(Ailurus Fulgens) and the Giant Panda (Ailuropoda Melanoleuca) Matyas Cserhati

Total Page:16

File Type:pdf, Size:1020Kb

(Ailurus Fulgens) and the Giant Panda (Ailuropoda Melanoleuca) Matyas Cserhati Cserhati BMC Genomics (2021) 22:228 https://doi.org/10.1186/s12864-021-07531-3 RESEARCH ARTICLE Open Access A tail of two pandas— whole genome k-mer signature analysis of the red panda (Ailurus fulgens) and the Giant panda (Ailuropoda melanoleuca) Matyas Cserhati Abstract Background: The red panda (Ailurus fulgens) is a riddle of morphology, making it hard to tell whether it is an ursid, a procyonid, a mustelid, or a member of its own family. Previous genetic studies have given quite contradictory results as to its phylogenetic placement. Results: A recently developed whole genome-based algorithm, the Whole Genome K-mer Signature algorithm was used to analyze the genomes of 28 species of Carnivora, including A. fulgens and several felid, ursid, mustelid, one mephitid species. This algorithm has the advantage of holistically using all the information in the genomes of these species. Being a genomics-based algorithm, it also reduces stochastic error to a minimum. Besides the whole genome, the mitochondrial DNA from 52 mustelids, mephitids, ursids, procyonids and A. fulgens were aligned to draw further phylogenetic inferences. The results from the whole genome study suggested that A. fulgens is a member of the mustelid clade (p =9·10− 97). A. fulgens also separates from the mephitid Spilogala gracilis. The giant panda, Ailuropoda melanoleuca also clusters away from A. fulgens, together with other ursids (p =1.2·10− 62). This could be due to the geographic isolation of A. fulgens from other mustelid species. However, results from the mitochondrial study as well as neighbor-joining methods based on the sequence identity matrix suggests that A. fulgens forms a monophyletic group. A Maximum Likelihood tree suggests that A. fulgens and Ursidae form a monophyletic group, although the bootstrap value is weak. Conclusions: The main conclusion that we can draw from this study is that on a whole genome level A. fulgens possibly belongs to the mustelid clade, and not an ursid or a mephitid. This despite the fact that previously some researchers classified A. fulgens and A. melanoleuca as relatives. Since the genotype determines the phenotype, molecular-based classification takes precedence over morphological classifications. This affirms the results of some previous studies, which studied smaller portions of the genome. However, mitochondrial analyses based on neighbor- joining and maximum likelihood methods suggest otherwise. Keywords: Red panda, Giant panda, Whole genome k-mer signature, Pearson correlation, Mustelid, Ursid, Procyonid, Mephitid Correspondence: [email protected] Independent Scholar, 2615C Muscatel Avenue, Rosemead, CA 91770, USA © The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Cserhati BMC Genomics (2021) 22:228 Page 2 of 12 Background these researchers found that A. fulgens is most closely The red panda (Ailurus fulgens) is an enigmatic animal related to procyonids based on analysis of intron 4 of and is hard to classify based on its morphology. It lives the FGB gene. But when intron 7 was analyzed, it clus- in parts of India, Nepal and China, and has a distinct tered towards ursids. Classification based on the ND2 red-white coloration, and a striped, bushy tail. It goes by gene A. fulgens clustered with mustelids, but these several nicknames, such as the ‘bear-cat’, the ‘cat-bear’, results had poor bootstrapping support. When the two the ‘lesser panda’ or the ‘fire-fox’. Some researchers think introns were combined with analysis of the genes IRBP A. fulgens is a relative of the giant panda (Ailuropoda mela- and TTR, A. fulgens was closest to mustelids [9]. noleuca) based on several physical characteristics. These in- Sato et al. analyzed a 5.5 Kbp segment of DNA coding clude an almost exclusive diet of bamboo (both species eat for five genes, AOPB, BRCA1, RAG1, RBP3, and VWF, meat on occasion), and have an enlarged radial sesamoid and found that A. fulgens clusters together with procyo- bone, which they use to process bamboo [1, 2]. nids and mustelids, and not with mephitids (skunks and Because of these similarities, the giant panda even re- stink badgers) [10]. An earlier, similar result was attained ceived its name from the red panda. According to other when studying a 3.2 Kbp segment containing the genes opinions, A. fulgens