Oct 2014 Newsletter
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Mathématiques Et Espace
Atelier disciplinaire AD 5 Mathématiques et Espace Anne-Cécile DHERS, Education Nationale (mathématiques) Peggy THILLET, Education Nationale (mathématiques) Yann BARSAMIAN, Education Nationale (mathématiques) Olivier BONNETON, Sciences - U (mathématiques) Cahier d'activités Activité 1 : L'HORIZON TERRESTRE ET SPATIAL Activité 2 : DENOMBREMENT D'ETOILES DANS LE CIEL ET L'UNIVERS Activité 3 : D'HIPPARCOS A BENFORD Activité 4 : OBSERVATION STATISTIQUE DES CRATERES LUNAIRES Activité 5 : DIAMETRE DES CRATERES D'IMPACT Activité 6 : LOI DE TITIUS-BODE Activité 7 : MODELISER UNE CONSTELLATION EN 3D Crédits photo : NASA / CNES L'HORIZON TERRESTRE ET SPATIAL (3 ème / 2 nde ) __________________________________________________ OBJECTIF : Détermination de la ligne d'horizon à une altitude donnée. COMPETENCES : ● Utilisation du théorème de Pythagore ● Utilisation de Google Earth pour évaluer des distances à vol d'oiseau ● Recherche personnelle de données REALISATION : Il s'agit ici de mettre en application le théorème de Pythagore mais avec une vision terrestre dans un premier temps suite à un questionnement de l'élève puis dans un second temps de réutiliser la même démarche dans le cadre spatial de la visibilité d'un satellite. Fiche élève ____________________________________________________________________________ 1. Victor Hugo a écrit dans Les Châtiments : "Les horizons aux horizons succèdent […] : on avance toujours, on n’arrive jamais ". Face à la mer, vous voyez l'horizon à perte de vue. Mais "est-ce loin, l'horizon ?". D'après toi, jusqu'à quelle distance peux-tu voir si le temps est clair ? Réponse 1 : " Sans instrument, je peux voir jusqu'à .................. km " Réponse 2 : " Avec une paire de jumelles, je peux voir jusqu'à ............... km " 2. Nous allons maintenant calculer à l'aide du théorème de Pythagore la ligne d'horizon pour une hauteur H donnée. -
On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko
On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, Henner Busemann, Alessandro Morbidelli, Michael Mumma To cite this version: Martin Rubin, Cécile Engrand, Colin Snodgrass, Paul Weissman, Kathrin Altwegg, et al.. On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko. Space Sci.Rev., 2020, 216 (5), pp.102. 10.1007/s11214-020-00718-2. hal-02911974 HAL Id: hal-02911974 https://hal.archives-ouvertes.fr/hal-02911974 Submitted on 9 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Space Sci Rev (2020) 216:102 https://doi.org/10.1007/s11214-020-00718-2 On the Origin and Evolution of the Material in 67P/Churyumov-Gerasimenko Martin Rubin1 · Cécile Engrand2 · Colin Snodgrass3 · Paul Weissman4 · Kathrin Altwegg1 · Henner Busemann5 · Alessandro Morbidelli6 · Michael Mumma7 Received: 9 September 2019 / Accepted: 3 July 2020 / Published online: 30 July 2020 © The Author(s) 2020 Abstract Primitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. -
Naming the Extrasolar Planets
Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named. -
Observer Page 2 of 14
AAAssstttrrrooonnnooomyyy CCCllluuubbb ooofff TTTuuulllsssaaa OOOOOObbbbbbsssssseeeeeerrrrrrvvvvvveeeeeerrrrrr October 2009 Messier 15 Jean-Dominique Maraldi discovered M15 on September 7, 1746. He described it as 'A nebulous star, fairly bright and composed of many stars'. Charles Messier, who cataloged it on June 3, 1764, and Johann Bode couldn't make this out and described it as 'nebula without stars,' so that it remained to William Herschel in 1783 to resolve this fine star cluster. M15 was the first globular cluster in which a planetary nebula, Pease 1 or K 648 ("K" for "Kuster"), could