ipsilon Hufnagel), and common stalk borer (Papaipema nebris Guenee), whose host range includes rye have the poten- tial to cause injury to crops following a rye cover crop. The objectives of this study were to compare the abun- dance of early-season insect pests and injury to corn (Zea mays L.) from fields with and without a rye cover crop on commercial farms. Fields were sampled weekly to quantify adult and larval pests and feeding injury to corn plants from mid-April until corn reached V8 stage, during 2014 and 2015. Measurements within fields were collected along transects that extended perpendicularly from field edges into the interior of cornfields. Adult true armyworm and adult black cutworm were captured around all cornfields, but most lepidopteran larvae cap- tured within cornfields were true armyworm and common stalk borer.
    [Show full text]
  • Biology and Management of the Lesser Cornstalk Borer in Peanut Fields
    = rt+ m- I- 4, CONTENTS Page INTRODUCTION .................................... 3 EFFECT OF TEMPERATURE ON FECUNDITY AND LONGEVITY OF THE LESSER CORNSTALK BORER ........... ....................... 4 METHO DS ................. ............ ............ 4 R ESU LTS . ............................... ............. 5 DEVELOPMENT OF A MATHEMATICAL MODEL OF THE POPULATION DYNAMICS OF THE LESSER CORNSTALK BORER....................... 6 DESIGN OF MODEL ........... ........................ 6 WHY ARE LESSER CORNSTALK BORERS A PEST IN HOT, DRY WEATHER? .......................... 8 INCREASED EGG LAYING RATE OF FEMALES ............ 8 FASTER LIFE CYCLE ................................ 8 DECREASED EGG/LARVAL MORTALITY DUE To PREDATION .......................................... 8 EFFECTS OF HOT, DRY WEATHER ON THE LIFE CYCLE ... ............................................... 9 SEASONAL ABUNDANCE OF EGGS, LARVAE, PUPAE, AND ADULTS OF THE LESSER CORNSTALK BORER .............................. 10 METHO DS ............................................ 10 RESULTS .. ......................................... 1 1 LESSER CORNSTALK BORER DAMAGE TO PEANUTS ............ ...................... 12 M ET HO DS ............................ ............. 12 RESULTS .......... ........... .................... 13 CHARACTERIZATION OF LESSER CORNSTALK BORER DAMAGE TO THE ROOT CROWN REGION OF PEANUT PLANTS ....................... 13 RESULTS .... ....................................... 13 INSECTICIDES FOR MANAGEMENT OF THE LESSER CORNSTALK BORER ........................ 14 TIMING
    [Show full text]
  • Pest Control in World Agriculture - David Pimentel
    AGRICULTURAL SCIENCES – Vol. II - Pest Control in World Agriculture - David Pimentel PEST CONTROL IN WORLD AGRICULTURE David Pimentel College of Agriculture and Life Sciences Cornell University, Ithaca, NY 14853-0901, USA Keywords: agriculture, insects, pest control, pesticides, economic loss, biological control Contents 1. Introduction 2. Natural Resources Used in Agriculture 2.1 Land 2.2 Water 2.3 Energy 2.4 Biological Resources 3. Ecological Causes of Pest Problems 3.1 Introduced Crops 3.2 Introduced Pests 3.3 Monocultures 3.4 Regional Climatic Differences 3.5 Breeding Crops 3.6 Genetic Diversity 3.7 Plant Spacings 3.8 Crop Rotations 3.9 Soil Nutrients 3.10 Planting Dates 3.11 Crop Associations 3.12 Pesticides Alter Crop Physiology 3.13 Ecology of Pests and Crops 4. Economic Losses Due to Pests 5. Costs of Pest Control 5.1 Pesticides 5.2 Biological Controls 5.3 Host-Plant Resistance 5.4 CropUNESCO Rotations – EOLSS 5.5 Crop Sanitation 5.6 Planting TimeSAMPLE CHAPTERS 5.7 Short Season Crops 5.8 Fertilizers 5.9 Water Management 6. Pesticides and Pest Control 7. Reducing Pesticide Use 8. Environmental and Public Health Costs of the Recommended Use of Pesticides 8.1 Public Health Impacts of Pesticides 8.2 Livestock Destruction and Contamination 8.3 Destruction of Beneficial Natural Enemies ©Encyclopedia of Life Support Systems (EOLSS) AGRICULTURAL SCIENCES – Vol. II - Pest Control in World Agriculture - David Pimentel 8.4 Costs of Pesticide Resistance 8.5 Losses of Honey Bees and Other Pollinators 8.6 Fish Kills 8.7 Birds Killed by Pesticides 9. Conclusion Bibliography Biographical Sketch Summary Insect, plant pathogen, and weed pests destroy more than 40% of all potential food production each year.