has been classified as a member of APOB, RAG1 and IRBP [11]. Genomically, A. fulgens shares the family Procyonidae (raccoons). Yet others put the several apomorphic chromosome fusions with mustelids, red panda into its own family (Ailuridae) [3]. A. fulgens namelyF2+C1pandA1p+C1q[12]. However, A. fulgens also has some unique characteristics: a large zygomatic differs in several other chromosomal rearrangements arch, a powerful jaw, and complex cheek teeth, following indicating that it diverged early from other mustelids. aP2–3 pattern [1]. Interestingly, several genes have been found in both According to new genetic evidence, there are two species which show convergent development. For species of red panda, the Himalayan red panda (A. ful- example, changes in the amino acid composition of the gens), and the Chinese red panda (A. styani)[4]. Due to DYNC2H1 and PCNT proteins lead to polydactyly in reduced numbers, the red panda is an endangered spe- humans and mice, but to the pseudo-thumb in the giant cies. Previous studies based on different combinations of and red pandas. Three other convergent genes (PRSS1, nuclear and mitochondrial genes have given contradict- PRSS36, and CPB1) are responsible for more efficient ory results as to the taxonomic relationship of A. fulgens uptake of nutrients from bamboo, which makes up a with other carnivores. This may be because only several large part of their diet as well. Four other genes, mitochondrial and/or nuclear genes were analyzed, and ADH1C, CYP3A5, CYP4F2, and GIF also enable the not the entire whole genome sequence (WGS). more effective utilization in the giant and red pandas of The red panda’s classification as a procyonid or pro- vitamins A and B12 as well as arachidonic acid, which cyonid-relative is based on immunological, DNA-DNA are absent or very low in bamboo [2]. hybridization, and isozyme evidence [5]. A phylogenetic Intron analysis is useful, since these sequences are not tree based on Bayesian analysis of cytochrome-b put under selection pressure. An analysis of 22 Kbp of nu- A. fulgens next to Canidae [6]. clear intron sequences from 16 carnivore species groups For example, Peng et al. classify A. fulgens either as a A. fulgens with Musteloidea sensu stricto (Mustelidae+ mustelid, placing them next to the American marten Procyonidae) to the exclusion of mephitids [13]. These (Martes americana), or as a mephitid, next to the striped results, however, contradict results coming from mtDNA skunk (Mephitis mephitis). This was based on the analyses [14]. analysis of 13 concatenated mitochondrial proteins, Since morphology-based classification of A. fulgens is based on neighbor-joining (NJ) and maximum likelihood ambiguous, it would be helpful to determine the precise (ML) phylogenetic methods, respectively [7]. In a study taxonomic status of this species based on a whole gen- of three mtDNA genes (12S rRNA, 16S rRNA and cyto- ome-based algorithm. To this end, the Whole Genome K- chrome b) and intron 1 of the nuclear transthyretin mer Signature (WGKS) algorithm [15]isusedtoanalyze gene, Flynn et al. also found that A. fulgens is neither an the genomes of five bear species, eleven cat species and ursid, nor a procyonid, nor a mephitid, but a mustelid ten species from the family Mustelidae (weasels, otters, [1]. Another study including three mitochondrial and martens, and badgers), Spilogala gracilis, a mephitid spe- three nuclear genes by Fulton and Strobeck, based on 16 cies, as well as A. fulgens, making 28 species in total. arctoid species, with Canis lupus as an outlier, placed The advantages of using a genomics-based algorithm A. fulgens in close relationship to M. mephitis [8]. to analyze the WGS of these organisms is that it takes Yu and Zhang studied introns 4 and 7 from the all the information present in the WGS, as opposed to nuclear gene ß-fibrinogen (FGB) as well as the mito- just a handful of genes, utilized in gene studies. Deciding chondrial gene NADH dehydrogenase subunit 2 (ND2) which genes are important is subjective and may vary in 17 species from the order Carnivora. In their results, between investigators. Whole genome-based algorithms Cserhati BMC Genomics (2021) 22:228 Page 3 of 12 also have the advantage that they greatly reduce stochas- Additional File 1 online. The Hopkins statistic is 0.9, tic error, due to the vast number of characters (DNA which means that the data set is of very good quality for bases) that they analyze [16]. Using this algorithm can clustering.