be identified (Pease 1928, on photographic plates taken at Mt. Wilson in 1927). M15 can be found extremely easily: First find the 2nd magnitude star Epsilon Pegasi, and Theta Pegasi SE of it. Follow the line from Theta over Epsilon and find M15 3 1/2 deg W and 2 1/4 deg N of Epsilon. A 6th magnitude star is about 20' away to the East; another one of magnitude 7.5 is about 5' to the NNE. With its apparent visual brightness of magnitude 6.2, M15 is about at the limit of visibility for the naked eye under very good conditions. The slightest optical aid, opera glass or small binoculars, reveals it as a round nebulous object. It appears as a round mottled nebula in 4-inch telescopes, with at best the very brightest stars visible, but otherwise unresolved in a fine star field. Be sure to catch & log M15 this month! Inside This Issue: Important ACT Upcoming Dates: October Calendar - - - - - - p2 Misc. News - - - - - - - - - - p6 ACT Monthly Meeting @ Bass Pro - Fri, Oct. -
Variable Star Section Circular No
The British Astronomical Association Variable Star Section Circular No. 176 June 2018 Office: Burlington House, Piccadilly, London W1J 0DU Contents Joint BAA-AAVSO meeting 3 From the Director 4 V392 Per (Nova Per 2018) - Gary Poyner & Robin Leadbeater 7 High-Cadence measurements of the symbiotic star V648 Car using a CMOS camera - Steve Fleming, Terry Moon and David Hoxley 9 Analysis of two semi-regular variables in Draco – Shaun Albrighton 13 V720 Cas and its close companions – David Boyd 16 Introduction to AstroImageJ photometry software – Richard Lee 20 Project Melvyn, May 2018 update – Alex Pratt 25 Eclipsing Binary news – Des Loughney 27 Summer Eclipsing Binaries – Christopher Lloyd 29 68u Herculis – David Conner 36 The BAAVSS Eclipsing Binary Programme lists – Christopher Lloyd 39 Section Publications 42 Contributing to the VSSC 42 Section Officers 43 Cover image V392 Per (Nova Per 2018) May 6.129UT iTelescope T11 120s. Martin Mobberley 2 Back to contents Joint BAA/AAVSO Meeting on Variable Stars Warwick University Saturday 7th & Sunday 8th July 2018 Following the last very successful joint meeting between the BAAVSS and the AAVSO at Cambridge in 2008, we are holding another joint meeting at Warwick University in the UK on 7-8 July 2018. This two-day meeting will include talks by Prof Giovanna Tinetti (University College London) Chemical composition of planets in our Galaxy Prof Boris Gaensicke (University of Warwick) Gaia: Transforming Stellar Astronomy Prof Tom Marsh (University of Warwick) AR Scorpii: a remarkable highly variable -
Comet Section Observing Guide
Comet Section Observing Guide 1 The British Astronomical Association Comet Section www.britastro.org/comet BAA Comet Section Observing Guide Front cover image: C/1995 O1 (Hale-Bopp) by Geoffrey Johnstone on 1997 April 10. Back cover image: C/2011 W3 (Lovejoy) by Lester Barnes on 2011 December 23. © The British Astronomical Association 2018 2018 December (rev 4) 2 CONTENTS 1 Foreword .................................................................................................................................. 6 2 An introduction to comets ......................................................................................................... 7 2.1 Anatomy and origins ............................................................................................................................ 7 2.2 Naming .............................................................................................................................................. 12 2.3 Comet orbits ...................................................................................................................................... 13 2.4 Orbit evolution .................................................................................................................................... 15 2.5 Magnitudes ........................................................................................................................................ 18 3 Basic visual observation ........................................................................................................ -
