Adrenal and Extra-Adrenal Production of 11-Deoxycorticosterone Monica

Total Page:16

File Type:pdf, Size:1020Kb

Adrenal and Extra-Adrenal Production of 11-Deoxycorticosterone Monica Adrenal and extra-adrenal production of 11-deoxycorticosterone Monica Ann Schneider A thesis submitted for the degree of Doctor of Philosophy University of London i ProQuest Number: U553451 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest U553451 Published by ProQuest LLC(2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 Abstract The conversion of progesterone to 11-deoxycorticosterone (DOC), a steroid known to be hypertensive, by adrenal and extra-adrenal 21-hydroxylase enzyme activity was investigated. For assessment of DOC production, a method for determining the excretion rate of tetrahydro-11-deoxycorticosterone (THDOC), a urinary metabolite of DOC, was developed. Various chromatographic techniques were employed, with detection of the steroid by gas chromatography coupled to a mass spectrometer (GC-MS), using selected ion monitoring (SIM), after MO-TMS ether formation. Inspection of the mass spectrum of THDOC showed Ion m/z 476 to be the obvious candidate for SIM, with the molecular ion (M+, m/z 507) providing confirmatory evidence for the steroid. Ion 476 proved to be unsuitable for quantitative analysis, in pregnancy and some other clinical situations, due to the presence of co-eluting steroids. The molecular ion was therefore used for quantification. These data highlighted the need for users of SIM in general to take care in the selection of the monitored ions. During pregnancy, serial urine samples were analyzed in normal women, patients with raised progesterone (for example from ovarian theca lutein cysts) and hypertension (pre-eclamptic toxaemia - PET). Ranges for various urinary steroid metabolites were established. Urine samples from patients undergoing in vitro fertilization with oocyte donation were also investigated, both during and after progesterone and oestrogen administration, which allowed assessment of the exogenous steroids. Correlation of excretion rates of THDOC with pregnanediol, a main urinary metabolite of progesterone, offered some support for extra-adrenal 21- hydroxylase activity. Many urinary metabolites of progesterone, generally hydroxypregnanolones (including THDOC) were found, particularly in pregnancy. The relative importance of some of these metabolites, using the Ion 476 SIM response, was found to be different in PET and placental sulphatase deficiency (PSD). One of the 2 hydroxypregnanolones, in pregnancy urine extracts, was found to co-elute with THDOC on gas chromatography. Various methods of separation of this co-eluting steroid, prior to the GC analysis were explored. The use of Celite gradient elution chromatography eventually facilitated almost complete separation and allowed tentative identification of 3,16-dihydroxypregnan-20-one. A hypothesis, put forward in the literature, that extra-adrenal DOC production is promoted by oestrogens, was not supported by data from pregnant subjects with PSD (who have low oestrogen production), as they were found to have THDOC excretion rates similar to normal pregnant subjects. Doubt was also raised, from mass spectral evidence, as to the accuracy of progesterone to DOC conversion rates (measured by the rate of THDOC excretion) quoted in a number of published papers, that used radioactive isotope ratios to suggest the presence of extra-adrenal DOC production. THDOC excretion rates were quantified in a number of further clinical situations with elevated progesterone and/or DOC production. A patient with a recurring DOC secreting tumour, followed over 53 months, along with subjects with congenital adrenal hyperplasia (due to 116-, 17- and 21-hydroxylase deficiency), were studied. The separate function of the zona glomerulosa (ZG) and fasciculata (ZF) of the adrenal cortex is described in a patient with 116-hydroxylase deficiency. DOC production was stimulated in the ZF after stimulation of the renin-angiotensin system, following suppression of ACTH stimulation of the ZG. A further objective of the project was to explore the use of deuterium labelled steroids in metabolic studies, thus avoiding the use of radioactivity, with its inherent risks, particularly during pregnancy. Deuterium labelled progesterone was obtained and its purity and enrichment assessed by GC-MS; unfortunately there was too little for further studies. A pilot study with 2H-cortisol showed that this could be useful in studying cortisol metabolites in vivo. 3a List of abbreviations 11BOHSD llfl-hydroxysteroid