Recommended publications
  • Musteloidea (Carnivora, Mammalia)
    e390-11 Montoya.qxd 1/2/12 09:36 Página 193 Estudios Geológicos, 67(2) julio-diciembre 2011, 193-206 ISSN: 0367-0449 doi:10.3989/egeol.40576.183 Musteloidea (Carnivora, Mammalia) from the Late Miocene of Venta del Moro (Valencia, Spain) Musteloidea (Carnivora, Mammalia) del Mioceno Superior de Venta del Moro (Valencia, España) P.Montoya1, J. Morales2, J. Abella2 ABSTRACT The purpose of the present work is to describe the Musteloidea from the Late Miocene locality of Venta del Moro (Valencia, Spain). We have identified the following species: Martes ginsburgi nov. sp., Lutra affinis Gervais, 1859, Plesiogulo monspessulanus Viret, 1939 and Promephitis alexejewi Schloss- er, 1924. Besides Plesiogulo monspessulanus which was already described in this locality and in Las Casiones (MN 13, Teruel Basin), we are approaching an unedited Musteloidea assemblage from the Miocene of the Iberian Peninsula. The m1 of Martes ginsburgi nov. sp. is similar in size and morphology to the Asian species of the genus, M. anderssoni and M. zdanskyi, but it differs in having a very wide M1 with a developed lingual platform. The presence of Lutra affinis is the third register of this species in the fossil record, since it was only previously known from the Pliocene of Montpellier (France) and the termi- nal Miocene of Maramena (Greece). Promephitis alexejewi is the first appearance of this species in Europe, which has been only registered until now in several localities of Mongolia and China. It differs from the rest of Promephitis species in the possession of a narrower m1, with a very sectorial trigonid. Keywords: Mammalia, Carnivora, Musteloidea, Martes, Lutra, Plesiogulo, Promephitis, Venta del Moro, Spain, Upper Miocene RESUMEN Se describen los Musteloidea procedentes del Mioceno terminal (MN13) de Venta del Moro (Valencia, España).
    [Show full text]
  • Brain-Size Evolution and Sociality in Carnivora
    Brain-size evolution and sociality in Carnivora John A. Finarellia,b,1 and John J. Flynnc aDepartment of Geological Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; bMuseum of Paleontology, University of Michigan, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109; and cDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved April 22, 2009 (received for review February 16, 2009) Increased encephalization, or larger brain volume relative to body develop a comprehensive view of the evolutionary history of mass, is a repeated theme in vertebrate evolution. Here we present encephalization across 289 terrestrial species (including 125 an extensive sampling of relative brain sizes in fossil and extant extinct species) of Carnivora, providing an extensive sampling of taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, fossil and living taxa for both major subclades: Caniformia and and their relatives). By using Akaike Information Criterion model Feliformia. selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific Results evolutionary transformations in encephalization allometries. Akaike Information Criterion (AIC) model selection recovered These evolutionary transformations include multiple independent 4 optimal models (OM) within 2 log-likelihood units of the encephalization increases and decreases in addition to a remark- highest score (Table 1). There is broad agreement among the ably static basal Carnivora allometry that characterizes much of the OM with differences primarily in estimates of allometric slopes.
    [Show full text]
  • References: Future Works
    Phylogenomics and Evolution of the Ursidae Family Department of Biology Ammary Jackson, Keanu Spencer, & Alissya Theis Fig 8. Red Panda Fig. 6. American Black Bear (Ailurus fulgens) (Ursus americanus) Introduction: Ursidae is a family of generally omnivorous mammals colloquially Objectives: Results: referred to as bears. The family consists of five genera: Ailuropoda ● To determine the relatedness among the 30 individual bear taxa. Red Panda (giant panda), Helarctos (sun bear), Melursus (sloth bear), Tremarctos Spectacled Bear ● To determine if Ailurus fulgens obtained its common Spectacled Bear (spectacled bear), and Ursus (black, brown, and polar bears) all of Polar Bear name (Red Panda) from similarities to the genes Polar Bear which are found in North and South America, Europe, Asia, and Africa Polar Bear belonging to the Ursidae family or if it’s simply based on Polar Bear (Kumar et al. 2017.) The phylogenetic relationship between Ursidae Polar Bear phenotypic attributes. Polar Bear bears and the red panda (Ailurus fulgens) has been somewhat Brown Bear inconsistent and controversial. Previous phylogenetic analyses have Brown Bear Brown Bear placed the red panda within the families Ursidae (bears), Procyonidae Polar Bear Brown Bear (raccoons), Pinnepedia (seals), and Musteloidea (raccoons and weasels, Brown Bear Brown Bear skunks, and badgers) (Flynn et al. 2000.) Determining monophyly Methods: Cave Bear Cave Bear would elucidate the evolutionary relationship between Ursidae bears Sloth Bear ● Mitochondrial gene sequences of the ATP6 and ND1 genes Sloth Bear and the Red Panda. This analysis (i) tested the monophyly of the family Sun Bear were taken from a sample of 31 species (30 Ursidae family Sun Bear Ursidae; and (ii) determined how the Red Panda fits within the Black Bear and 1 Ailuridae family).
