A Rhoa and Rnd3 Cycle Regulates Actin Reassembly During Membrane

Total Page:16

File Type:pdf, Size:1020Kb

A Rhoa and Rnd3 Cycle Regulates Actin Reassembly During Membrane A RhoA and Rnd3 cycle regulates actin reassembly PNAS PLUS during membrane blebbing Kana Aokia, Fumiyo Maedaa,1, Tomoya Nagasakob,1, Yuki Mochizukia, Seiichi Uchidab, and Junichi Ikenouchia,c,d,2 aDepartment of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan; bDepartment of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan; cPrecursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan; and dAMED-PRIME, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan Edited by Thomas D. Pollard, Yale University, New Haven, CT, and approved February 12, 2016 (received for review January 21, 2016) The actin cytoskeleton usually lies beneath the plasma membrane. membrane blebs is promoted by epidermal growth factor receptor When the membrane-associated actin cytoskeleton is transiently kinase substrate 8 (Eps8) and ezrin, and regulated by a RhoA– disrupted or the intracellular pressure is increased, the plasma Rho-associated protein kinase (ROCK)–Rnd3 feedback loop. membrane detaches from the cortex and protrudes. Such protruded membrane regions are called blebs. However, the molecular mech- Results and Discussion anisms underlying membrane blebbing are poorly understood. This Membrane Blebs Retract from Multiple Sites. We used the human study revealed that epidermal growth factor receptor kinase sub- colon carcinoma cell line DLD1 to observe membrane blebbing. strate 8 (Eps8) and ezrin are important regulators of rapid actin When cultured in 2D conditions, DLD1 cells did not exhibit reassembly for the initiation and retraction of protruded blebs. Live- membrane blebbing (Fig. 1A, Left). However, DLD1 cells ac- cell imaging of membrane blebbing revealed that local reassembly tively formed membrane blebs when embedded in a type I col- of actin filaments occurred at Eps8- and activated ezrin-positive foci lagen gel (Fig. 1A, Right). To visualize the process of actin cortex of membrane blebs. Furthermore, we found that a RhoA–ROCK– reassembly in protruded membrane blebs, we established DLD1 Rnd3 feedback loop determined the local reassembly sites of the cells stably expressing both a filamentous actin marker, Lifeact– actin cortex during membrane blebbing. RFP, and a membrane marker, the pleckstrin homology domain of phospholipase Cδ (PLCδ–PH) tagged with green fluorescent membrane bleb | Rnd3 | Eps8 | actin cortex | cell migration protein (GFP) (Fig. 1B). After expansion of a cytoskeleton-free membrane, actin is ctin filaments usually lie beneath the plasma membrane. progressively recruited to the membrane during the retraction AWhen the plasma membrane detaches from actin filaments, phase. By repeated and careful observations, we observed that spherical protrusions of the membrane, termed blebs, form. the recovery of actin filaments occurred locally from multiple Several lines of recent evidence suggest membrane blebs are independent regions of membrane blebs (Fig. 1C, arrowheads) used for cell migration under both physiological and pathological and actin filaments grew from these sites to cover the entire conditions. For example, migrating primordial germ cells (PGCs) blebbing membrane (Movie S1). We did not detect continuous use membrane blebs to migrate in zebrafish (1). Similarly, ac- expansion of the actin cortex from the edge of the membrane tively migrating PGCs exhibit membrane blebbing in Drosophila detachment site. These observations are in good agreement with melanogaster embryos (2). Dictyostelium use membrane blebbing those of a previous report, which showed that mDia1, an es- during chemotaxis (3, 4). Thus, membrane blebbing is widely sential actin nucleator for the regrowth of actin filaments at used as a driving force of motility across species (4, 5). In ad- membrane blebs, localizes to the cortex of blebs in a speckle dition, cancer cells use a membrane blebbing-associated mode of pattern (13). We next examined the localization of myosin reg- motility in metastasis (6). Cancer cells migrate without degrading ulatory light chain 1 (MRLC1) tagged with GFP (GFP–MRLC1) (Fig. 1D). GFP–MRLC1 also accumulated at the initiation sites the matrix by protruding membrane blebs in 3D