On the Rotation Rates and Axis Ratios of the Smallest Known Near-Earth
On the rotation rates and axis ratios of the smallest known near-Earth asteroids—the archetypes of the Asteroid Redirect Mission targets Patrick Hatcha, Paul A. Wiegerta,b,∗ aDepartment of Physics and Astronomy, The University of Western Ontario, London, N6A 3K7 CANADA bCentre for Planetary Science and Exploration, The University of Western Ontario, London, N6A 3K7 CANADA Abstract NASA’s Asteroid Redirect Mission (ARM) has been proposed with the aim to capture a small asteroid a few meters in size and redirect it into an orbit around the Moon. There it can be investigated at leisure by astronauts aboard an Orion or other spacecraft. The target for the mission has not yet been selected, and there are very few potential targets currently known. Though sufficiently small near-Earth asteroids (NEAs) are thought to be numerous, they are also difficult to detect and characterize with current observational facilities. Here we collect the most up-to-date information on near-Earth asteroids in this size range to outline the state of understanding of the properties of these small NEAs. Observational biases certainly mean that our sample is not an ideal representation of the true population of small NEAs. However our sample is representative of the eventual target list for the ARM mission, which will be compiled under very similar observational constraints unless dramatic changes are made to the way near-Earth asteroids are searched for and studied. We collect here information on 88 near-Earth asteroids with diameters less than 60 meters and with high quality light curves. We find that the typical rotation period is 40 minutes. -
Polarimetry of Comets: Observational Results and Problems
POLARIMETRY OF COMETS: OBSERVATIONAL RESULTS AND PROBLEMS N. Kiselev & V. Rosenbush Main Astronomical Observatory of National Academy of Sciences of Ukraine 1st WG meeting in Warsaw, Poland, 7-9 May 2012 Outline of presentation Linear polarization of comets. Problems with the interpretation of diversity in the maximum polarization of comets. Circular polarization of comets. Next task Polarimetric data for comets up to the mid 1970s (Kiselev, 1981; Dobrovolsky et al.,1986) The polarization of molecular emissions was explained as being due to resonance fluorescence (Öhman, 1941; Le Borgne et al., 1986) 2 P90 sin P() 2 , where P90 = 0.077 1 P90 cos Curve (2) is polarization phase dependence for the resonance fluorescence according to Öhman’s formula. Curve (1) is a fit of polarization data in continuum according to Öhman’s formula. There are no observations of comets at phase angles smaller than 40 until 1975. Open questions: •What is polarization phase curve for dust near opposition ? •What is the maximum of polarization? •Is there a diversity in comet polarization? Comets: negative polarization branch Discovery of the NPB gave impetus to development of new optical mechanisms Observations of comet West to explain its origin. Among them, the revealed a negative branch of scattering of light by particles with aggregate structure. linear polarization at phase angles 22. (Kiselev&Chernova, 1976) Phase angle dependence of polarization for comets in the blue and red continuum (Kiselev, 2003) The observed difference in the All comets polarization of the two groups of comets is apparent. Why is this? There are three points of view: •The polarization of each comet is an individual (Perrin&Lamy, 1986). -