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, Morphology and the Great American Interchange
    Molecular Phylogenetics and Evolution 43 (2007) 1076–1095 www.elsevier.com/locate/ympev Phylogeny of the Procyonidae (Mammalia: Carnivora): Molecules, morphology and the Great American Interchange a, b c a Klaus-Peter KoepXi ¤, Matthew E. Gompper , Eduardo Eizirik , Cheuk-Chung Ho , Leif Linden a, Jesus E. Maldonado d, Robert K. Wayne a a Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095-1606, USA b Department of Fisheries and Wildlife Sciences, University of Missouri, Colombia, MO 65211, USA c Faculdade de Biociencias, PUCRS, Av. Ipiranga, 6681, Predio 12, Porto Alegre, RS 90619-900, Brazil d Smithsonian Institution, NMNH/NZP—Genetic Program, 3001 Connecticut Avenue NW, Washington, DC 20008, USA Received 10 June 2006; revised 22 September 2006; accepted 2 October 2006 Available online 11 October 2006 Abstract The Procyonidae (Mammalia: Carnivora) have played a central role in resolving the controversial systematics of the giant and red pandas, but phylogenetic relationships of species within the family itself have received much less attention. Cladistic analyses of morpho- logical characters conducted during the last two decades have resulted in topologies that group ecologically and morphologically similar taxa together. SpeciWcally, the highly arboreal and frugivorous kinkajou (Potos Xavus) and olingos (Bassaricyon) deWne one clade, whereas the more terrestrial and omnivorous coatis (Nasua), raccoons (Procyon), and ringtails (Bassariscus) deWne another clade, with the similar-sized Nasua and Procyon joined as sister taxa in this latter group. These relationships, however, have not been tested with molecu- lar sequence data. We examined procyonid phylogenetics based on combined data from nine nuclear and two mitochondrial gene seg- ments totaling 6534 bp.
    [Show full text]
  • Brain-Size Evolution and Sociality in Carnivora
    Brain-size evolution and sociality in Carnivora John A. Finarellia,b,1 and John J. Flynnc aDepartment of Geological Sciences, University of Michigan, 2534 C.C. Little Building, 1100 North University Avenue, Ann Arbor, MI 48109; bMuseum of Paleontology, University of Michigan, 1529 Ruthven Museum, 1109 Geddes Road, Ann Arbor, MI 48109; and cDivision of Paleontology and Richard Gilder Graduate School, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 Edited by Alan Walker, Pennsylvania State University, University Park, PA, and approved April 22, 2009 (received for review February 16, 2009) Increased encephalization, or larger brain volume relative to body develop a comprehensive view of the evolutionary history of mass, is a repeated theme in vertebrate evolution. Here we present encephalization across 289 terrestrial species (including 125 an extensive sampling of relative brain sizes in fossil and extant extinct species) of Carnivora, providing an extensive sampling of taxa in the mammalian order Carnivora (cats, dogs, bears, weasels, fossil and living taxa for both major subclades: Caniformia and and their relatives). By using Akaike Information Criterion model Feliformia. selection and endocranial volume and body mass data for 289 species (including 125 fossil taxa), we document clade-specific Results evolutionary transformations in encephalization allometries. Akaike Information Criterion (AIC) model selection recovered These evolutionary transformations include multiple independent 4 optimal models (OM) within 2 log-likelihood units of the encephalization increases and decreases in addition to a remark- highest score (Table 1). There is broad agreement among the ably static basal Carnivora allometry that characterizes much of the OM with differences primarily in estimates of allometric slopes.