extracellular CELL BIOLOGY matrixes (5, 7). Recently, cell physical confinement, down-reg- of actin cortex reassembly. These data suggest that the retraction ulation of cell adhesion to the extracellular matrix, and up-reg- of blebbing membranes begins from multiple regions of the pro- ulation of intrinsic cortical contraction forces were identified as truded membrane. key conditions for the induction of membrane blebbing-associ- ated cell migration in many cell types including invasive cancer Significance cells (8–10). However, the molecular mechanisms underlying membrane The plasma membrane and the underlying actin cortex show blebbing remain to be elucidated. Membrane blebs are initiated dynamic interactions. When the plasma membrane detaches as a rapid protrusion of the plasma membrane, which is driven from the actin cortex, the plasma membrane protrudes. The either by a change in intracellular hydrostatic pressure after local protruded membrane is called a membrane bleb and is often disruption of membrane–actin cortex interactions or by a local observed during cell migration or cytokinesis. In the present breakdown of actin filaments. Thereafter, actin filaments poly- study, we determined the molecular mechanisms involved in merize beneath the protruded membrane to halt bleb expansion. the reassembly of the actin cortex in membrane blebs using When actin filaments cover the protruded membrane, myosins live-cell imaging. are recruited to these filaments (11). It is unknown how actin cortex reassembly is triggered during these processes (11, 12), Author contributions: J.I. designed research; K.A. and F.M. performed research; T.N. and S.U. contributed new reagents/analytic tools; K.A., F.M., T.N., Y.M., and S.U. analyzed although there are at least two possibilities. One possibility is that data; and J.I. wrote the paper. actin filaments constitutively form beneath the plasma membrane The authors declare no conflict of interest. and the plasma membrane stops extending when actin filaments are This article is a PNAS Direct Submission. sufficiently reconstructed. The other possibility is that actin cortex 1F.M. and T.N. contributed equally to this work. reassembly is triggered by the activation of unidentified signaling 2To whom correspondence should be addressed. Email: [email protected] when the cell senses a cytoskeleton-free plasma membrane region. u.ac.jp. In the present study, we addressed this issue using live-cell This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. imaging and revealed that the rapid recovery of actin filaments at 1073/pnas.1600968113/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1600968113 PNAS | Published online March 14, 2016 | E1863–E1871 Downloaded by guest on September 28, 2021 Fig. 1. Eps8 locally accumulates at the initial phase of membrane retraction in the membrane bleb. (A) DLD1 cells exhibit membrane blebbing when cultured in a type I collagen matrix (Right). (Scale bar, 20 μm.) (B and C) Membrane blebbing of DLD1 cells transfected with Lifeact–RFP and GFP-tagged PLCδ–PH. Timing relative to the first image is indicated in white text. Actin cortex reassembly started from multiple sites of the protruded membrane (arrowheads). (Scale bar: B,5μm; C,2μm.) (D) Localization of GFP–MRLC1 during membrane bleb expansion and retraction. MRLC1 accumulates at multiple regions of membrane blebs (arrowheads). (Scale bar, 1 μm.) (E) Localization of GFP-tagged Eps8 in membrane blebs of DLD1 cells. Eps8 accumulates in multiple foci at the protruded membrane (arrowheads). (Scale bar, 2 μm.) (F and G) Kymographs showing actin localization (red) with respect to actin cytoskeleton-related proteins (green) during bleb retraction. Bleb extension is shown on the horizontal axis, and time is shown on the vertical axis. Eps-8 (F, green) localizes to the protruded membrane before actin filaments. MRLC1 (G,green) is recruited after actin filaments. (H) Timing of arrival of Eps8 and MRLC1 relative to that of actin filaments (t = 0 s). Data are the mean ± SD. E1864 | www.pnas.org/cgi/doi/10.1073/pnas.1600968113 Aoki et al. Downloaded by guest on September 28, 2021 PNAS PLUS CELL BIOLOGY Fig. 2. The end-capping and actin-bundling activities of Eps8 are required for continuous membrane blebbing. (A) Expression of Eps8 is greatly reduced in Eps8-KD DLD1 