Wnt Secretion Is Required to Maintain High Levels of Wnt Activity in Colon Cancer Cells
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of Hescs
WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Jiang, Wei, Donghui Zhang, Nenad Bursac, and Yi Zhang. 2013. “WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs.” Stem Cell Reports 1 (1): 46-52. doi:10.1016/j.stemcr.2013.03.003. http:// dx.doi.org/10.1016/j.stemcr.2013.03.003. Published Version doi:10.1016/j.stemcr.2013.03.003 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11877118 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Stem Cell Reports Report WNT3 Is a Biomarker Capable of Predicting the Definitive Endoderm Differentiation Potential of hESCs Wei Jiang,1,2,3,* Donghui Zhang,6 Nenad Bursac,6 and Yi Zhang1,2,3,4,5,* 1Howard Hughes Medical Institute 2Program in Cellular and Molecular Medicine 3Division of Hematology/Oncology, Department of Pediatrics, Boston Children’s Hospital 4Department of Genetics Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA 5Harvard Stem Cell Institute, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA 6Department of Biomedical Engineering, Duke University, 3000 Science Drive, Hudson Hall 136, Durham, NC 27708, USA *Correspondence: [email protected] (W.J.), [email protected] (Y.Z.) http://dx.doi.org/10.1016/j.stemcr.2013.03.003 This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-No Derivative Works License, which permits non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited. -
WNT11-Conditioned Medium Promotes Angiogenesis Through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway
G C A T T A C G G C A T genes Article WNT11-Conditioned Medium Promotes Angiogenesis through the Activation of Non-Canonical WNT-PKC-JNK Signaling Pathway § Jingcai Wang y, Min Gong z, Shi Zuo , Jie Xu, Chris Paul, Hongxia Li k, Min Liu, Yi-Gang Wang, Muhammad Ashraf ¶ and Meifeng Xu * Department of Pathology and Laboratory Medicine, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA; [email protected] (J.W.); [email protected] (M.G.); [email protected] (S.Z.); [email protected] (J.X.); [email protected] (C.P.); [email protected] (H.L.); [email protected] (M.L.); [email protected] (Y.-G.W.); [email protected] (M.A.) * Correspondence: [email protected] Current address: Department of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, y Columbus, OH 43205, USA. Current Address: Department of Neonatology, Children’s Hospital of Soochow University, z Suzhou 215025, Jiangsu, China. § Current Address: Department of Hepatobiliary Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang 550025, Guizhou, China. Current Address: Department of Cardiology, The First Affiliated Hospital of Soochow University, k Suzhou 215006, Jiangsu, China. ¶ Current Address: Department of Medicine, Cardiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA. Received: 10 August 2020; Accepted: 26 October 2020; Published: 29 October 2020 Abstract: Background: We demonstrated that the transduction of Wnt11 into mesenchymal stem cells (MSCs) (MSCWnt11) promotes these cells differentiation into cardiac phenotypes. In the present study, we investigated the paracrine effects of MSCWnt11 on cardiac function and angiogenesis. -
Extrinsic Regulators of Mrna Translation in Developing Brain: Story of Wnts
cells Article Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs Yongkyu Park * , Midori Lofton , Diana Li and Mladen-Roko Rasin * Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; [email protected] (M.L.); [email protected] (D.L.) * Correspondence: [email protected] (Y.P.); [email protected] (M.-R.R.) Abstract: Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neo- cortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also dis- rupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. -
WNT4 and WNT3A Activate Cell Autonomous Wnt Signaling Independent of Secretion
bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Running Title: Secretion-independent Wnt signaling Research article WNT4 and WNT3A activate cell autonomous Wnt signaling independent of secretion Deviyani M. Rao1, Rebecca L. Ferguson1, Tomomi M. Yamamoto2, Benjamin G. Bitler2, Matthew J. Sikora1 Affiliation: 1Dept. of Pathology, 2Dept. of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus Corresponding author: Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: @mjsikora Funding This work was supported by R00 CA193734 (MJS) and R00 CA194318 (BGB) from the National Institutes of Health, and by a grant from the Cancer League of Colorado, Inc (MJS). Authors' contributions DMR and MJS conceived of the project and experiments. DMR, RLF, and MJS designed and performed experiments. RLF, DMR, and TMY developed models for the project. DMR, RLF, BGB, and MJS contributed to data analysis and interpretation. DMR wrote the draft manuscript; all authors read and revised the manuscript, and have read and approved of this version of the manuscript. bioRxiv preprint doi: https://doi.org/10.1101/333906; this version posted September 14, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response