    [Show full text]
  • Coronaviruses Associated with the Superfamily Musteloidea Alison Stout, Qinghua Guo, Jean Millet, Jean Kaoru Millet, Ricardo Matos, Gary Whittaker
    Coronaviruses Associated with the Superfamily Musteloidea Alison Stout, Qinghua Guo, Jean Millet, Jean Kaoru Millet, Ricardo Matos, Gary Whittaker To cite this version: Alison Stout, Qinghua Guo, Jean Millet, Jean Kaoru Millet, Ricardo Matos, et al.. Coronaviruses Associated with the Superfamily Musteloidea. mBio, 2021, 12 (1), 10.1128/mBio.02873-20. hal- 03319865 HAL Id: hal-03319865 https://hal.inrae.fr/hal-03319865 Submitted on 13 Aug 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License MINIREVIEW Host-Microbe Biology Coronaviruses Associated with the Superfamily Musteloidea Alison E. Stout,a Qinghua Guo,b Jean K. Millet,c Ricardo de Matos,d Gary R. Whittakera,b aDepartment of Microbiology & Immunology, Cornell University, Ithaca, New York, USA bMaster of Public Health Program, Cornell University, Ithaca, New York, USA cUniversité Paris-Saclay, INRAE, UVSQ, Virologie et Immunologie Moléculaires, Jouy-en-Josas, France dDepartment of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA ABSTRACT Among the animal superfamily Musteloidea, which includes those com- monly known as mustelids, naturally occurring and species-specific alphacoronavirus infections have been observed in both mink (Mustela vison/Neovison vison) and domestic ferrets (Mustela putorius furo).
    [Show full text]
  • Re-Evaluation of Morphological Characters Questions Current Views of Pinniped Origins
    Vestnik zoologii, 50(4): 327–354, 2016 Evolution and Phylogeny DOI 10.1515/vzoo-2016-0040 UDC 569.5:575.86 RE-EVALUATION OF MORPHOLOGICAL CHARACTERS QUESTIONS CURRENT VIEWS OF PINNIPED ORIGINS I. A. Koretsky¹, L. G. Barnes², S. J. Rahmat¹ ¹Laboratory of Evolutionary Biology, Department of Anatomy, College of Medicine, Howard University, 520 W. St. NW, Washington, DC 20059 E-mail: [email protected] ²Department of Vertebrate Paleontology, Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 Re-evaluation of Morphological Characters Questions Current Views of Pinniped Origins. Koretsky, I. A., Barnes, L. G., Rahmat, S. J. — Th e origin of pinnipeds has been a contentious issue, with opposite sides debating monophyly or diphyly. Th is review uses evidence from the fossil record, combined with comparative morphology, molecular and cytogenetic investigations to evaluate the evolutionary history and phylogenetic relationships of living and fossil otarioid and phocoid pinnipeds. Molecular investigations support a monophyletic origin of pinnipeds, but disregard vital morphological data. Likewise, morphological studies support diphyly, but overlook molecular analyses. Th is review will demonstrate that a monophyletic origin of pinnipeds should not be completely accepted, as is the current ideology, and a diphyletic origin remains viable due to morphological and paleobiological analyses. Critical examination of certain characters, used by supporters of pinniped monophyly, reveals diff erent polarities, variability, or simply convergence. Th e paleontological record and our morphological analysis of important characters supports a diphyletic origin of pinnipeds, with otarioids likely arising in the North Pacifi c from large, bear-like animals and phocids arising in the North Atlantic from smaller, otter-like ancestors.
    [Show full text]
  • Dental Integration and Modularity in Pinnipeds Mieczyslaw Wolsan 1, Satoshi Suzuki2, Masakazu Asahara3 & Masaharu Motokawa4
    www.nature.com/scientificreports OPEN Dental integration and modularity in pinnipeds Mieczyslaw Wolsan 1, Satoshi Suzuki2, Masakazu Asahara3 & Masaharu Motokawa4 Morphological integration and modularity are important for understanding phenotypic evolution Received: 11 June 2018 because they constrain variation subjected to selection and enable independent evolution of functional Accepted: 26 February 2019 and developmental units. We report dental integration and modularity in representative otariid Published: xx xx xxxx (Eumetopias jubatus, Callorhinus ursinus) and phocid (Phoca largha, Histriophoca fasciata) species of Pinnipedia. This is the frst study of integration and modularity in a secondarily simplifed dentition with simple occlusion. Integration was stronger in both otariid species than in either phocid species and related positively to dental occlusion and negatively to both modularity and tooth-size variability across all the species. The canines and third upper incisor were most strongly integrated, comprising a module that likely serves as occlusal guides for the postcanines. There was no or weak modularity among tooth classes. The reported integration is stronger than or similar to that in mammals with complex dentition and refned occlusion. We hypothesise that this strong integration is driven by dental occlusion, and that it is enabled by reduction of modularity that constrains overall integration in complex dentitions. We propose that modularity was reduced in pinnipeds during the transition to aquatic life in association with the origin of pierce-feeding and loss of mastication caused by underwater feeding. Organisms are organised into multiple identifable parts on multiple levels. Tese parts are distinct from each other because of structure, function or developmental origins. Te fact that parts of an organism are distinguish- able refects their individuality and a degree of independence from each other.
