Grazing Isn't Just for Cows Anymore

Total Page:16

File Type:pdf, Size:1020Kb

Grazing Isn't Just for Cows Anymore Natural Resources Conservation Service Judy Hoepker Rolling Oak Alpaca Ranch Union County, IL Grazing Isn’t Just for Cows Anymore animals from other alpaca farmers who were going out of business or retiring and pretty soon they were off and running. According to Steve, “We had some 60 or 70-year old fence and we used other junk and a lot of redneck ingenuity to create a spot for everyone.” It didn’t take long before Judy and Morgan had a small herd and a few fainting goats as well. The pair of rookie alpaca herders say they had a few mentors who advised and guided them early on. For the Judy and Steve Hoepker had a business and day jobs most part, Judy and Morgan are self-educated in their running a trucking company. Judy’s daughter Morgan operations. They have attended seminars, workshops and was interested in knitting and grew fond of working with other fiber events to gain knowledge. alpaca yarn. Because finding the yarn to purchase was difficult, they toyed with the idea of generating their own alpaca yarn and, guess what? The Rolling Oak Alpaca Ranch (R.O.A.R.) was born. This venture quickly took Judy, husband Steve, and daughter Morgan and son-in-law Tom into another— completely different—line of work that has brought them a new lifestyle, new friends, and a fun and profitable niche market business. The business? Alpacas and the harvest and creation of hand-made, quality hypoallergenic wool and yarn products. They live and work outside of Anna, Illinois. The property included 10 acres, partially wooded. There wasn’t much fence or established pasture, but they started taking in Helping People Help the Land January 2017 Natural Resources Conservation Service “We learned pretty quick that the alpacas could pay for Judy called the USDA office in Anna, Illinois and was themselves,” Judy says. However, looking at the land they introduced to the Natural Resources Conservation Service noticed erosion problems and recognized their need to with all their conservation program options, including grow their own grass and hay. Judy knew they didn’t have technical and financial assistance for small livestock the funds to do it all on their own and do it right. They operators like herself, and Soil Conservationist Sarah needed better fence to protect their growing herd. They Wilson. They became fast friends and Judy and Steve needed a steady source of forage and a way to rotate and became NRCS’ new customer—and their first alpaca manage those resources. “We wanted to create a process farmers. NRCS works with private landowners of all kinds that was truly sustainable. That was my vision from the on a voluntary basis. beginning,” Judy says. Wilson is more accustomed to working with landowners Health issues with the herd was a new challenge for who have livestock like cows. But she quickly acclimated the start-up company. After going to local veterinarians to the new four-legged grazing animals in order to assist who were more familiar with cows, cats, and dogs the Hoepkers with their land and resource issues. than alpacas, the ROAR team began pitch-hitting in self-taught doctor skills as well. As luck would have it, “It’s no surprise that alpacas have the same needs and Judy’s daughter, Morgan, was working on a biology issues as any livestock. They need food, water, and degree. Morgan also loves working with animals. It was fences,” says Sarah. “And NRCS conservation programs are only natural that she stepped in and became ROAR’s designed to address erosion and water issues on all kinds farm manager. “Morgan had the scientific background of operations, including those with alpacas.” and knowledge that’s become invaluable to our whole operation,” Judy explains. Things were moving along quickly and issues with herd management, more herd health and safety concerns continued to mount. There were onsite resource issues on the farm’s steep and eroding slopes, unanswered questions, and mounting livestock and grazing system expenses that became a growing concern. Luckily, Judy had a friend who suggested they get in touch with USDA who could offer some help with all the livestock issues and fencing headaches they were up against. Establishing quality fences and gates for access and Different parts of the animal’s body produce different traffic was the first order of business. Digging a well and grades of fleece. The ‘sweet spot’ is typically along the installing a hydrant and watering facilities was next. The back and main torso. Fleece harvested from alpaca