Design of a Hand-Launched Solar-Powered Unmanned Aerial Vehicle (UAV) System for Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Design of a Hand-Launched Solar-Powered Unmanned Aerial Vehicle (UAV) System for Plateau applied sciences Article Design of a Hand-Launched Solar-Powered Unmanned Aerial Vehicle (UAV) System for Plateau Xin Zhao 1, Zhou Zhou 1,*, Xiaoping Zhu 2 and An Guo 1 1 School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] (X.Z.); [email protected] (A.G.) 2 Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi’an 710072, China; [email protected] * Correspondence: [email protected] Received: 8 January 2020; Accepted: 7 February 2020; Published: 14 February 2020 Abstract: This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter ( 30 C). The test data − ◦ showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data. Keywords: solar-powered UAV; perpetual flight; conceptual design; aileron-free; flight control system; flight test 1. Introduction With the development of the world economy, energy crisis and environmental pollution are becoming a serious problem. In recent years, with the rapid improvement of technology of solar cell and secondary battery, solar-powered aircraft, due to the advantages of environmental protection and long endurance, following the ‘Pathfinder’ [1] and ‘Helios’ [2], the world set off a research upsurge of solar-powered UAV once again. Solar-powered UAV, which converts solar energy into electricity and stores it in secondary batteries during daytime flight, has better endurance than conventional aircraft and may even be able to fly permanently. The long-endurance capability of the solar-powered UAV platform is particularly important in rescue missions, forest fire prevention, communication coverage, and protection of endangered animals. In view of the extreme flight environment in the plateau region, this paper proposes a design method of small, solar-powered UAV suitable for low-temperature and high altitude areas, including a solar irradiance model that can reflect the geography and time and a Appl. Sci. 2020, 10, 1300; doi:10.3390/app10041300 www.mdpi.com/journal/applsci Appl.Appl. Sci. Sci.2020 2020, 10, ,10 1300, x FOR PEER REVIEW 2 of2 28 of 26 can reflect the geography and time and a battery weight model that considers the impact of low batterytemperature weight on model battery that performance. considers the Based impact on ofthis, low a temperaturesmall aileron-free on battery UAV was performance. developed Basedfor onecological this, a small monitoring aileron-free and UAVanimal was protection developed in forplateau ecological areas. monitoringThis paper andalso animal developed protection the indynamics plateau areas. model This of paper aileron-free also developed UAV, analyzed the dynamics the characteristics model of aileron-free of UAV’s UAV, stability analyzed and the characteristicsmaneuverability of UAV’s in high-altitude stability and maneuverabilityflight, and designed in high-altitude the control flight, and and tracking designed system the control for andhigh-altitude tracking system flight. for Finally, high-altitude in Qiangtang, flight. Finally,Tibet, China’s in Qiangtang, first solar-powered Tibet, China’s UAV first took solar-powered off and UAVlanded took at off anand altitude landed ofat more an altitude than 4500 of morem. The than experiment 4500 m. Theverified experiment the correctness verified of the the correctness design of themethod design and method the control and themethod, control and method, analyzed and the analyzed feasibility the of feasibility the perpetual of the flight perpetual with different flight with loads according to the flight energy consumption data (Figure 1). different loads according to the flight energy consumption data (Figure1). (a) (b) (c) FigureFigure 1. The1. The solar-powered solar-powered unmanned unmanned aerial aerial vehicle vehicle (UAV) (UAV) used used forecological for ecological monitoring monitoring and animaland protection:animal protection: (a) Mini-Phantom (a) Mini-Phantom (MP) solar-powered (MP) solar-powered UAV, (b) infrared UAV, ( podb) infrared for ecological pod for monitoring, ecological (c) Tibetanmonitoring, antelopes (c) Tibetan photographed antelopes by photogra optical camera.phed by optical camera. InIn recent recent years, years, solar-powered solar-powered aircraftaircraft havehave been developed in in both both manned manned and and unmanned unmanned aircraft.aircraft. In termsIn terms of mannedof manned solar solar aircraft, aircraft, ‘Solar ‘Sol Impulsear Impulse 2’, the 2’, world’s the world’s largest largest solar-powered solar-powered airplane, successfullyairplane, successfully completed completed the world’s the first world’s solar-powered first solar-powered flight around flight around the world the onworld 26 Julyon 26 2016 July [ 3]. On2016 the other[3]. On hand, the manyother hand, researchers many