International Journal of Molecular Sciences Review Wnt-Independent and Wnt-Dependent Effects of APC Loss on the Chemotherapeutic Response Casey D. Stefanski 1,2 and Jenifer R. Prosperi 1,2,3,* 1 Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46617, USA; [email protected] 2 Mike and Josie Harper Cancer Research Institute, South Bend, IN 46617, USA 3 Department of Biochemistry and Molecular Biology, Indiana University School of Medicine-South Bend, South Bend, IN 46617, USA * Correspondence: [email protected]; Tel.: +1-574-631-4002 Received: 30 September 2020; Accepted: 20 October 2020; Published: 22 October 2020 Abstract: Resistance to chemotherapy occurs through mechanisms within the epithelial tumor cells or through interactions with components of the tumor microenvironment (TME). Chemoresistance and the development of recurrent tumors are two of the leading factors of cancer-related deaths. The Adenomatous Polyposis Coli (APC) tumor suppressor is lost in many different cancers, including colorectal, breast, and prostate cancer, and its loss correlates with a decreased overall survival in cancer patients. While APC is commonly known for its role as a negative regulator of the WNT pathway, APC has numerous binding partners and functional roles. Through APC’s interactions with DNA repair proteins, DNA replication proteins, tubulin, and other components, recent evidence has shown that APC regulates the chemotherapy response in cancer cells. In this review article, we provide an overview of some of the cellular processes in which APC participates and how they impact chemoresistance through both epithelial- and TME-derived mechanisms. Keywords: adenomatous polyposis coli; chemoresistance; WNT signaling 1. -
Wnt Signaling in Cancer: Not a Binary ON:OFF Switch
Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Wnt signaling in cancer: not a binary ON:OFF switch Dustin J. Flanagan1, Elizabeth Vincan2,# and Toby J. Phesse3,*. 1 Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK 2 University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia and School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia. 3 European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK and Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. *Corresponding author: Toby J. Phesse. Mailing address; European Cancer Stem Cell Research Institute, Cardiff University, Cardiff CF24 4HQ, UK. Email; [email protected]. Phone number: +44 (0)29 2068 8495. # Corresponding author: Elizabeth Vincan. Mailing address; University of Melbourne & Victorian Infectious Diseases Reference Laboratory, Doherty Institute of Infection and Immunity, Melbourne, VIC 3010, Australia. Email: [email protected], Phone number: +61 3 9035 3555. The authors declare no potential conflicts of interest. Running Title: Wnt signaling in Apc mutant cells 1 Downloaded from cancerres.aacrjournals.org on September 26, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 20, 2019; DOI: 10.1158/0008-5472.CAN-19-1362 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract In the March 1st issue of Cancer Research, we identified the Wnt receptor Fzd7 as an attractive therapeutic target for the treatment of gastric cancer. -
Tsukushi Functions As a Wnt Signaling Inhibitor by Competing with Wnt2b for Binding to Transmembrane Protein Frizzled4
Tsukushi functions as a Wnt signaling inhibitor by competing with Wnt2b for binding to transmembrane protein Frizzled4 Kunimasa Ohtaa,b,1,2, Ayako Itoa,c,1, Sei Kuriyamaa,d,3, Giuseppe Lupoe,f, Mitsuko Kosakag,4, Shin-ichi Ohnumah, Shinichi Nakagawai, and Hideaki Tanakaa,c,d aDepartment of Developmental Neurobiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan; bPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; cGlobal Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; d21st Century Center of Excellence, Kumamoto University, Kumamoto 860-8556, Japan; eDepartment of Biology and Biotechnology “C. Darwin,” University of Rome “La Sapienza,” 00185 Rome, Italy; fIstituto Pasteur–Fondazione Cenci Bolognetti, 00185, Rome, Italy; gRIKEN Center for Developmental Biology, Kobe 650-0047, Japan; hInstitute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom; and IRIKEN Advanced Science Institute, Nakagawa RNA Biology Laboratory, Saitama 351-0198, Japan Edited* by Lynn T. Landmesser, Case Western Reserve University, Cleveland, OH, and approved July 8, 2011 (received for review January 11, 2011) The Wnt signaling pathway is essential for the development of We previously described the isolation of Tsukushi (TSK) protein diverse tissues during embryogenesis. Signal transduction is acti- isoforms (13), soluble molecules belonging to the small leucine- vated by the binding of Wnt proteins to the type I receptor low- rich proteoglycan (SLRP) family (14), and showed that they work density lipoprotein receptor–related protein 5/6 and the seven-pass as extracellular modulators of pivotal signaling cascades during transmembrane protein Frizzled (Fzd), which contains a Wnt- early embryonic development in chicks and frogs (13, 15–17). -