legs, west side of the acreage needed a grade stabilization chest and belly tends to be coarser. The neck of some structure to control water flow and stop erosion. Once animals can also be of better quality and able to use the application for the Environmental Quality Incentives in production. The industry establishes different grade Program (EQIP) was finalized and approved for funding, levels ranging from the finest (Grade 1) to thick/coarsest plans were developed and work began in July 2014. (Grade 6). “All alpaca fleece is soft, but it is key to know Because the land adjacent to theirs may be available and the difference because it directly affects value, pricing, for sale soon, the Hoepkers are hopeful they can acquire and how you will use the yarn.” Both Judy and Morgan it to allow more grass rotations, more grazing options, studied the grading/sorting/classing process and are and more alpacas. working to become certified in making fleece grade assessments. This is a crucial skill to have, as all fleece Judy’s energy level and excitement about all she’s learned inventory must be evaluated and sorted in order to price over the last 5 years is evident from the smile on her face. and sell. “I can’t tell you how many things we’ve tried, learned, and made mistakes with,” Judy laughs. “But we keep learning ROAR has been in operation long enough to learn more. We’re getting smarter, more efficient at what we the realities of animal value, risks herd relations, and do, and we’re more capable of handling things on our compatibility. They’ve already owned a few male alpacas own now. We’re actually helping others involved in similar who are territorial, combative, and who exhibit fleece start-ups. It’s amazing,” Judy says. and personality traits that are not helpful or profitable. There is a market for alpaca meat. “I suspect that with our When you raise cattle for beef, the end product is meat. growing herd, at some point, we will explore that as an When you raise alpaca, the ongoing end product is the option,” says Judy. fiber, or fleece. “Shearing alpaca is probably a lot like shearing sheep. I’d never done either before. It’s an art. And it’s a lot of work.” Judy is happy to show off her friendly and fuzzy alpacas Even the generous amounts of alpaca poop generated and demonstrates some of the simple, hands-on tools on Hoepkers farm has value. They compost it and offer and processes used to treat and prepare fiber for use. The it to local gardens. Requests for yarn continue to roll in. fiber can be dyed or used in natural colors. Even higher- Demand for products sold at craft shows is growing. grade alpaca fiber is super soft and very warm. And all According to Judy, this is the right time to be in the alpaca fiber is naturally hypoallergenic. Products ROAR animal fiber business. creates and sells include: The family is eager to see their new company’s business • Yarn • Rugs and vision come true. Sharing their experience, telling • Scarves • Hats others about what they do, and passing on all they’ve • Socks • Shawls learned clearly gives them joy. They all hope to offer the • Baby coats • Fleece-wrapped goat milk soaps ranch as an agri-tourism site and also plan to offer it as • Wine bottle holders an outdoor classroom for FFA, 4-H, or interested school groups. Judy reported in mid-November that the newly-seeded pasture looked lush and green. “All the grass is coming According to Sarah Wilson, “This is a unique farm up, but our herd won’t get to graze on it until next spring. operation and a special business enterprise. With some It needs time to establish good roots and healthy soil.” financial and technical assistance from NRCS, they’ve Their Alpaca will only graze pastures during daylight turned 10 rough acres that was unused into a thriving hours and never remain in pastures after dusk due to the business where they create natural and sustainable risk of predators.” We bring them together every evening products. I’m glad to be a part of such a great local for protection in the dry lot. The risk is too great to leave success story.” them out.” If you have a grazing operation or have soil and water resource concerns on your farm, call NRCS to see if we can help. Or visit www.il.nrcs.usda.gov to learn more. www.il.nrcs.usda.gov USDA is an equal opportunity provider, employer, and lender..
Recommended publications
  • Natural Materials for the Textile Industry Alain Stout
    English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ...................................................................................................................