    [Show full text]
  • Hall of North American Mammals Educator's Guide
    Educator’s Guide THE JILL AND LEWIS BERNARD FAMILY HALL OF NORTH AMERICAN MAMMALS Featuring Carnivorans INSIDE: • Suggestions to Help You Come Prepared • Essential Questions for Student Inquiry • Strategies for Teaching in the Exhibition • Map of the Exhibition • Online Resources for the Classroom • Correlation to Standards • Glossary amnh.org/namammals Essential QUESTIONS More than 25 Museum expeditions across this continent produced the specimens displayed in this hall’s magnificent dioramas. Many belong to the order of mammals called Carnivora (carnivorans), one of the most diverse orders within the mammal group. Use the Essential Questions below to connect the dioramas to your curriculum. What is a mammal? How have traits of the Carnivora helped You might have grown up thinking that all mammals share the order survive and diversify? certain traits, like fur and giving birth to live young, and As environments change over time, living things must most living mammals do. But what defines this diverse respond by migrating, adapting, or sometimes going group of animals is that they all are descended from a com- extinct. Different traits are favored in different habitats mon ancestor shared with no other living animals. Because and are passed on to future generations. For example, of this common ancestor (and unlike other vertebrates), carnivorans take care of their young until they are old all mammals have three middle ear bones. The group is enough to hunt, which helps them live to adulthood. divided into over 20 orders, which include Primates (e.g. Also, the diversity of their teeth has helped carnivorans humans), Rodentia (e.g.
    [Show full text]
  • Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors
    Copyedited by: TP MANUSCRIPT CATEGORY: Regular Manuscript Syst. Biol. 0(0):236–249, 2018 © The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. For Permissions, please email: [email protected] DOI:10.1093/sysbio/syy046 Early Arrival and Climatically-Linked Geographic Expansion of New World Monkeys from Tiny African Ancestors , , , ,∗, , , , , , , DANIELE SILVESTRO1 2 3 4 †,MARCELO F. TEJEDOR1 3 4 5 6 †,MARTHA L. SERRANO-SERRANO2,ORIANE LOISEAU2 4, , , , , , , , VICTOR ROSSIER2 4,JONATHAN ROLLAND2 7,ALEXANDER ZIZKA1 3,SEBASTIAN HÖHNA8,ALEXANDRE ANTONELLI1 3 9 10 ‡ , , AND NICOLAS SALAMIN2 4 ‡ 1Department of Biological and Environmental Sciences, University of Gothenburg, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden; 2Department of Computational Biology, University of Lausanne, 1015 Lausanne, Switzerland; Downloaded from https://academic.oup.com/sysbio/advance-article-abstract/doi/10.1093/sysbio/syy046/5040681 by guest on 02 November 2018 3Gothenburg Global Biodiversity Center, Carl Skottsbergs gata 22B, Gothenburg 41319, Sweden; 4Swiss Institute of Bioinformatics, Quartier Sorge, 1015 Lausanne, Switzerland; 5Instituto Patagónico de Geología y Paleontología (CCT CONICET-CENPAT), Boulevard Almirante
    [Show full text]
  • Highland Lakes Steward
    Highland Lakes Steward HIGHLAND LAKES CHAPTER February 2015 Volume 6, Issue 2 MISSION PRESIDENT’S REPORT The Texas Master Naturalist program is a natural resource- camp life in a military setting during the mid As you read through the Steward this th based volunteer train- month you can’t help but notice that the 19 century. They are unique because their ing and development Highland Lakes Master Naturalist chapter is ranks were made up of African American program sponsored troops. Many of the Friends of Blanco State statewide by Texas filled with motivated and active volunteers A&M AgriLife Exten- who give above and beyond of their time Park assisted the soldiers in their present- sion and the Texas and energy to make a difference in the ing Texas history lessons to over 250 Blan- Parks and Wildlife beautiful Central Texas Uplift area of our co school children. The day presented per- Department. fect weather and was filled with engaging The mission of the State. demonstrations. program is to develop It is an honor to serve this chapter as a corps of well- your president for 2015, and my design for Inks State Park has a new staffed and informed volunteers energetic Friends Group (FOIL) which has who provide educa- this column is to use it to share some of tion, outreach, and the information about the activities we are wasted no time in getting our involvement service dedicated to undertaking as a group to enhance this nat- in the park back in full operation. They the beneficial manage- recently increased the number of members ural community we call home.
    [Show full text]