Deregulated Wnt/Β-Catenin Program in High-Risk Neuroblastomas Without
Oncogene (2008) 27, 1478–1488 & 2008 Nature Publishing Group All rights reserved 0950-9232/08 $30.00 www.nature.com/onc ONCOGENOMICS Deregulated Wnt/b-catenin program in high-risk neuroblastomas without MYCN amplification X Liu1, P Mazanek1, V Dam1, Q Wang1, H Zhao2, R Guo2, J Jagannathan1, A Cnaan2, JM Maris1,3 and MD Hogarty1,3 1Division of Oncology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA; 2Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA and 3Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA Neuroblastoma (NB) is a frequently lethal tumor of Introduction childhood. MYCN amplification accounts for the aggres- sive phenotype in a subset while the majority have no Neuroblastoma (NB) is a childhood embryonal malig- consistently identified molecular aberration but frequently nancy arising in the peripheral sympathetic nervous express MYC at high levels. We hypothesized that acti- system. Half of all children with NB present with features vated Wnt/b-catenin (CTNNB1) signaling might account that define their tumorsashigh riskwith poor overall for this as MYC is a b-catenin transcriptional target and survival despite intensive therapy (Matthay et al., 1999). multiple embryonal and neural crest malignancies have A subset of these tumors are characterized by high-level oncogenic alterations in this pathway. NB cell lines without genomic amplification of the MYCN proto-oncogene MYCN amplification express higher levels of MYC and (Matthay et al., 1999) but the remainder have no b-catenin (with aberrant nuclear localization) than MYCN- consistently identified aberration to account for their amplified cell lines. -
Towards an Integrated View of Wnt Signaling in Development Renée Van Amerongen and Roel Nusse*
HYPOTHESIS 3205 Development 136, 3205-3214 (2009) doi:10.1242/dev.033910 Towards an integrated view of Wnt signaling in development Renée van Amerongen and Roel Nusse* Wnt signaling is crucial for embryonic development in all animal Notably, components at virtually every level of the Wnt signal species studied to date. The interaction between Wnt proteins transduction cascade have been shown to affect both β-catenin- and cell surface receptors can result in a variety of intracellular dependent and -independent responses, depending on the cellular responses. A key remaining question is how these specific context. As we discuss below, this holds true for the Wnt proteins responses take shape in the context of a complex, multicellular themselves, as well as for their receptors and some intracellular organism. Recent studies suggest that we have to revise some of messengers. Rather than concluding that these proteins are shared our most basic ideas about Wnt signal transduction. Rather than between pathways, we instead propose that it is the total net thinking about Wnt signaling in terms of distinct, linear, cellular balance of signals that ultimately determines the response of the signaling pathways, we propose a novel view that considers the receiving cell. In the context of an intact and developing integration of multiple, often simultaneous, inputs at the level organism, cells receive multiple, dynamic, often simultaneous and of both Wnt-receptor binding and the downstream, sometimes even conflicting inputs, all of which are integrated to intracellular response. elicit the appropriate cell behavior in response. As such, the different signaling pathways might thus be more intimately Introduction intertwined than previously envisioned. -
Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish
