Isolation and Characterization of a Novel Facultative Anaerobic Filamentous Fungus from Japanese Rice Field Soil
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
High Levels of Β-Xylosidase in Thermomyces Lanuginosus
b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 7 (2 0 1 6) 680–690 ht tp://www.bjmicrobiol.com.br/ Industrial Microbiology High levels of -xylosidase in Thermomyces lanuginosus: potential use for saccharification a,∗ a b c Juliana Moc¸o Corrêa , Divair Christi , Carla Lieko Della Torre , Caroline Henn , b b b José Luis da Conceic¸ão-Silva , Marina Kimiko Kadowaki , Rita de Cássia Garcia Simão a Centro de Ciências Exatas e Tecnológicas b Centro de Ciências Médicas e Farmacêuticas, UNIOESTE, Cascavel, PR, Brazil c Central Hidrelétrica de Itaipu, Itaipu Binacional, Foz do Iguac¸u, PR, Brazil a r t a b i c l e i n f o s t r a c t Article history: A new strain of Thermomyces lanuginosus was isolated from the Atlantic Forest biome, and Received 5 November 2015 its -xylosidases optimization in response to agro-industrial residues was performed. Using Accepted 20 February 2016 statistical approach as a strategy for optimization, the induction of -xylosidases activity Available online 27 April 2016 was evaluated in residual corn straw, and improved so that the optimum condition achieved  Associate Editor: Solange Ines high -xylosidases activities 1003 U/mL. According our known, this study is the first to show Mussatto so high levels of -xylosidases activities induction. In addition, the application of an experi- mental design with this microorganism to induce -xylosidases has not been reported until ◦ Keywords: the present work. The optimal conditions for the crude enzyme extract were pH 5.5 and 60 C ◦ showing better thermostability at 55 C. -
One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K. -
( 12 ) United States Patent
US010154979B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 154, 979 B2 Remmereit et al. ( 45 ) Date of Patent : Dec . 18 , 2018 ( 54) LIPID COMPOSITIONS CONTAINING ( 56 ) References Cited BIOACTIVE FATTY ACIDS U . S . PATENT DOCUMENTS ( 71 ) Applicants : Jan Remmereit, Volda (NO ) ; Alvin 5 , 456 ,912 A 10 / 1995 German et al. Berger , Long Lake , MN (US ) 6 ,034 , 132 A * 3 / 2000 Remmereit . .. .. A61K 31/ 19 514 / 560 (72 ) Inventors : Jan Remmereit, Hovdebygda (NO ) ; 6 , 280 , 755 B1 8 / 2001 Berger et al. Alvin Berger , Long Lake, MN (US ) 2012 /0156171 A1 6 /2012 Breton et al. (73 ) Assignee : SCIADONICS , INC . , Long Lake, MN FOREIGN PATENT DOCUMENTS ( US ) EP 1685834 8 / 2006 EP 1685834 A1 * 8 / 2006 . .. A23D 9 / 00 ( * ) Notice : Subject to any disclaimer, the term of this FR 2756465 6 / 1998 patent is extended or adjusted under 35 JP 61058536 3 / 1986 WO 95 / 17897 7 / 1995 U . S . C . 154 (b ) by 0 days . WO W09517897 * 7 / 1995 WO WO 9517897 A1 * 7 / 1995 A61K 31/ 20 (21 ) Appl. No. : 14 /774 ,432 WO 96 / 005164 2 / 1996 WO 2006 /009464 1 / 2006 (22 ) PCT Filed : Mar. 10 , 2014 wo WO 2006009464 A2 * 1 / 2006 .. .. A61K 31/ 10 (86 ) PCT No . : PCT/ US2014 / 022553 OTHER PUBLICATIONS § 371 ( C ) ( 1 ) , Smith et al. ( Caltha palustris L . Seed oil . A Source of Four Fatty ( 2 ) Date : Sep . 10 , 2015 Acids with cis - 5 -Unsaturate ; Lipids, vol. 3 , No . 1 , Sep . 7 , 1967 ) . * Barnathan et al . “ Non -methylene - interrupted fatty acids from marine (87 ) PCT Pub . No .: WO2014 /143614 invertebrates : Occurrence , characterization and biological proper ties ” BIOCHIMIE , vol. -
Thermophilic Fungi: Taxonomy and Biogeography