focusresearchers on employing focus on large-scaleemploying solar-poweredlarge-scale solar-powered high-altitude long-endurancehigh-altitude long-endurance (HALE) UAVs as(HALE) atmospheric UAVs as satellites. atmospheric Typical satellites. examples Typical are ‘Solara’examples [4 ]are and ‘Solara’ ‘Zephyr S’,[4] the and latter ‘Zephyr of which S’, the has latter broken of wh theich previous has broken record the of previous 14 days record set by theof 14 ‘Zephyr days set 7’ by prototype the ‘Zephyr [5] with7’ prototype [5] with approximately 25 days and 23 h of flight on 11 July 2018 [6]. In contrast, approximately 25 days and 23 h of flight on 11 July 2018 [6]. In contrast, smaller-scale, solar-powered smaller-scale, solar-powered UAVs are mostly designed for low-altitude long-endurance (LALE) UAVs are mostly designed for low-altitude long-endurance (LALE) applications. In 2008, ‘sky sailor’, applications. In 2008, ‘sky sailor’, a small solar-powered UAV from Switzerland, flew for 27 h. The a small solar-powered UAV from Switzerland, flew for 27 h. The structural design of the UAV referred structural design of the UAV referred to the glider for competition and it weighed only 780 g [7]. The to the glider for competition and it weighed only 780 g [7]. The ‘AtlantikSolar’ small UAV from ‘AtlantikSolar’ small UAV from the Swiss Federal Institute of Technology Zurich completed a flight theof Swiss 81.5 h Federal in July 2015, Institute setting of Technologyan endurance Zurich record completed for an aircraft a flight under of 81.550 kg. h Compared in July 2015, with setting large an endurancesolar-powered record aircraft, for an aircraftsmall solar-powered under 50 kg. UAV Compared have higher with largestructural solar-powered weight coefficient aircraft, and small solar-poweredlower load UAVcapacity, have so higher theystructural are suited weight for low-altitude coefficient and and lower long-endurance load capacity, missions. so they are Noth suited forproposed low-altitude a matching and long-endurance parameter mo missions.del of energy Noth and proposed power afor matching perpetual parameter flight [7] modelof small of solar energy andUAV power in 2008. for perpetualBased on the flight energy [7] of system small model, solar UAV Philipp in 2008.Oettershagen Based onproposed the energy an energy-robust system model, Philippdesign Oettershagen method that proposedallows design an energy-robust of solar-powe designred UAVs method for energetically that allows robust design perpetual of solar-powered flight UAVsin sub-optimal for energetically meteorological robust perpetual conditions flight [8]. inIn sub-optimal both methods, meteorological the solar irradiance conditions model [8]. was In both a methods,simplified the solarsinusoidal irradiance model. model Small was solar-powere a simplifiedd sinusoidalUAVs fly model.mostly Small at low solar-powered altitudes, so UAVs most fly mostlyprevious at low studies altitudes, did not so consider most previous the effect studies of low did temperatures not consider on battery the effect performance. of low temperatures on batterySection performance. 2 presents the conceptual design method of perpetual flight suitable for flight on low temperatureSection2
Recommended publications
  • The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering
    The Journey to Mars: How Donna Shirley Broke Barriers for Women in Space Engineering Laurel Mossman, Kate Schein, and Amelia Peoples Senior Division Group Documentary Word Count: 499 Our group chose the topic, Donna Shirley and her Mars rover, because of our connections and our interest level in not only science but strong, determined women. One of our group member’s mothers worked for a man under Ms. Shirley when she was developing the Mars rover. This provided us with a connection to Ms. Shirley, which then gave us the amazing opportunity to interview her. In addition, our group is interested in the philosophy of equality and we have continuously created documentaries that revolve around this idea. Every member of our group is a female, so we understand the struggles and discrimination that women face in an everyday setting and wanted to share the story of a female that faced these struggles but overcame them. Thus after conducting a great amount of research, we fell in love with Donna Shirley’s story. Lastly, it was an added benefit that Ms. Shirley is from Oklahoma, making her story important to our state. All of these components made this topic extremely appealing to us. We conducted our research using online articles, Donna Shirley’s autobiography, “Managing Martians”, news coverage from the launch day, and our interview with Donna ​ ​ Shirley. We started our research process by reading Shirley’s autobiography. This gave us insight into her college life, her time working at the Jet Propulsion Laboratory, and what it was like being in charge of such a barrier-breaking mission.