cells. (B) Eps8-KD DLD1 cells are spherical and do not exhibit membrane blebbing when cultured in a type I collagen matrix. (Scale bar, 10 μm.) (C) Exogenous expression of GFP-tagged mouse Eps8 restores membrane blebbing (arrow) in Eps8-KD DLD1 cells. (Scale bar, 10 μm.) (D) Schematic drawings of mutant Eps8 constructs. The number of amino acid residues of Eps8 is shown. (E) Total cell lysates of DLD1 cells expressing each construct separated by SDS/ PAGE and immunoblotted with an anti-GFP mAb. (F) The percentages of GFP-positive cells showing membrane blebbing relative to the total number of GFP- positive cells in a given field were calculated. In each experiment, the total cell number was 100 (n = 3). Data are the mean ± SD. *P < 0.05 (Student’s t test). (G) Localization of GFP-tagged mutant Eps8 in Eps8-KD DLD1 cells. Expression of the GFP-tagged Eps8 mutant lacking the proline-rich region (GFP–Eps8ΔPR) or the GFP-tagged
Recommended publications
  • Figure S1. DMD Module Network. the Network Is Formed by 260 Genes from Disgenet and 1101 Interactions from STRING. Red Nodes Are the Five Seed Candidate Genes
    Figure S1. DMD module network. The network is formed by 260 genes from DisGeNET and 1101 interactions from STRING. Red nodes are the five seed candidate genes. Figure S2. DMD module network is more connected than a random module of the same size. It is shown the distribution of the largest connected component of 10.000 random modules of the same size of the DMD module network. The green line (x=260) represents the DMD largest connected component, obtaining a z-score=8.9. Figure S3. Shared genes between BMD and DMD signature. A) A meta-analysis of three microarray datasets (GSE3307, GSE13608 and GSE109178) was performed for the identification of differentially expressed genes (DEGs) in BMD muscle biopsies as compared to normal muscle biopsies. Briefly, the GSE13608 dataset included 6 samples of skeletal muscle biopsy from healthy people and 5 samples from BMD patients. Biopsies were taken from either biceps brachii, triceps brachii or deltoid. The GSE3307 dataset included 17 samples of skeletal muscle biopsy from healthy people and 10 samples from BMD patients. The GSE109178 dataset included 14 samples of controls and 11 samples from BMD patients. For both GSE3307 and GSE10917 datasets, biopsies were taken at the time of diagnosis and from the vastus lateralis. For the meta-analysis of GSE13608, GSE3307 and GSE109178, a random effects model of effect size measure was used to integrate gene expression patterns from the two datasets. Genes with an adjusted p value (FDR) < 0.05 and an │effect size│>2 were identified as DEGs and selected for further analysis. A significant number of DEGs (p<0.001) were in common with the DMD signature genes (blue nodes), as determined by a hypergeometric test assessing the significance of the overlap between the BMD DEGs and the number of DMD signature genes B) MCODE analysis of the overlapping genes between BMD DEGs and DMD signature genes.
    [Show full text]
  • Supplementary Table 3 Complete List of RNA-Sequencing Analysis of Gene Expression Changed by ≥ Tenfold Between Xenograft and Cells Cultured in 10%O2
    Supplementary Table 3 Complete list of RNA-Sequencing analysis of gene expression changed by ≥ tenfold between xenograft and cells cultured in 10%O2 Expr Log2 Ratio Symbol Entrez Gene Name (culture/xenograft) -7.182 PGM5 phosphoglucomutase 5 -6.883 GPBAR1 G protein-coupled bile acid receptor 1 -6.683 CPVL carboxypeptidase, vitellogenic like -6.398 MTMR9LP myotubularin related protein 9-like, pseudogene -6.131 SCN7A sodium voltage-gated channel alpha subunit 7 -6.115 POPDC2 popeye domain containing 2 -6.014 LGI1 leucine rich glioma inactivated 1 -5.86 SCN1A sodium voltage-gated channel alpha subunit 1 -5.713 C6 complement C6 -5.365 ANGPTL1 angiopoietin like 1 -5.327 TNN tenascin N -5.228 DHRS2 dehydrogenase/reductase 2 leucine rich repeat and fibronectin type III domain -5.115 LRFN2 containing 2 -5.076 FOXO6 forkhead box O6 -5.035 ETNPPL ethanolamine-phosphate phospho-lyase -4.993 MYO15A myosin XVA -4.972 IGF1 insulin like growth factor 1 -4.956 DLG2 discs large MAGUK scaffold protein 2 -4.86 SCML4 sex comb on midleg like 4 (Drosophila) Src homology 2 domain containing transforming -4.816 SHD protein D -4.764 PLP1 proteolipid protein 1 -4.764 TSPAN32 tetraspanin 32 -4.713 N4BP3 NEDD4 binding protein 3 -4.705 MYOC myocilin -4.646 CLEC3B C-type lectin domain family 3 member B -4.646 C7 complement C7 -4.62 TGM2 transglutaminase 2 -4.562 COL9A1 collagen type IX alpha 1 chain -4.55 SOSTDC1 sclerostin domain containing 1 -4.55 OGN osteoglycin -4.505 DAPL1 death associated protein like 1 -4.491 C10orf105 chromosome 10 open reading frame 105 -4.491