    [Show full text]
  • Animal Fiber Metrology
    ANIMAL FIBER METROLOGY Chris Lupton Texas Agr iLife R esearc h The Texas A&M System San Angelo IRAQ AGRICULTURAL EXTENSION REVITALIZATION GROUP San Angelo, Texas October 21, 2009 Animal fiber program • Develop and evaluate improved ppgrocedures for measuring value- determining characteristics of animal fibers. • Collaborate in research ppjrojects that require fiber production and quality to be quantified. Animal fiber program • Project Leader: Chris Lupton • Research Associate: Faron Pfeiffer • Research Assistant: Sue Engdahl • Student Assistants: Eddie Swinney, Gary Henson, Kendra Franke (ASU) • (Graduate students, ASU and TAMU) • Plus administrative , secretarial , bookkeeping , and maintenance support from the unit and CS. Species we work with Muskox (qiviut), rabbit, dog, cattle, mice, et al. U. S. animal fiber testing labs • One commercial and 3 academic labs. • Our AgriLife Research lab is well equipped and staffed. • Consequently, there are plenty of opportunities for collaboration with AgriLife Research, USDA, ARS, and other scientists in academia on projects that have high national priority. Total sheep and lambs, 1908 to 2009 60000 1942, 56.2m 50000 40000 ands ss 30000 er, thou er, 2009, 5.75m in U.S. bb 0.87 m in Texas 20000 Num 10000 0 1908 1918 1928 1938 1948 1958 1968 1978 1988 1998 Year (January data) Number of operations with sheep 300000 250000 241,590 200000 150000 Number 100000 82,330 50000 0 1965 1970 1975 1980 1985 1990 1995 2000 2005 Year Sheep operations in Texas 25000 20000 19,500 15000 Number 10000 7000 5000 0 1965 1970 1975 1980 1985 1990 1995 2000 2005 Year National sheep and goat operations (farms) and trends 2008 data • Sheep 82,330.
    [Show full text]
  • A Review on Chemical Behaviour of Natural Fiber Composites
    Int. J. Chem. Sci.: 14(4), 2016, 2223-2238 ISSN 0972-768X www.sadgurupublications.com A REVIEW ON CHEMICAL BEHAVIOUR OF NATURAL FIBER COMPOSITES A. LAKSHUMU NAIDU* and P. S. V. RAMANA RAOa GMR Institute of Technology, RAJAM (A.P.) INDIA aCenturion University of Technology & Management, PARLAKHEMUNDI (Odisha) INDIA ABSTRACT This paper outlines the chemical properties of natural fibers composites and discusses the latest trends in chemical modifications. In recent years, natural fibers reinforced composites have received a strong attention because of their light weight, nonabrasive, combustible, nontoxic, low cost and biodegradable properties. Chemical treatment of the natural fibers can clean the fiber surface, chemically modify the surface, stop the moisture absorption process and increase the surface roughness. A number of specific chemicals are used for chemical modifications of these composites. Such chemically modified are being used increasingly for engineering applications (particularly under hard working conditions). Thus, it becomes necessary to take care of the chemical properties of composites to ensure their long term stable behaviour in the practical applications. The detailed test results and observations are presented and conclusions are drawn. Key words: Chemical properties, Chemical treatment, Composites. INTRODUCTION Because of the improvement and development of innovation, the need of material having profoundly particular properties is expanding step by step and this test interest can't be satisfy by utilization of polymers, clay and metal composites. Accordingly, as of late composite materials are utilized as elective as a part of a few light weight and high quality applications. Composites are commonly happening or designed materials which are produced from two or more constituents.
    [Show full text]
  • Natural Fibers and Biopolymers Characterization: a Future Potential Composite Material
    Journal of MECHANICAL ENGINEERING – Strojnícky časopis, VOL 68 (2018), NO 1, 33 - 50 NATURAL FIBERS AND BIOPOLYMERS CHARACTERIZATION: A FUTURE POTENTIAL COMPOSITE MATERIAL LALIT Ranakoti1*, MAYANK Pokhriyal1,, ANKUR Kumar1 1Department of Mechanical Engineering, National Institute of Technology Uttarakhand *email: [email protected] Abstract: Now days, green composite materials are now gaining popularity for the various industrial applications. It is a combination of naturally occurring reinforcement like jute, sisal, flax, hemp, and kenaf; and matrix materials like biopolymers or bio resins which have been derived from starch, and vegetable oils. It is becoming more desirable due to its properties like biodegradability, renewability and environment friendly. The present paper presents the various natural fibers and their combinations with biopolymers. The paper also reflects the key issue related to hydrophilic nature of natural fibers and their remedies for a good fiber and bio polymer adhesion. Furthermore the strategy used and major attributes of the green composite are also discussed. KEYWORDS: natural fibers, biopolymers, chemical treatment, green composite 1 Introduction Composite material has wide spectrum in industrial and engineering fields using suitable material like metal [1-2], polymers and ceramics so as to obtain optimum strength, these materials are being used according to the growing need of the society. Transition of Industries towards production of green composite is taking place due to the increasing demand of consumer, to reduce the use of synthetic material, higher sustainability, biodegradability, friendly to environment and recyclability, inexpensive, low density etc. [3, 4]. Natural fibers are biologically occurring materials which have two main sources (a) agriculture production and (b) production residue of crops when they are processed for the primary uses [5].