The Composition of Cometary Volatiles 391
Bockelée-Morvan et al.: The Composition of Cometary Volatiles 391 The Composition of Cometary Volatiles D. Bockelée-Morvan and J. Crovisier Observatoire de Paris M. J. Mumma NASA Goddard Space Flight Center H. A. Weaver The Johns Hopkins University Applied Physics Laboratory The composition of cometary ices provides key information on the chemical and physical properties of the outer solar nebula where comets formed, 4.6 G.y. ago. This chapter summa- rizes our current knowledge of the volatile composition of cometary nuclei, based on spectro- scopic observations and in situ measurements of parent molecules and noble gases in cometary comae. The processes that govern the excitation and emission of parent molecules in the radio, infrared (IR), and ultraviolet (UV) wavelength regions are reviewed. The techniques used to convert line or band fluxes into molecular production rates are described. More than two dozen parent molecules have been identified, and we describe how each is investigated. The spatial distribution of some of these molecules has been studied by in situ measurements, long-slit IR and UV spectroscopy, and millimeter wave mapping, including interferometry. The spatial dis- tributions of CO, H2CO, and OCS differ from that expected during direct sublimation from the nucleus, which suggests that these species are produced, at least partly, from extended sources in the coma. Abundance determinations for parent molecules are reviewed, and the evidence for chemical diversity among comets is discussed. 1. INTRODUCTION ucts are called daughter products. Although there have been in situ measurements of some parent molecules in the coma Much of the scientific interest in comets stems from their of 1P/Halley using mass spectrometers, the majority of re- potential role in elucidating the processes responsible for the sults on the parent molecules have been derived from remote formation and evolution of the solar system. -
1950 Da, 205, 269 1979 Va, 230 1991 Ry16, 183 1992 Kd, 61 1992
Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. Burbine Index More Information 356 Index 1950 DA, 205, 269 single scattering, 142, 143, 144, 145 1979 VA, 230 visual Bond, 7 1991 RY16, 183 visual geometric, 7, 27, 28, 163, 185, 189, 190, 1992 KD, 61 191, 192, 192, 253 1992 QB1, 233, 234 Alexandra, 59 1993 FW, 234 altitude, 49 1994 JR1, 239, 275 Alvarez, Luis, 258 1999 JU3, 61 Alvarez, Walter, 258 1999 RL95, 183 amino acid, 81 1999 RQ36, 61 ammonia, 223, 301 2000 DP107, 274, 304 amoeboid olivine aggregate, 83 2000 GD65, 205 Amor, 251 2001 QR322, 232 Amor group, 251 2003 EH1, 107 Anacostia, 179 2007 PA8, 207 Anand, Viswanathan, 62 2008 TC3, 264, 265 Angelina, 175 2010 JL88, 205 angrite, 87, 101, 110, 126, 168 2010 TK7, 231 Annefrank, 274, 275, 289 2011 QF99, 232 Antarctic Search for Meteorites (ANSMET), 71 2012 DA14, 108 Antarctica, 69–71 2012 VP113, 233, 244 aphelion, 30, 251 2013 TX68, 64 APL, 275, 292 2014 AA, 264, 265 Apohele group, 251 2014 RC, 205 Apollo, 179, 180, 251 Apollo group, 230, 251 absorption band, 135–6, 137–40, 145–50, Apollo mission, 129, 262, 299 163, 184 Apophis, 20, 269, 270 acapulcoite/ lodranite, 87, 90, 103, 110, 168, 285 Aquitania, 179 Achilles, 232 Arecibo Observatory, 206 achondrite, 84, 86, 116, 187 Aristarchus, 29 primitive, 84, 86, 103–4, 287 Asporina, 177 Adamcarolla, 62 asteroid chronology function, 262 Adeona family, 198 Asteroid Zoo, 54 Aeternitas, 177 Astraea, 53 Agnia family, 170, 198 Astronautica, 61 AKARI satellite, 192 Aten, 251 alabandite, 76, 101 Aten group, 251 Alauda family, 198 Atira, 251 albedo, 7, 21, 27, 185–6 Atira group, 251 Bond, 7, 8, 9, 28, 189 atmosphere, 1, 3, 8, 43, 66, 68, 265 geometric, 7 A- type, 163, 165, 167, 169, 170, 177–8, 192 356 © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-09684-4 — Asteroids Thomas H. -