    [Show full text]
  • Biofuels, Electrofuels, Electric Or Carbon-Free?: a Review of Current
    1Biofuels, Electrofuels, Electric or Carbon-free?: A review of current and emerging Sustainable 2Energy Sourcing for Aviation (SESA) 3Pimchanok Su-ungkavatin1*, Ligia Barna1, Lorie Hamelin1 41 Toulouse Biotechnology Institute (TBI), INSA, INRAE UMR792, and CNRS UMR5504, Federal University of Toulouse, 135 5Avenue de Rangueil, F-31077, Toulouse, France 6* Corresponding author e-mail address: [email protected] 7Abstract 8Climate neutrality is becoming a core long-term competitiveness factor within the aviation industry, as demonstrated 9by the several innovations and targets set within that sector, prior to and especially after the COVID-19 crisis. 10Ambitious timelines are set, involving important investment decisions to be taken in a 5-years horizon time. Here, 11we provide an in-depth review of alternative energy sourcing technologies for aviation revealed to date, which we 12classified into three main categories, namely liquid fuels (biofuels, electrofuels), electric aviation (all electric and 13hybrid), and carbon-free options (hydrogen-based, solar-powered). For liquid fuels, 10 pathways were reviewed, for 14which we supply the detailed process flow picturing all input, output, and co-products generated. The market uptake 15and use of these co-products were also investigated, along with the overall international regulations and targets for 16future aviation. As most of the inventoried pathways require hydrogen, we further reviewed six existing and 17emerging carbon-free hydrogen production technologies. Our review also details the five key battery technologies 18available (lithium-ion, advanced lithium-ion, solid-state battery, lithium-sulfur, lithium-air) for aviation, as well as 19the possible configuration schemes for electric propulsion (parallel electric hybrid, series electric hybrid, all electric, 20partial turboelectric and full turboelectric) and reflects upon the inclusion of hydrogen-powered fuel cells with these 21configurations.
    [Show full text]
  • Solar Aircraft Design
    Cumhuriyet Üniversitesi Fen Fakültesi Cumhuriyet University Faculty of Science Fen Bilimleri Dergisi (CFD), Cilt:36, No: 3 Özel Sayı (2015) Science Journal (CSJ), Vol. 36, No: 3 Special Issue (2015) ISSN: 1300-1949 ISSN: 1300-1949 SOLAR AIRCRAFT DESIGN Sadegh RAHMATI1,*, Amir GHASED2 1,2Department of Mechanical Engineering, Majlesi Branch, Islamic Azad University, Isfahan, Iran Received: 01.02.2015; Accepted: 05.05.2015 ______________________________________________________________________________________________ Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part for the night flight. This paper intended to stimulate research on renewable energy sources for aviation. In future solar powered air planes could be used for different types of aerial momitoring and unmanned flights. This review paper brietly shows history, application and use of solar aircraft. We are focusing on design and fabrication of solar aircraft which is unmanned prototype. Keywords: Solar energy, Reynolds number, Bernoulli’s principle 1. INTRODUCTION Energy comes in different forms. Light is a form of energy. Sun is source of energy called “sunlight”. Sunshine is free and never gets used up Also. There is a lot of it. The sunlight that heats the Earth in an hour has more energy than the people of the world use in a year.