    [Show full text]
  • Police Microanalysis M
    Journal of Criminal Law and Criminology Volume 25 Article 11 Issue 5 January-February Winter 1935 Police Microanalysis M. Edwin O'Neill Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation M. Edwin O'Neill, Police Microanalysis, 25 Am. Inst. Crim. L. & Criminology 835 (1934-1935) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. POLICE SCIENCE It is interesting to note that there is a prevailing tendency, in all races, in the distribution of the pattern types among the digits. Whorls tend to be concentrated on digits I and IV, with a significant superiority of the right hand in this respect; digit II leads in the possession of arches, and radial loops also occur most commonly on digit II. Racial departures from this typical behavior must again be revealed in groups of individuals, just as the behavior itself is demon- strable only statistically. Another significant contribution by Poll to the technology of finger-print analysis is the construction of what he terms a "dactylodiagram," based on the frequencies of whorls and arches in specified finger pairs of right and left hands; for the detailed procedure reference must be made to the original publications. One expression of the result is the "lambda angle," in which racial dif- ferences are demonstrable, this being the figure cited in the press notices of Poll's work.
    [Show full text]
  • Fiber Identification in Practice
    FIBERIDENTIFICATION IN PRACTICE MarthaGoodway* ABSTRACT-Brief case studies of the problems in identification of a wide variety of ethnographic and archaeological fibers are given. The strategy of identification varied with the purpose (choice of treatment, assessment of damage or identification of its cause, or authentication) but most of all with the condition of the fibers. Fibers from ethnographic or archaeological sources tend to be aged, and are sometimes fragmentary or decayed, fossilized or charred. With fibers in such condition, the simpler methods of preparation for microscopic observation were found more successful than the classical biological methods of soaking, clearing and staining. Not all fibers could be identified. Fur fibers from characteristic areas of the pelt were usually diagnostic as to species as well as to genus. Vegetable fibers were often not mophologically specific to species. Unless "guide elements" were present, or special limitations on species distribution were known, the identification of the genus of a vegetable fiber was often the best that could be done. Instructions for an optical test for flax, and a report form for the observation of fur and wool fibers, are included. The identification of fibers in archaeological and ethnographic objects in practice is a great deal more difficult than the texts on fiber identification lead one to believe. For example, the solubility tests which are a mainstay of synthetic fiber identification are of no use since archaeological and ethnographic fibers are natural ones. The various chloroiodine stains, Herzberg's and others which stain cellulose red, violet or blue and ligno-cellulose yellow, seldom act on old and dessicated fiber unless at nodes or points of fracture.
    [Show full text]
  • Natural Fibers As Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – a Review
    Review Article 2019, 10(10), 682-694 Advanced Materials Letters Natural Fibers as Viable Sources for the Development of Structural, Semi-Structural, and Technological Materials – A Review Chioma E. Njoku1,2,3, Kenneth K. Alaneme2, Joseph A. Omotoyinbo2, Michael O. Daramola3,* 1Department of Materials and Metallurgical Engineering, Federal University of Technology, Owerri, PMB 1526, Nigeria 2Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, PMB 704, Nigeria 3School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Wits 2050, Johannesburg, South Africa *Corresponding author: E-mail: [email protected]; Tel: (+27) 11 717 7536 Received: 11 December 2018, Revised: 23 January 2019, Accepted: 18 February 2019 DOI: 10.5185/amlett.2019.9907 www.vbripress.com/aml Abstract A systematic and critical review on the potentials and viability of naturally occurring fibers as suitable reinforcements for the development of composite systems for structural, semi-structural and technological materials is presented in this article. Globally, the movement towards greater protection of the environment and the use of cost-saving technologies has led to a surge in the consideration of natural (biodegradable) products for the development of technological materials. In this regard, natural fibers have been proven to be good substitutes to synthetic fibers for the development of composites - because they possess similar mechanical and physical characteristics, to the synthetic fibers. In addition, natural fibers are lighter non-toxic and biodegradable. It is on this premise that several studies on their use in a number of applications where composites are desirable have been reported.