    [Show full text]
  • Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells
    Published OnlineFirst May 6, 2011; DOI: 10.1158/1535-7163.MCT-10-1028 Molecular Cancer Therapeutic Discovery Therapeutics Expression Signatures of the Lipid-Based Akt Inhibitors Phosphatidylinositol Ether Lipid Analogues in NSCLC Cells Chunyu Zhang1, Abdel G. Elkahloun2, Hongling Liao3, Shannon Delaney1, Barbara Saber1, Betsy Morrow1, George C. Prendergast4, M. Christine Hollander1, Joell J. Gills1, and Phillip A. Dennis1 Abstract Activation of the serine/threonine kinase Akt contributes to the formation, maintenance, and therapeutic resistance of cancer, which is driving development of compounds that inhibit Akt. Phosphatidylinositol ether lipid analogues (PIA) are analogues of the products of phosphoinositide-3-kinase (PI3K) that inhibit Akt activation, translocation, and the proliferation of a broad spectrum of cancer cell types. To gain insight into the mechanism of PIAs, time-dependent transcriptional profiling of five active PIAs and the PI3K inhibitor LY294002 (LY) was conducted in non–small cell lung carcinoma cells using high-density oligonucleotide arrays. Gene ontology analysis revealed that genes involved in apoptosis, wounding response, and angiogen- esis were upregulated by PIAs, whereas genes involved in DNA replication, repair, and mitosis were suppressed. Genes that exhibited early differential expression were partitioned into three groups; those induced by PIAs only (DUSP1, KLF6, CENTD2, BHLHB2, and PREX1), those commonly induced by PIAs and LY (TRIB1, KLF2, RHOB, and CDKN1A), and those commonly suppressed by PIAs and LY (IGFBP3, PCNA, PRIM1, MCM3, and HSPA1B). Increased expression of the tumor suppressors RHOB (RhoB), KLF6 (COPEB), and CDKN1A (p21Cip1/Waf1) was validated as an Akt-independent effect that contributed to PIA-induced cytotoxicity. Despite some overlap with LY, active PIAs have a distinct expression signature that contributes to their enhanced cytotoxicity.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Analysis of Protein Complexes Through Model-Based Biclustering of Label-Free Quantitative AP-MS Data
    Molecular Systems Biology 6; Article number 385; doi:10.1038/msb.2010.41 Citation: Molecular Systems Biology 6:385 & 2010 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/10 www.molecularsystemsbiology.com REPORT Analysis of protein complexes through model-based biclustering of label-free quantitative AP-MS data Hyungwon Choi1, Sinae Kim2, Anne-Claude Gingras3,4 and Alexey I Nesvizhskii1,5,* 1 Department of Pathology, University of Michigan, Ann Arbor, MI, USA, 2 Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA, 3 Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario, Canada, 4 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada and 5 Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA * Corresponding author. Department of Pathology, University of Michigan, 1301 Catherine, 4237 MS1, Ann Arbor, MI 48109, USA. Tel.: þ 1 734 764 3516; Fax: þ 1 734 936 7361; E-mail: [email protected] Received 28.8.09; accepted 7.5.10 Affinity purification followed by mass spectrometry (AP-MS) has become a common approach for identifying protein–protein interactions (PPIs) and complexes. However, data analysis and visualization often rely on generic approaches that do not take advantage of the quantitative nature of AP-MS. We present a novel computational method, nested clustering, for biclustering of label-free quantitative AP-MS data. Our approach forms bait clusters based on the similarity of quantitative interaction profiles and identifies submatrices of prey proteins showing consistent quantitative association within bait clusters. In doing so, nested clustering effectively addresses the problem of overrepresentation of interactions involving baits proteins as compared with proteins only identified as preys.