    [Show full text]
  • State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications
    Dissertations and Theses Fall 2011 State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications Lori Anne Costello Embry-Riddle Aeronautical University - Daytona Beach Follow this and additional works at: https://commons.erau.edu/edt Part of the Aerospace Engineering Commons Scholarly Commons Citation Costello, Lori Anne, "State of the Art of Piloted Electric Airplanes, NASA's Centennial Challenge Data and Fundamental Design Implications" (2011). Dissertations and Theses. 37. https://commons.erau.edu/edt/37 This Thesis - Open Access is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. STATE OF THE ART OF PILOTED ELECTRIC AIRPLANES, NASA’S CENTENNIAL CHALLENGE DATA AND FUNDAMENTAL DESIGN IMPLICATIONS by Lori Anne Costello A Thesis Submitted to the Graduate Studies Office in Partial Fulfillment of the Requirements for the Degree of Master of Science in Aerospace Engineering Embry-Riddle Aeronautical University Daytona Beach, Florida Fall 2011 1 Copyright by Lori Anne Costello 2011 All Rights Reserved 2 ACKNOWLEDGEMENTS This thesis is the culmination of two years of work on the Green Flight Challenge Eco-Eagle. The Eco- Eagle and this thesis would not have been possible without countless help and inspiration from friends and family. I would like to thank Dr. Anderson for giving me the opportunity to participate in Embry-Riddle’s Green Flight Challenge Team and for supporting me and the Eco-Eagle project. Without his guidance I would not have this paper and understood as much as I now do about electric airplanes.
    [Show full text]
  • Astronautics and Aeronautics: a Chronology, 1996-2000
    ASTRONAUTICS AND AERONAUTICS: A CHRONOLOGY, 1996–2000 NASA SP-2009-4030 February 2009 Authors: Marieke Lewis and Ryan Swanson Project Manager: Alice R. Buchalter Federal Research Division, Library of Congress NASA History Division Office of External Relations NASA Headquarters Washington, DC 20546 Astronautics and Aeronautics: A Chronology, 1996-2000 PREFACE This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site. i Astronautics and Aeronautics: A Chronology, 1996-2000 TABLE OF CONTENTS PREFACE........................................................................................................................................ i JANUARY 1996............................................................................................................................. 1 FEBRUARY 1996 .......................................................................................................................... 5 MARCH 1996................................................................................................................................
    [Show full text]
  • Space Station Freedom. a Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 310 939 SE 050 885 AUTHOR David, Leonard TITLE Space Station Freedom. A Foothold on the Future. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Office of Space Sta.:Ion. REPORT NO NP-107/10-88 PUB DATE 89 NOTE 49p.; Colored photographs and drawings may not reproduce well. PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PCO2 Plus Postage. DESCRIPTORS *Aerospace Technology; Engineering Technology; Planning; *Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; *Space Exploration; *Space Sciences IDENTIFIERS *Space Station ABSTRACT This booklet describes the planning of the space station program. Sections included are: (1) "Introduction"; (2) "A New Era Begins" (discussing scientific experiments on the space station); (3) "Living in Space";(4) "Dreams Fulfilled" (summarizing the history of the space station development, including the skylab and shuttle); (5) "Building a Way Station to Worlds Beyond" (illustrating an approach to building the space station); (6) ''Orbital Mechanics" (discussing the maneuverability of the space station, including robotic application);(7) "Evolving with Versatility" (describing blueprints for expanding a space station); and (8) "Foothold on the Future" (discussing the future plans of the space station program). (YP) **************************************-******************************* * Reproductions supplied by EDRS are the best that can be made * from the original document. *********************************************************************A*
    [Show full text]
  • GUIDANCE, NAVIGATION, and CONTROL 2020 AAS PRESIDENT Carol S
    GUIDANCE, NAVIGATION, AND CONTROL 2020 AAS PRESIDENT Carol S. Lane Cynergy LLC VICE PRESIDENT – PUBLICATIONS James V. McAdams KinetX Inc. EDITOR Jastesh Sud Lockheed Martin Space SERIES EDITOR Robert H. Jacobs Univelt, Incorporated Front Cover Illustration: Image: Checkpoint-Rehearsal-Movie-1024x720.gif Caption: “OSIRIS-REx Buzzes Sample Site Nightingale” Photo and Caption Credit: NASA/Goddard/University of Arizona Public Release Approval: Per multimedia guidelines from NASA Frontispiece Illustration: Image: NASA_Orion_EarthRise.jpg Caption: “Orion Primed for Deep Space Exploration” Photo Credit: NASA Public Release Approval: Per multimedia guidelines from NASA GUIDANCE, NAVIGATION, AND CONTROL 2020 Volume 172 ADVANCES IN THE ASTRONAUTICAL SCIENCES Edited by Jastesh Sud Proceedings of the 43rd AAS Rocky Mountain Section Guidance, Navigation and Control Conference held January 30 to February 5, 2020, Breckenridge, Colorado Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Copyright 2020 by AMERICAN ASTRONAUTICAL SOCIETY AAS Publications Office P.O. Box 28130 San Diego, California 92198 Affiliated with the American Association for the Advancement of Science Member of the International Astronautical Federation First Printing 2020 Library of Congress Card No. 57-43769 ISSN 0065-3438 ISBN 978-0-87703-669-2 (Hard Cover Plus CD ROM) ISBN 978-0-87703-670-8 (Digital Version) Published for the American Astronautical Society by Univelt, Incorporated, P.O. Box 28130, San Diego, California 92198 Web Site: http://www.univelt.com Printed and Bound in the U.S.A. FOREWORD HISTORICAL SUMMARY The annual American Astronautical Society Rocky Mountain Guidance, Navigation and Control Conference began as an informal exchange of ideas and reports of achievements among local guidance and control specialists.