    [Show full text]
  • An Examination of Environmental Impacts of Clothing Manufacture, Purchase, Use, and Disposal
    Dovetail Partners Consuming Responsibly Report No. 13 An Examination of Environmental Impacts of Clothing Manufacture, Purchase, Use, and Disposal Jim L. Bowyer Ashley McFarland Ed Pepke, Ph.D. Harry Groot Gloria Erickson Chuck Henderson Mark Jacobs Kathryn Fernholz Dovetail Partners, Inc. November 11, 2019 Other Reports in the Consuming Responsibly Series To Date Consuming Responsibly: New Series Introduction – September 2018 Environmental Impacts of Tap vs. Bottled Water – September 2018 E-Waste and How Consumer Choices Can Help to Reduce It – October 2018 Environmental Assessment of Natural vs. Artificial Christmas Trees – November 2018 Comparison of Environmental Impacts of Flooring Alternatives – January 2019 Replacing that Old Refrigerator: A Bigger Decision than You Think – February 2019 Environmental Assessment of Conventional vs. Hybrid vs. Battery-Electric Vehicles – March 2019 Environmental Assessment of Intensive Lawn Care – April 2019 Consumer Food Waste: Environmental Impacts and Changing Course – May 2019 Reducing Home Energy Consumption – July 2019 Bathing and the Environment – August 2019 Environmental Assessment of House Cladding Products – September 2019 Your Television and Energy Consumption – October 2019 An Examination of Environmental Impacts of Clothing Manufacture, Purchase, Use, and Disposal – November 2019 Forthcoming An Environmental Assessment of Transportation Alternatives Paper vs. Plastic vs. Reusable Shopping Bags Life Cycle Assessment of Biofuels vs. Fossil Fuels Further Report Titles TBD These reports, as well as the full collection of Dovetail reports and environmental resources, are available at www.dovetailinc.org 1 An Examination of Environmental Impacts of Clothing Manufacture, Purchase, Use, and Disposal Executive Summary Clothing production is dominated by two types of fiber – synthetic (principally polyester) and cotton. These two types of fiber together account for over 80% of fiber used in clothing manufacture.
    [Show full text]
  • Identification of Animal Fibers with Wavelet Texture Analysis
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. Identification of Animal Fibers with Wavelet Texture Analysis Junmin Zhang, Stuart Palmer, and Xungai Wang or rippled; the distance apart of the external margins of the Abstract— This paper presents the use of the wavelet scales, e.g., close, distant or near; and the type of overall transform to extract fiber surface texture features for pattern, e.g., regular, irregular mosaic, waved or chevron. To classifying cashmere and superfine merino wool fibers. develop an automatic method similar to the above system, Extracting features from brightness variations caused by the various authors have used combinations of microscopy and cuticular scale height, shape and interval provides an effective way for characterizing different animal fibers and image analysis together with statistical and neural network subsequently classifying them. This may enable the techniques [6-10]. Cuticular scale characteristics and scale development of a completely automated and objective system height have been used as the main diagnostic features to for animal fiber identification. classify wool and specialty fibers. Scale parameters have been obtained using image Index Terms— Cashmere fibers, image analysis, Merino processing techniques [10, 11]. They objectively describe fibers, wavelet texture analysis. the scale interval and scale shape, and form a basis for classification. However, the measurement of the scale parameters is based on a binary skeleton image, which has I. INTRODUCTION lost all the information of scale height. Converting the SEM Cashmere is an expensive and rare animal fiber used to or LM images into binary thin skeleton images needs produce soft and luxurious apparel.