cells Article Wnt10b Participates in Regulating Fatty Acid Synthesis in the Muscle of Zebrafish Dongwu Liu 1,2,*, Qiuxiang Pang 2,*, Qiang Han 3, Qilong Shi 1, Qin Zhang 4,* and Hairui Yu 5 1 School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China 2 Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences, Shandong University of Technology, Zibo 255049, China 3 Sunwin Biotech Shandong Co., Ltd., Weifang 262737, China 4 Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Colleges and Universities Key Laboratory of Utilization of Microbial and Botanical Resources, School of Marine Science and Biotechnology, Guangxi University for Nationalities, Nanning 530008, China 5 College of Biological and Agricultural Engineering, Weifang Bioengineering Technology Research Center, Weifang University, Weifang 261061, China * Correspondence: [email protected] (D.L.); [email protected] (Q.P.); [email protected] (Q.Z.) Received: 16 June 2019; Accepted: 27 August 2019; Published: 30 August 2019 Abstract: There are 19 Wnt genes in mammals that belong to 12 subfamilies. Wnt signaling pathways participate in regulating numerous homeostatic and developmental processes in animals. However, the function of Wnt10b in fatty acid synthesis remains unclear in fish species. In the present study, we uncovered the role of the Wnt10b signaling pathway in the regulation of fatty acid synthesis in the muscle of zebrafish. The gene of Wnt10b was overexpressed in the muscle of zebrafish using pEGFP-N1-Wnt10b vector injection, which significantly decreased the expression of glycogen synthase kinase 3β (GSK-3β), but increased the expression of β-catenin, peroxisome proliferators-activated receptor γ (PPARγ), and CCAAT/enhancer binding protein α (C/EBPα). -
Altered Expression of PRKX, WNT3 and WNT16 in Human Nodular
ANTICANCER RESEARCH 36 : 4545-4552 (2016) doi:10.21873/anticanres.11002 Altered Expression of PRKX , WNT3 and WNT16 in Human Nodular Basal Cell Carcinoma NATALIA GURGEL DO CARMO 1,2 , LUIS HENRIQUE TOSHIHIRO SAKAMOTO 3, ROBERT POGUE 1, CINTIA DO COUTO MASCARENHAS 1, SIMONE KARST PASSOS 4, MARIA SUELI SOARES FELIPE 1,2 and ROSÂNGELA VIEIRA DE ANDRADE 1 1Program of Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília, DF, Brazil; 2Program of Molecular Pathology, University of Brasília, Brasília, DF, Brazil; 3Domingos A. Boldrini Center for Hematological Investigation, Campinas, SP, Brazil; 4Dermatology Service, Asa Norte Regional Hospital, Brasília, DF, Brazil Abstract. Background/Aim: Nodular and superficial are the differences in their biological behavior, such as tumor most common subtypes of basal cell carcinoma (BCC). growth pattern, potential for recurrence and metastasis, Signaling pathways such as Hedgehog (HH) and Wingless histological pattern and genetic factors. In addition, it is (WNT) signaling are associated with BCC phenotypic important to consider extrinsic factors, such as site of origin, variation. The aim of the study was to evaluate of the therapeutic choice and immunological state of the person expression profiles of 84 genes related to the WNT and HH with the tumor (3). Nodular BCC is the most common signaling pathways in patients with nodular and superficial biopsied subtype; it usually manifests as a single lesion and BCC. Materials and Methods: A total of 58 BCCs and 13 mostly affects head and neck areas (8). Histologically, the samples of normal skin were evaluated by quantitative real- tumor is a well-defined structure with precise contours; it time polymerase chain reaction (qPCR) to detect the gene- presents basaloid cells of nodular mass separated from the expression profile. -
Hippocampus Formation: an Intriguing Collaboration Henk Roelink
bb10g06.qxd 04/03/2000 01:10 Page R279 Dispatch R279 Hippocampus formation: An intriguing collaboration Henk Roelink Recent genetic studies have shown that the signalling temporal lobes are formed. In an adult rodent, the hip- factor Wnt3a is required for formation of the pocampus is consequently still found close to the dorsal hippocampus; the developmental consequences of Wnt midline where it is initially formed (Figure 1). signalling in the hippocampus are mediated by multiple HMG-box transcription factors, with LEF-1 being It is clear that Wnt family members are required for the required just for formation of the dentate gyrus. development of many embryonic structures, functions mediated by their effects on fundamental processes such Address: Department of Biological Structure and Center for Developmental Biology, University of Washington, Box 357420, as cell proliferation, differentiation, survival or mainte- Seattle, Washington 98117-7420, USA. nance. Obtaining a clear picture of how each Wnt acts is E-mail: [email protected] complicated by the relatively large size of the family, which has at least 18 members in amniotes [3]. Analyses of Current Biology 2000, 10:R279–R281 mice lacking one or several Wnt genes have revealed some 0960-9822/00/$ – see front matter remarkable phenotypes, often characterized by failure of © 2000 Elsevier Science Ltd. All rights reserved. induction of very specific anatomical structures. Wnt3A is no exception, and although several papers have been pub- Inductive interactions are fundamental to the formation of lished already on the more obvious defects of Wnt3a all brain structures. and signalling by molecules of the knockout mice, a recent paper from McMahon and col- Wingless/Wnt family is known to play a role in many of leagues [1] has reported a very interesting defect in the them.