    [Show full text]
  • Bt Corn and European Corn Borer K
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications: Department of Entomology Entomology, Department of 1997 Bt corn and European corn borer K. R. Ostlie University of Minnesota - Twin Cities, [email protected] W. D. Hutchison R. L. Hellmich Follow this and additional works at: https://digitalcommons.unl.edu/entomologyfacpub Part of the Entomology Commons Ostlie, K. R.; Hutchison, W. D.; and Hellmich, R. L., "Bt corn and European corn borer" (1997). Faculty Publications: Department of Entomology. 597. https://digitalcommons.unl.edu/entomologyfacpub/597 This Article is brought to you for free and open access by the Entomology, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications: Department of Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. http://www.extension.umn.edu/agriculture/corn/pest-management/bt-corn-and-european-corn-borer/ North Central Regional Publication 602, 1997 Bt corn and European corn borer Long-term success through resistance management Editors: K.R. Ostlie, W.D. Hutchison, & R. L. Hellmich. Authors and Contributors: J.F. Witkowski, J.L. Wedberg, K.L. Steffey, P.E. Sloderbeck, B.D. Siegfried, M.E. Rice, C.D. Pilcher, D.W. Onstad, C.E. Mason, L.C. Lewis, D.A. Landis, A.J. Keaster, F. Huang, R.A. Higgins, M.J. Haas, M.E. Gray, K.L. Giles, J.E. Foster, P.M. Davis, D.D. Calvin, L.L. Buschman, P.C. Bolin, B.D. Barry, D.A. Andow & D.N. Alstad. The editors express their appreciation to J.F. Witkowski for hosting key discussions on publication content.
    [Show full text]
  • Ecology of the African Maize Stalk Borer, Busseola Fusca (Lepidoptera: Noctuidae) with Special Reference to Insect-Plant Interactions
    Insects 2014, 5, 539-563; doi:10.3390/insects5030539 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Ecology of the African Maize Stalk Borer, Busseola fusca (Lepidoptera: Noctuidae) with Special Reference to Insect-Plant Interactions Paul-André Calatayud 1,2,*, Bruno P. Le Ru 1,2, Johnnie van den Berg 3 and Fritz Schulthess 4 1 Institute de Recherche pour le Développement (IRD), UR 072, c/o ICIPE (African Insect Science for Food and Health), Nairobi 30772, Kenya; E-Mail: [email protected] 2 CNRS UPR9034, Laboratoire Evolution, Génomes et Spéciation/Université Paris-Sud 11, Orsay Cedex 91405, France 3 Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa; E-Mail: [email protected] 4 Postfach 508, Chur 7000, Switzerland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +254-(20)-863-2161; Fax: +254-(20)-863-2001. Received: 13 May 2014; in revised form: 5 June 2014 / Accepted: 20 June 2014 / Published: 8 July 2014 Abstract: Busseola fusca (Lepidoptera: Noctuidae) is an important pest of maize and sorghum in sub-Saharan Africa. One century after its first description by Fuller in 1901, inaccurate information based on earlier reports are still propagated on its distribution (e.g., absent from the lower altitudes in East Africa) and host plant range (e.g., feeding on a large range of wild grass species). This review provides updated information on the biology, distribution and genetics of B. fusca with emphasis on insect-plant interactions.
    [Show full text]