    [Show full text]
  • Vaccinia Virus Strains Use Distinct Forms of Macropinocytosis for Host-Cell Entry
    Vaccinia virus strains use distinct forms of macropinocytosis for host-cell entry Jason Mercer1, Stephan Knébel, Florian I. Schmidt, Josh Crouse, Christine Burkard, and Ari Helenius1 Eidgenössische Technische Hochschule Zurich, Institute of Biochemistry, Eidgenössische Technische Hochschule Hoenggerberg, 8093 Zurich, Switzerland Contributed by Ari Helenius, April 10, 2010 (sent for review January 20, 2010) To enter host cells, vaccinia virus, a prototype poxvirus, can induce Previous studies have suggested that entry of IHD-J MVs might transient macropinocytosis followed by endocytic internalization be different. Instead of blebs, they seem to induce narrow plasma and penetration through the limiting membrane of pinosomes by membrane protrusions (9). The IHD-J virus is also more de- membrane fusion. Although mature virions (MVs) of the Western pendent on glycosaminoglycan binding and does not require reserve (WR) strain do this in HeLa cells by activating transient acidic vacuolar pH (10). To determine whether the two strains of plasma membrane blebbing, MVs from the International Health VACV do, in fact, use different entry strategies, we compared Department-J strain were found to induce rapid formation (and their interaction with HeLa cells and found that the immediate lengthening) of filopodia. When the signaling pathways underly- cellular responses to the two strains were quite different. Clearly ing these responses were compared, differences were observed at the same host cells were capable of activating distinct forms the level of Rho GTPases. Key to the filopodial formation was the of macropinocytosis. virus-induced activation of Cdc42, and for the blebbing response the activation of Rac1. In addition, unlike WR, International Health Results Department-J MVs did not rely on genistein-sensitive tyrosine IHD-J MVs Induce Filopodia.
    [Show full text]
  • STRIP1, a Core Component of STRIPAK Complexes, Is Essential
    STRIP1, a core component of STRIPAK complexes, is PNAS PLUS essential for normal mesoderm migration in the mouse embryo Hisham Bazzia,b,c,1, Ekaterina Sorokab,c, Heather L. Alcorna, and Kathryn V. Andersona,1 aDevelopmental Biology Program, Sloan Kettering Institute, New York, NY 10065; bDepartment of Dermatology and Venereology, University Hospital of Cologne, 50937 Cologne, Germany; and cCologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany Edited by Brigid L. M. Hogan, Duke University Medical Center, Durham, NC, and approved November 10, 2017 (received for review August 1, 2017) Regulated mesoderm migration is necessary for the proper mor- E-cadherin is essential for mesoderm migration (9, 10). In the phogenesis and organ formation during embryonic development. chick, directional migration of the nascent mesoderm appears Cell migration and its dependence on the cytoskeleton and signaling to depend on chemorepulsion by FGF and Wnt3a ligands expressed machines have been studied extensively in cultured cells; in at the primitive streak (11), but it is not clear whether the same contrast, remarkably little is known about the mechanisms that signals operate in the mouse. The ability of mesoderm cells to mi- regulate mesoderm cell migration in vivo. Here, we report the grate depends on a complete reorganization of the actin cytoskel- identification and characterization of a mouse mutation in striatin- eton, and motility depends on the WAVE complex and the small Strip1 interacting protein 1 ( ) that disrupts migration of the meso- GTPase RAC1 (12, 13). derm after the gastrulation epithelial-to-mesenchymal transition Experiments in cell culture recently implicated the striatin- (EMT).