Journal of Agricultural Technology Thermophilic Fungi: Taxonomy and Biogeography Raj Kumar Salar1* and K.R. Aneja2 1Department of Biotechnology, Chaudhary Devi Lal University, Sirsa – 125 055, India 2Department of Microbiology, Kurukshetra University, Kurukshetra – 136 119, India Salar, R. K. and Aneja, K.R. (2007) Thermophilic Fungi: Taxonomy and Biogeography. Journal of Agricultural Technology 3(1): 77-107. A critical reappraisal of taxonomic status of known thermophilic fungi indicating their natural occurrence and methods of isolation and culture was undertaken. Altogether forty-two species of thermophilic fungi viz., five belonging to Zygomycetes, twenty-three to Ascomycetes and fourteen to Deuteromycetes (Anamorphic Fungi) are described. The taxa delt with are those most commonly cited in the literature of fundamental and applied work. Latest legal valid names for all the taxa have been used. A key for the identification of thermophilic fungi is given. Data on geographical distribution and habitat for each isolate is also provided. The specimens deposited at IMI bear IMI number/s. The document is a sound footing for future work of indentification and nomenclatural interests. To solve residual problems related to nomenclatural status, further taxonomic work is however needed. Key Words: Biodiversity, ecology, identification key, taxonomic description, status, thermophile Introduction Thermophilic fungi are a small assemblage in eukaryota that have a unique mechanism of growing at elevated temperature extending up to 60 to 62°C. During the last four decades many species of thermophilic fungi sporulating at 45oC have been reported. The species included in this account are only those which are thermophilic in the sense of Cooney and Emerson (1964). -
New Records of One <I>Amygdalaria</I> and Three <I
ISSN (print) 0093-4666 © 2015. Mycotaxon, Ltd. ISSN (online) 2154-8889 MYCOTAXON http://dx.doi.org/10.5248/130.33 Volume 130, pp. 33–40 January–March 2015 New records of one Amygdalaria and three Porpidia taxa (Lecideaceae) from China Lu-Lu Zhang, Xin Zhao, & Ling Hu * Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Jinan, 250014, P. R. China * Correspondence to: [email protected] Abstract —Four lichen taxa of Lecideaceae, Amygdalaria consentiens var. consentiens, Porpidia carlottiana, P. lowiana, and P. tuberculosa, are reported for the first time from China. Key words —Asia, Lecideales, lichens Introduction The family Lecideaceae Chevall. contains about 23 genera and 547 species, of which the largest genus is Lecidea Ach., containing about 427 species (Kirk et al. 2008, Fryday & Hertel 2014). In China, twenty-three species of the other genera in Lecideaceae have been reported, including two each of Amygdalaria Norman, Bellemerea Hafellner & Cl. Roux, and Immersaria Rambold & Pietschm.; one each of Lecidoma Gotth. Schneid. & Hertel, Paraporpidia Rambold & Pietschm., and Stenhammarella Hertel; and 16 species of Porpidia Körb. (Hertel 1977, Wei 1991; Aptroot & Seaward 1999; Aptroot 2002; Aptroot & Sparrius 2003; Obermayer 2004; Guo 2005; Zhang et al. 2010, 2012; Wang et al. 2012; Ismayi & Abbas 2013; Hu et al. 2014). Amygdalaria and Porpidia are obviously very closely related. Both have large halonate ascospores, a high hymenium, Porpidia-type asci, and a dark pigmented hypothecium and are (with a few exceptions) restricted to lime-free, silicate rocks. However Amygdalaria can be best distinguished from Porpidia by the presence of cephalodia, the higher hymenium (over 130 µm), the larger ascospores (generally 20–35 × 10–16 µm) with conspicuous, rather compact epispores, and a tendency toward a brownish or yellowish pink thallus (Inoue 1984, Brodo & Hertel 1987, Gowan 1989, Smith et al. -
The Interplay Between Biomaterial Degradation and Tissue Properties : Relevance for in Situ Cardiovascular Tissue Engineering
The interplay between biomaterial degradation and tissue properties : relevance for in situ cardiovascular tissue engineering Citation for published version (APA): Brugmans, M. C. P. (2015). The interplay between biomaterial degradation and tissue properties : relevance for in situ cardiovascular tissue engineering. Technische Universiteit Eindhoven. Document status and date: Published: 01/01/2015 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. -