The Blue Planet Report from Stellafane Perspective on Apollo How to Gain and Retain New Members
Published by the Astronomical League Vol. 71, No. 4 September 2019 THE BLUE PLANET REPORT FROM STELLAFANE 7.20.69 5 PERSPECTIVE ON APOLLO YEARS APOLLO 11 HOW TO GAIN AND RETAIN NEW MEMBERS mic Hunter h Cos h 4 er’s 5 t h Win 6 7h +30° AURIG A +30° Fast Facts TAURUS Orion +20° χ1 χ2 +20° GE MIN I ated winter nights are domin ο1 Mid ξ ν 2 ORIO N ο tion Orion. This +10° by the constella 1 a π Meiss λ 2 μ π +10° 2 φ1 attended by his φ 3 unter, α γ π cosmic h Bellatrix 4 Betelgeuse π d ω Canis Major an ψ ρ π5 hunting dogs, π6 0° intaka aurus the M78 δ M , follows T 0° ε and Minor Alnitak Alnilam What’s Your Pleasure? ζ h σ η vens eac EROS ross the hea MONOC M43 M42 Bull ac θ τ ι υ ess pursuit. β –10° night in endl Saiph Rigel –10° κ The showpiece of the ANI S C LEPU S ERIDANU S ion MAJOR constellation is the Or ORION (Constellation) –20° wn here), –20° Nebula (M42,sho ion 5 hr; Location: Right Ascens a region of nebulosity ° north 4h Declination 5 5h 6h 7h 2 square degrees th just 1,300 a: 594 and starbir Are 3 4 5 6 0 1 2 0 -2 -1 he Hunter 2 Symbol: T 0 t-years away that is M42 (Orion Nebula); C ligh Notable Objects: a la); NG C 2024 laked eye as a tary nebu e M78 (plane visible to the n n la) d. -
<H1>History of Astronomy by George Forbes</H1>
History of Astronomy by George Forbes History of Astronomy by George Forbes Produced by Jonathan Ingram, Dave Maddock, Charles Franks and the Online Distributed Proofreading Team. [Illustration: SIR ISAAC NEWTON (From the bust by Roubiliac In Trinity College, Cambridge.)] HISTORY OF ASTRONOMY BY GEORGE FORBES, M.A., F.R.S., M. INST. C. E., (FORMERLY PROFESSOR OF NATURAL PHILOSOPHY, ANDERSON'S COLLEGE, GLASGOW) AUTHOR OF "THE TRANSIT OF VENUS," RENDU'S "THEORY OF THE GLACIERS OF SAVOY," ETC., ETC. page 1 / 186 CONTENTS PREFACE BOOK I. THE GEOMETRICAL PERIOD 1. PRIMITIVE ASTRONOMY AND ASTROLOGY 2. ANCIENT ASTRONOMY--CHINESE AND CHALDAEANS 3. ANCIENT GREEK ASTRONOMY 4. THE REIGN OF EPICYCLES--FROM PTOLEMY TO COPERNICUS BOOK II. THE DYNAMICAL PERIOD 5. DISCOVERY OF THE TRUE SOLAR SYSTEM--TYCHO BRAHE--KEPLER 6. GALILEO AND THE TELESCOPE--NOTIONS OF GRAVITY BY HORROCKS, ETC. 7. SIR ISAAC NEWTON--LAW OF UNIVERSAL GRAVITATION page 2 / 186 8. NEWTON'S SUCCESSORS--HALLEY, EULER, LAGRANGE, LAPLACE, ETC. 9. DISCOVERY OF NEW PLANETS--HERSCHEL, PIAZZI, ADAMS, AND LE VERRIER BOOK III. OBSERVATION 10. INSTRUMENTS OF PRECISION--SIZE OF THE SOLAR SYSTEM 11. HISTORY OF THE TELESCOPE--SPECTROSCOPE BOOK IV. THE PHYSICAL PERIOD 12. THE SUN 13. THE MOON AND PLANETS 14. COMETS AND METEORS 15. THE STARS AND NEBULAE page 3 / 186 INDEX PREFACE An attempt has been made in these pages to trace the evolution of intellectual thought in the progress of astronomical discovery, and, by recognising the different points of view of the different ages, to give due credit even to the ancients. No one can expect, in a history of astronomy of limited size, to find a treatise on "practical" or on "theoretical astronomy," nor a complete "descriptive astronomy," and still less a book on "speculative astronomy." Something of each of these is essential, however, for tracing the progress of thought and knowledge which it is the object of this History to describe.