    [Show full text]
  • High Throughput Strategies Aimed at Closing the GAP in Our Knowledge of Rho Gtpase Signaling
    cells Review High Throughput strategies Aimed at Closing the GAP in Our Knowledge of Rho GTPase Signaling Manel Dahmene 1, Laura Quirion 2 and Mélanie Laurin 1,3,* 1 Oncology Division, CHU de Québec–Université Laval Research Center, Québec, QC G1V 4G2, Canada; [email protected] 2 Montréal Clinical Research Institute (IRCM), Montréal, QC H2W 1R7, Canada; [email protected] 3 Université Laval Cancer Research Center, Québec, QC G1R 3S3, Canada * Correspondence: [email protected] Received: 21 May 2020; Accepted: 7 June 2020; Published: 9 June 2020 Abstract: Since their discovery, Rho GTPases have emerged as key regulators of cytoskeletal dynamics. In humans, there are 20 Rho GTPases and more than 150 regulators that belong to the RhoGEF, RhoGAP, and RhoGDI families. Throughout development, Rho GTPases choregraph a plethora of cellular processes essential for cellular migration, cell–cell junctions, and cell polarity assembly. Rho GTPases are also significant mediators of cancer cell invasion. Nevertheless, to date only a few molecules from these intricate signaling networks have been studied in depth, which has prevented appreciation for the full scope of Rho GTPases’ biological functions. Given the large complexity involved, system level studies are required to fully grasp the extent of their biological roles and regulation. Recently, several groups have tackled this challenge by using proteomic approaches to map the full repertoire of Rho GTPases and Rho regulators protein interactions. These studies have provided in-depth understanding of Rho regulators specificity and have contributed to expand Rho GTPases’ effector portfolio. Additionally, new roles for understudied family members were unraveled using high throughput screening strategies using cell culture models and mouse embryos.
    [Show full text]
  • C-Src Activity Is Differentially Required by Cancer Cell Motility Modes
    Oncogene (2018) 37:2104–2121 https://doi.org/10.1038/s41388-017-0071-5 ARTICLE c-Src activity is differentially required by cancer cell motility modes 1,2,3 2 2 Jeremy S. Logue ● Alexander X. Cartagena-Rivera ● Richard S. Chadwick Received: 21 June 2017 / Revised: 29 September 2017 / Accepted: 19 November 2017 / Published online: 30 January 2018 © The Author(s) 2018. This article is published with open access Abstract Cancer cell migration requires that cells respond and adapt to their surroundings. In the absence of extracellular matrix cues, cancer cells will undergo a mesenchymal to ameboid transition, whereas a highly confining space will trigger a switch to “leader bleb-based” migration. To identify oncogenic signaling pathways mediating these transitions, we undertook a targeted screen using clinically useful inhibitors. Elevated Src activity was found to change actin and focal adhesion dynamics, whereas inhibiting Src triggered focal adhesion disassembly and blebbing. On non-adherent substrates and in collagen matrices, amoeboid-like, blebbing cells having high Src activity formed protrusions of the plasma membrane. To evaluate the role of Src in confined cells, we use a novel approach that places cells under a slab of polydimethylsiloxane (PDMS), which is held at a defined height. Using this method, we find that leader bleb-based migration is resistant to Src inhibition. High Src activity was found to markedly change the architecture of cortical actomyosin, reduce cell mechanical 1234567890();,: properties, and the percentage of cells that undergo leader bleb-based migration. Thus, Src is a signal transducer that can potently influence transitions between migration modes with implications for the rational development of metastasis inhibitors.
    [Show full text]
  • Caspase-3 Controls Both Cytoplasmic and Nuclear Events Associated with Fas-Mediated Apoptosis in Vivo
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 13618–13623, November 1998 Cell Biology Caspase-3 controls both cytoplasmic and nuclear events associated with Fas-mediated apoptosis in vivo TIMOTHY S. ZHENG*†,STEPHAN F. SCHLOSSER†‡,TAO DAO*, RAVI HINGORANI*, I. NICHOLAS CRISPE*, JAMES L. BOYER‡§, AND RICHARD A. FLAVELL*§¶ *Section of Immunobiology, ¶Howard Hughes Medical Institute, and ‡Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520 Communicated by Robert W. Berliner, Yale University School of Medicine, New Haven, CT, July 24, 1998 (received for review January 15, 1998) ABSTRACT Both caspase-1- and caspase-3-like activities studies in Fas signaling and caspase substrate specificities are required for Fas-mediated apoptosis. However, the role of strongly suggested a cascade activation model for caspases (9, caspase-1 and caspase-3 in mediating Fas-induced cell death 10). is not clear. We assessed the contributions of these caspases A member of the tumor necrosis factor receptor family, Fas to Fas signaling in hepatocyte cell death in vitro. Although (CD95, APO-1) mediates apoptotic signals upon FasL engage- wild-type, caspase-12/2, and caspase-32/2 hepatocytes were ment (11). In recent years, Fas-FasL interaction has been killed at a similar rate when cocultured with FasL expressing shown to play crucial roles in maintaining the homeostasis of NIH 3T3 cells, caspase-32/2 hepatocytes displayed drastically the immune system, immunological privilege observed in the different morphological changes as well as significantly de- eye and testis, and the pathogenesis of autoimmune diseases such as type I diabetes (12–14).