Assembly of Lipase and P450 Fatty Acid Decarboxylase to Constitute A
Yan et al. Biotechnology for Biofuels (2015) 8:34 DOI 10.1186/s13068-015-0219-x RESEARCH ARTICLE Open Access Assembly of lipase and P450 fatty acid decarboxylase to constitute a novel biosynthetic pathway for production of 1-alkenes from renewable triacylglycerols and oils Jinyong Yan1*, Yi Liu1,2, Cong Wang1, Bingnan Han3 and Shengying Li1* Abstract Background: Biogenic hydrocarbons (biohydrocarbons) are broadly accepted to be the ideal ‘drop-in’ biofuel alternative to petroleum-based fuels due to their highly similar chemical composition and physical characteristics. The biological production of aliphatic hydrocarbons is largely dependent on engineering of the complicated enzymatic network surrounding fatty acid biosynthesis. Result: In this work, we developed a novel system for bioproduction of terminal fatty alkenes (1-alkenes) from renewable and low-cost triacylglycerols (TAGs) based on the lipase hydrolysis coupled to the P450 catalyzed decarboxylation. This artificial biosynthetic pathway was constituted using both cell-free systems including purified enzymes or cell-free extracts, and cell-based systems including mixed resting cells or growing cells. The issues of high cost of fatty acid feedstock and complicated biosynthesis network were addressed by replacement of the de novo biosynthesized fatty acids with the fed cheap TAGs. This recombinant tandem enzymatic pathway consisting of the Thermomyces lanuginosus lipase (Tll) and the P450 fatty acid decarboxylase OleTJE resulted in the production of 1-alkenes from purified TAGs or natural oils with 6.7 to 46.0% yields. Conclusion: Since this novel hydrocarbon-producing pathway only requires two catalytically efficient enzymatic steps, it may hold great potential for industrial application by fulfilling the large-scale and cost-effective conversion of renewable TAGs into biohydrocarbons. -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus. -
<I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola -
Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on By-Products from Cold-Pressing Oil Production
processes Article Lipase Production by Solid-State Cultivation of Thermomyces Lanuginosus on By-Products from Cold-Pressing Oil Production Marina Tišma 1,*, Toma Tadi´c 1, Sandra Budžaki 1, Marta Ostojˇci´c 1, Anita Šali´c 2, Bruno Zeli´c 2 , Nghiep Nam Tran 3,4 , Yung Ngothai 3 and Volker Hessel 3 1 Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, Osijek HR-31000, Croatia 2 Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb HR-10000, Croatia 3 School of Chemical Engineering, The University of Adelaide, North Terrace Campus, Adelaide 5005, Australia 4 School of Chemical Engineering, Can Tho University, Campus 2, Can Tho 900000, Vietnam * Correspondence: [email protected]; Tel.: +385-31-224-358 Received: 13 June 2019; Accepted: 17 July 2019; Published: 19 July 2019 Abstract: This study shows that by-products obtained after cold-pressing oil production (flex oil cake, hemp oil cake, hull-less pumpkin oil cake) could be used as substrates for the sustainable and cost-effective production of lipase when cultivating Thermomyces lanuginosus under solid-state conditions (T = 45 ◦C, t = 9 days). Lipase showed optimum activity at T = 40 ◦C. The produced lipase extract was purified 17.03-folds with a recovery of 1% after gel chromatography. Three different batch experiments were performed in order to test the possibility of using the lipase in biodiesel production. Experiments were performed with a commercial, unpurified enzyme, and partially purified lipase with sunflower oil and methanol as substrates in a batch reactor at 40 ◦C. During the experiments, the operational stability of the enzyme was studied. -