    [Show full text]
  • Effort to Accelerate MBSE Adoption and Usage at JSC
    Effort to Accelerate MBSE Adoption and Usage at JSC Lui Wang1 NASA Johnson Space Center, Houston, TX 77058 and Michel Izygon, Ph.D.2, Shira Okon3, Larry Garner4, and Howard Wagner, Ph.D.5 Tietronix Software Inc., Houston, TX 77058 This paper describes the authors’ experience in adopting Model Based System Engineering (MBSE) at the NASA/Johnson Space Center (JSC). Since 2009, NASA/JSC has been applying MBSE using the Systems Modeling Language (SysML) to a number of advanced projects. Models integrate views of the system from multiple perspectives, capturing the system design information for multiple stakeholders. This method has allowed engineers to better control changes, improve traceability from requirements to design and manage the numerous interactions between components. As the project progresses, the models become the official source of information and used by multiple stakeholders. Three major types of challenges that hamper the adoption of the MBSE technology are described. These challenges are addressed by a multipronged approach that includes educating the main stakeholders, implementing an organizational infrastructure that supports the adoption effort, defining a set of modeling guidelines to help engineers in their modeling effort, providing a toolset that support the generation of valuable products, and providing a library of reusable models. JSC project case studies are presented to illustrate how the proposed approach has been successfully applied. Nomenclature CAD = Computer-Aided Design CDS = Cascade Distillation System
    [Show full text]
  • July-16.Indd
    SWATI SAXENA RTICLE A EATURE F There have been many efforts to build and fl y a solar-powered aircraft that does not guzzle conventional fuels. Although some headway has been made, there is still a long way to go. batteries or fuel cells are used for this The Solar-Powered Aircraft purpose. They can be re-charged during Developments’ “Solar One” is a British the day. mid-wing, experimental, manned solar- Solar Plane History powered aircraft designed by David Solar plane history dates back to the Williams was the third solar-powered 1970s when the 27 lb (12 kg) unmanned aircraft to fl y. A motor-glider type AstroFlight Sunrise, the result of an USA aircraft originally built as a pedal- HE world’s fi rst offi cial fl ight in a ARPA (Advanced Research Projects powered airplane to attempt the Channel solar-powered, man-carrying aircraft T Agency) contract, made the world’s fi rst crossing, the airplane proved too heavy took place on 29 April 1979. Technologists solar-powered fl ight from Bicycle Lake, to be successfully powered by human have been trying since long to look for a dry lake bed on the Fort Irwin Military power and was then converted to greener ways of fl ying aircraft. And what Reservation, on 4 November 1974. solar power, using an electric motor can be greener than harnessing the energy The improved Sunrise II fl ew on driven by batteries that were charged of the sun to power aircraft. 27 September 1975 at Nellis Air Force before fl ight by a solar cell array on the A solar powered plane converts Base.