    [Show full text]
  • Figure S1. HAEC ROS Production and ML090 NOX5-Inhibition
    Figure S1. HAEC ROS production and ML090 NOX5-inhibition. (a) Extracellular H2O2 production in HAEC treated with ML090 at different concentrations and 24 h after being infected with GFP and NOX5-β adenoviruses (MOI 100). **p< 0.01, and ****p< 0.0001 vs control NOX5-β-infected cells (ML090, 0 nM). Results expressed as mean ± SEM. Fold increase vs GFP-infected cells with 0 nM of ML090. n= 6. (b) NOX5-β overexpression and DHE oxidation in HAEC. Representative images from three experiments are shown. Intracellular superoxide anion production of HAEC 24 h after infection with GFP and NOX5-β adenoviruses at different MOIs treated or not with ML090 (10 nM). MOI: Multiplicity of infection. Figure S2. Ontology analysis of HAEC infected with NOX5-β. Ontology analysis shows that the response to unfolded protein is the most relevant. Figure S3. UPR mRNA expression in heart of infarcted transgenic mice. n= 12-13. Results expressed as mean ± SEM. Table S1: Altered gene expression due to NOX5-β expression at 12 h (bold, highlighted in yellow). N12hvsG12h N18hvsG18h N24hvsG24h GeneName GeneDescription TranscriptID logFC p-value logFC p-value logFC p-value family with sequence similarity NM_052966 1.45 1.20E-17 2.44 3.27E-19 2.96 6.24E-21 FAM129A 129. member A DnaJ (Hsp40) homolog. NM_001130182 2.19 9.83E-20 2.94 2.90E-19 3.01 1.68E-19 DNAJA4 subfamily A. member 4 phorbol-12-myristate-13-acetate- NM_021127 0.93 1.84E-12 2.41 1.32E-17 2.69 1.43E-18 PMAIP1 induced protein 1 E2F7 E2F transcription factor 7 NM_203394 0.71 8.35E-11 2.20 2.21E-17 2.48 1.84E-18 DnaJ (Hsp40) homolog.
    [Show full text]
  • The Actin-Myosin Cytoskeleton Mediates Reversible Agonist-Induced Membrane Blebbing
    Journal of Cell Science 111, 2911-2922 (1998) 2911 Printed in Great Britain © The Company of Biologists Limited 1998 JCS7297 The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing Rochelle R. Torgerson and Mark A. McNiven* Department of Biochemistry and Molecular Biology and The Center for Basic Research in Digestive Diseases, Mayo Clinic and Foundation, Rochester, MN 55905, USA *Author for correspondence (e-mail: [email protected]) Accepted 19 July; published on WWW 9 September 1998 SUMMARY Suprastimulation of pancreatic acinar cells with specific 30 minutes of suprastimulation, both basolateral actin and agonists inhibits zymogen secretion and induces the myosin II gradually increase to form a ring centered at the formation of large basolateral blebs. Currently the necks of the blebs. Immunocytochemical and biochemical molecular mechanisms that mediate this dramatic studies with a phospho-specific antibody to the myosin morphologic response are undefined. Further, it is unclear regulatory light chain reveal an activation of myosin II in if blebbing represents a terminal or reversible event. Using suprastimulated acini that is completely absent in resting computer-enhanced video microscopy of living acini we cells. Studies using cytoskeletal antagonistic drugs indicate have found that these large blebs form rapidly (within 2-3 that bleb formation and motility require actin remodeling minutes) and exhibit ameboid undulations. They are concomitant with an activation of myosin II. This aberrant induced by small increases in agonist concentration and activation and reorganization of the actin-myosin require an energy-dependent phosphorylation event. cytoskeleton is likely to have detrimental effects on acinar Remarkably, the blebs are rapidly absorbed when agonist cell function.
    [Show full text]