Evaluation of a Novel Thermo-Alkaline Staphylococcus Aureus Lipase for Application in Detergent Formulations
Saudi Journal of Biological Sciences (2016) xxx, xxx–xxx King Saud University Saudi Journal of Biological Sciences www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Evaluation of a novel thermo-alkaline Staphylococcus aureus lipase for application in detergent formulations Abir Ben Bacha a,b,*,1, Alaa Al-Assaf a, Nadine M.S. Moubayed c, Islem Abid c a Biochemistry Department, Science College, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia b Laboratory of Plant Biotechnology Applied to Crop Improvement, Faculty of Science of Sfax, University of Sfax, Sfax 3038, Tunisia c Botany and Microbiology Department, Science College, King Saud University, P.O Box 22452, Riyadh 11495, Saudi Arabia Received 27 April 2016; revised 24 August 2016; accepted 3 October 2016 KEYWORDS Abstract An extracellular lipase of a newly isolated S. aureus strain ALA1 (SAL4) was purified ° Staphylococcus aureus lipase; from the optimized culture medium. The SAL4 specific activity determined at 60 C and pH 12 Purification; by using olive oil emulsion or TC4, reached 7215 U/mg and 2484 U/mg, respectively. The 38 Characterization; NH2-terminal amino acid sequence of the purified enzyme starting with two extra amino acid resi- Thermo-alkaline; dues (LK) was similar to known staphylococcal lipase sequences. This novel lipase maintained Detergent-stable almost 100% and 75% of its full activity in a pH range of 4.0–12 after a 24 h incubation or after 0.5 h treatment at 70 °C, respectively. Interestingly, SAL4 displayed appreciable stability toward oxidizing agents, anionic and non-ionic surfactants in addition to its compatibility with several commercial detergents. -
SPECIES RESEARCH INFORMATION • 002 Species, Volume 11, Number 28, November 12, 2014 754 5 –
SPECIES RESEARCH INFORMATION • 002 Species, Volume 11, Number 28, November 12, 2014 754 5 – EISSN 2319 Species 746 5 – ISSN 2319 Species Research information 002: New species of lichenized fungi; Moss diversity; Families and genera of lycophytes and ferns; Fungal symbioses in bryophytes; Key markers of 20,000 species Department of Species Informatics, Species (journal) Species (journal), Discovery Publication, Tamil Nadu, India Citation Department of Species Informatics, Species (journal). Species Research information 002: New species of lichenized fungi; Moss diversity; Families and genera of lycophytes and ferns; Fungal symbioses in bryophytes; Key markers of 20,000 species. Species, 2014, 11(28), 34-36 H. THORSTEN LUMBSCH, TEUVO AHTI, SUSANNE ALTERMANN, GUILLERMO AMO DE PAZ, ANDRÉ APTROOT, ULF ARUP, ALEJANDRINA BÁRCENAS PEÑA, PAULINA A. BAWINGAN, MICHEL N. BENATTI, LUISA BETANCOURT, CURTIS R. BJÖRK, KANSRI BOONPRAGOB, MAARTEN BRAND, FRANK BUNGARTZ, MARCELA E. S. CÁCERES, MEHTMET CANDAN, JOSÉ LUIS CHAVES, PHILIPPE CLERC, RALPH COMMON, BRIAN J. COPPINS, ANA CRESPO, MANUELA DAL-FORNO, PRADEEP K. DIVAKAR, MELIZAR V. DUYA, JOHN A. ELIX, ARVE ELVEBAKK, JOHNATHON D. FANKHAUSER, EDIT FARKAS, LIDIA ITATÍ FERRARO, EBERHARD FISCHER, DAVID J. GALLOWAY, ESTER GAYA, MIREIA GIRALT, TREVOR GOWARD, MARTIN GRUBE, JOSEF HAFELLNER, JESÚS E. HERNÁNDEZ M., MARÍA DE LOS ANGELES HERRERA CAMPOS, KLAUS KALB, INGVAR KÄRNEFELT, GINTARAS KANTVILAS, DOROTHEE KILLMANN, PAUL KIRIKA, KERRY KNUDSEN, HARALD KOMPOSCH, SERGEY KONDRATYUK, JAMES D. LAWREY, ARMIN MANGOLD, MARCELO P. MARCELLI, BRUCE MCCUNE, MARIA INES MESSUTI, ANDREA MICHLIG, RICARDO MIRANDA GONZÁLEZ, BIBIANA MONCADA, ALIFERETI NAIKATINI, MATTHEW P. NELSEN, DAG O. ØVSTEDAL, ZDENEK PALICE, KHWANRUAN PAPONG, SITTIPORN PARNMEN, SERGIO PÉREZ-ORTEGA, CHRISTIAN PRINTZEN, VÍCTOR J.