    [Show full text]
  • Calendar Year 2000 in Review
    NASA HISTORY: CALENDAR YEAR 2000 IN REVIEW Introduction: During 2000 the efforts of the NASA History Division continued to focus on our core goals in accomplishing the collection, preservation, and dissemination of historical knowledge about NASA. These goals include: · Continue high quality history publication program. · Focus on applied historical research efforts of interest and use to NASA executive leadership. · Aggressively acquire, preserve, and make available documentary information in the NASA Historical Reference Collection. · Aggressively disseminate historical information and understanding to the broadest possible audience. · Use technology to collect, preserve, and disseminate NASA history. · Achieve agency-wide involvement in the preservation and dissemination of history. We accomplish this by developing a significant collection of reference documents for use by both NASA personnel and the public; providing historical perspective and documentary support for agency executives; and researching and writing NASA history for publication in books, monographs, articles, and reports. Reference Collection and Research Support: Information Requests During calendar year 2000 NASA History Division personnel answered a total number of 11,732 research requests from government, educational, and private organizations on all manner of divergent research interests. This required a total number of 4,745 work hours by the office staff. Also during the year, the History Division provided research services to on-site researchers using its collections. Table 1 breaks down the number and type of information requests handled by NASA history personnel during calendar year 2000. Table 1 also depicts the large percentage of e-mail requests for information that the History Division is receiving. With the advance of this technology, querying the History Division has become easier than ever, and it represents a growing workload that must be met in the future.
    [Show full text]
  • 1999 EOS Reference Handbook
    1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System http://eos.nasa.gov/ 1999 EOS Reference Handbook A Guide to NASA’s Earth Science Enterprise and the Earth Observing System Editors Michael D. King Reynold Greenstone Acknowledgements Special thanks are extended to the EOS Prin- Design and Production cipal Investigators and Team Leaders for providing detailed information about their Sterling Spangler respective instruments, and to the Principal Investigators of the various Interdisciplinary Science Investigations for descriptions of their studies. In addition, members of the EOS Project at the Goddard Space Flight Center are recognized for their assistance in verifying and enhancing the technical con- tent of the document. Finally, appreciation is extended to the international partners for For Additional Copies: providing up-to-date specifications of the instruments and platforms that are key ele- EOS Project Science Office ments of the International Earth Observing Mission. Code 900 NASA/Goddard Space Flight Center Support for production of this document, Greenbelt, MD 20771 provided by Winnie Humberson, William Bandeen, Carl Gray, Hannelore Parrish and Phone: (301) 441-4259 Charlotte Griner, is gratefully acknowl- Internet: [email protected] edged. Table of Contents Preface 5 Earth Science Enterprise 7 The Earth Observing System 15 EOS Data and Information System (EOSDIS) 27 Data and Information Policy 37 Pathfinder Data Sets 45 Earth Science Information Partners and the Working Prototype-Federation 47 EOS Data Quality: Calibration and Validation 51 Education Programs 53 International Cooperation 57 Interagency Coordination 65 Mission Elements 71 EOS Instruments 89 EOS Interdisciplinary Science Investigations 157 Points-of-Contact 340 Acronyms and Abbreviations 354 Appendix 361 List of Figures 1.
    [Show full text]
  • Helios Prototype Commercialization Near by Jay Levine That’S Some of the Promise of the Helios Prototype
    Special Helios Prototype Edition News May 8, 2002 Volume 44 Issue 2 Dryden Flight Research Center, Edwards, California May 8, 2002 ED01 0230-3 NASA Photo by Carla Thomas The Helios Prototype Aircraft begins a northerly climb over Ni’ihau Island, Hawaii. Conquer the Night ■ Fresh off a record flight last summer, the project seeks to post another record in 2003 Helios Prototype commercialization near By Jay Levine That’s some of the promise of the Helios Prototype. The By Jay Levine X-Press Editor aircraft is intended to be a long-duration, high-altitude bird X-Press Editor As NASA looks at ways to develop technology for transfer that can loiter in the upper atmosphere above 50,000 feet The Helios Prototype set an altitude to the commercial sector, the Helios Prototype could prove to – well above normal air traffic and most importantly above record at 96,863 feet and made a run as be a model. NASA has sought to eliminate some of the risks to most of the weather, Del Frate said. a candidate for one of aviation’s greatest assist in the development of technology that could have nearly It’s clear a mature and validated Helios could have a prizes, the Collier Trophy. unlimited potential, said John Del Frate, solar powered aircraft number of benefits for “any mission requiring an eye in the So what does a project team do for an project manager. sky,” he said. encore? That’s what the Helios Prototype In addition to its uses for science, the Helios Prototype Helios could be an asset for crop management; keep tabs Team began to answer even before the also is seen as a potential way to watch enemies and assist in on environmental changes; monitor fisheries, coral reefs, and record flight – to again demonstrate new fire fighting, emergency services and disaster analysis.
    [Show full text]