    [Show full text]
  • Wool and Other Animal Fibers in South America
    Proceedings of the Symposium on Natural Fibres 43 Wool and other animal fibers in South America Roberto Cardellino, Delta Consultants, Uruguay* and Joaquín Mueller** INTRODUCTION The South American sub-continent is a vast and variable area that includes 12 independent countries and many different ecological conditions, from tropical areas in the north to temperate climates in the centre and semi-desert conditions in the south. (Map 1). Map 1 – South America Table 1 – The importance of animal fi bers in South America Production in kgs Wool 143 700 000 Alpaca 4 055 595 Llama 3 342 866 Mohair 825 000 Vicuña 5 580 Guanaco 1 500 Source: Cardellino,R. based on SAGPyA, SUL, ODEPA, IICA, IWTO Wool is by far the most important ani- mal fi ber in South America; however other animal fi bers like alpaca, llama, and mohair are also produced in large quantities, whereas vicuña, guanaco, angora and cashmere have a great potential for development but the amount produced at present is low (Table 1). The production of wool and other specialty of fi bers is concentrated in the Southern Cone of the sub-continent (Argentina, Uruguay, Chile and south of Brazil), where climate is temperate or deserted. Further north, with the exception of the Altiplano region, (the highlands of the Andes mountains), the production of these animal fi bers is not possible due to the tropical climatic conditions. * Delta Consultants, Director ** National Institute for Agriculture Technology, INTA 44 Proceedings of the Symposium on Natural Fibres Map 2 – South America: sheep producing areas THE PRODUCTION OF WOOL The main areas in South America producing wool are shown in Map 2.
    [Show full text]
  • NATURAL FIBER ARTS Hodge Exhibit Hall Co-Chairs – Julie Deak (603.707.0140; [email protected]) Juli Hird (603.284.6377; [email protected])
    NATURAL FIBER ARTS Hodge Exhibit Hall Co-Chairs – Julie Deak (603.707.0140; [email protected]) Juli Hird (603.284.6377; [email protected]) A growing number of small farms with fiber animals, as well as a renewed interest in working with natural fibers, inspired this department. There are numerous individuals and groups who spin, felt, knit, crochet, and weave with natural fibers who want to exhibit and educate. Items made with yarns made from man-made materials should be entered and judged in the Crafts and Needlework Department, displayed adjacent to this department in the exhibit hall. DIVISIONS: CATEGORIES (process): I. Item of Home Spun Natural Fiber Yarn 1. Knitted (indicate if machine knit) II. Item of Mill Spun Natural Fiber Yarn 2. Crocheted III. Item of Both Mill & Home Spun 3. Woven 4. Repurposed/Up-cycled Natural Fiber Yarns 5. Wet felted A. Hat 6. Needle felted B. Mittens/Gloves/Mitts 7. Any combination of processes 1-6 C. Sweater 8. Home spun skeins, circle one: D. Socks a. Single ply b. 2-ply c. 3-ply d. Other___________ E. Scarf/Cowl Intended use: ___________________________________ F. Shawl/Stole/Shrug Produced on (check one) G. Totes/Bags Drop spindle Spinning wheel H. Home Goods Home spun skeins must be hand spun by exhibit with a I. Sculpture (3-D) minimum amount of 2 oz. submitted (except exotic classes). J. Jewelry Skeins must be wound into hank, washed to set twist and tied K. Wall Hanging neatly in 4 places with matching ties. L. Mask M. Vessel 9. Other ____________________________________________ N.
    [Show full text]
  • YARN – the ESSENTIAL Program ELEMENT of KNITTING Activity Plan – Knitting Actpa082
    Wisconsin Knitting (or Crocheting) 4-H Youth Development YARN – THE ESSENTIAL Program ELEMENT OF KNITTING Activity Plan – Knitting ACTpa082 BACKGROUND Project Skills: Fiber is used by knitters to create a fabric which becomes a sweater, a pair of socks, an • Identifying various fibers afghan or another item. In early days, raising animals to provide the fiber for knitting and their sources. clothing was a common practice. Knitters cleaned, spun and knitted the fiber to make socks and sweaters to cloth their families. Based on the fiber they raised and used, they Life Skills: knew how to care for it so the item would last. • Learning to learn; making decisions These days, a knitter can go to a store to buy yarn to make knitted items for their families and friends. In planning a project, the knitter needs to consider what yarn to use Academic Standards: based on whom the item is for, how it will be used and how it will be cared for. For This activity complements these reasons, it’s important for a knitter to be able to identify the type and source of these academic standards: their yarn. In this activity, youth will explore the many types of fibers and their origins. • Art and Design Education: A.4.1. WHAT TO DO Develop a basic mental Activity: Where Does Yarn Come From? storehouse of images. Youth will learn the types of fiber and learn the characteristics of various yarns. Youth A.4.2. Learn basic will be able to identify the animals and plants that fiber comes from.
    [Show full text]