dehydrogenase 170HPr 17-hydroxypregnanolone (3a, 17a-dihydroxy-5fi-pregnan-20-one) ACTH Adrenocorticotrophin hormone And. Androsterone (3 a-hydroxy-5a-androstan-17-one) Aet. Aetiocholanolone (3a-hydroxy-5fl-androstan-17-one) A,S and C Internal standards for quantification - 5a-androstane-3a,17a-diol, stigmasterol and cholesteryl butyrate BO Benzylhydroxylamine BSA Body surface area CAH Congenital adrenal hyperplasia CBG Corticosterone binding globulin CRF Corticotrophin releasing factor dex. Dexamethasone DHA[-S] Dehydroepiandrosterone [-sulphate] (3fl-hydroxy-15-androsten-17-one) DOC 11-deoxycorticosterone (21-hydroxy-4-pregnene-3,20-dione) E Cortisone (17a,21-dihydroxy-4-pregnene-3,11,20-trione) EMS Early morning sample EO Ethoxylamine Eyal Oestradiol valerate F Cortisol (1 lfl,17a,21-trihydroxy-4-pregnene-3,20-dione) FID Flame ionization detector foil. Follicular (phase of the menstrual cycle) GC-MS Gas chromatography-mass spectrometry HBV Hold back volume hCG Human chorionic gonadotrophin HMDS Hexamethyldisilazane HO Hydroxyl amine HPLC High performance liquid chromatography IA Immunoadsorption I.D. Internal diameter IRMS Isotope ratio mass spectrometry IS Internal standard IVF In vitro fertilization KCH Kings College Hospital LDL Low density lipoproteins M+ Molecular ion MIS Mullerian inhibitory substance MO-HC1 Methyloxime hydrochloride MO-TMS Methyloxime trimethylsilyl ether MSD Mass Selective Detector MU Methylene unit 3b NMR Nuclear magnetic resonance oc. Oral contraceptives 0E3 Oestriol (1,3,5(10)-oestratrien-3,16a, 1715-triol) -OH Hydroxylase P Progesterone (4-pregnene-3,20-dione) PCO Polycystic ovary PD Pregnanediol (5fi-pregnane-3a,20a-diol) PET Preeclamptic toxaemia PRA Plasma renin activity Prl, Pr2 and Pr3 Additional hydroxypregnanolones found in SIM runs, using ion 476, in pregnancy urine samples PSD Placental sulphatase deficiency PT Pregnanetriol (5fi-pregnane-3a, 17a,20a-triol) RER Rough endoplasmic reticulum RIA Radioimmunoassay SD Standard deviation SER Smooth endoplasmic reticulum SIM Selected ion monitoring S 11-deoxycortisol (17a,21-dihydroxy-4-pregnene-3,20-dione) SV Simple virilizing SW Salt wasting TIC Total ion chromatogram THDOC Tetrahydrodeoxycorticosterone (unless otherwise stated the 3a,2 l-dihydroxy-5B-pregnan-20-one isomer) THE Tetrahydrocortisone (3a, 17a,2 l-trihydroxy-56-pregnane-l 1,20-dione) THF Tetrahydrocortisol (3a, 1 IB, 17a,21-tetrahydroxy-5fi-pregnan-20-one) THS Tetrahydrodeoxy cortisol (3a, 17a,21-trihydroxy-5B-pregnan-20-one) TLC Thin layer chromatography TMSI Trimethylsilyl imadazole 3c Table of contents Chapter Index T itle ....................................................................................................................................1 Abstract ...........................................................................................................................2 Table of contents.............................................................................................................4 Acknowledgements........................................................................................................ 19 Chapter 1 - Introduction............................................................................................ 20 1.1 Initial aims of the project 1.2 Maturation and inhibition of the human adrenal cortex 1.2.1 Embryology 1.2.2 Cytology 1.2.3 Vasculature and innervation 1.2.4 Pathways of adrenal steroid biochemistry 1.2.5 Enzymes of adrenal steroid biosynthesis 1.2.6 Control of steroidogenesis 1.2.7 Cell differentiation and adrenal growth 1.2.8 Fetal steroidogenesis and the "feto-placental steroidogenic unit" 1.2.9 Parturition 1.2.10 Neonatal life 1.2.11 Adrenarche 1.2.12 Sexual differentiation and congenital adrenal hyperplasia 1.2.13 Polycystic ovary (PCO) syndrome 1.2.14 Ectopic adrenal tissue and tumours 1.2.15 Adrenopause Clinical significance of deoxycorticosterone 1.3.1 Introduction 1.3.2 The menstrual cycle 1.3.3 Pregnancy 1.3.4 Other clinical situations with altered patterns of plasma DOC concentrations 4 1.4 Extra-adrenal 21 -hydroxylase enzymes 1.5 The renin-angiotensin system 1.6 Profiling steroid hormones using glass capillary gas chromatography 1.6.1 Introduction 1.6.2 Extraction 1.6.3 Hydrolysis 1.6.4 Additional separation of steroids 1.6.5 Derivatization of steroids 1.6.6 Gas chromatographic conditions and detection 1.7 The use of stable isotopes in Endocrinology 1.7.1 Radioactive versus stable isotopes 1.7.2' Analytical techniques available 1.7.3 Availability :s , ■, i > > > > 1.7.4 Toxicity --N N % 1.7.5 Quantitative applications 1.7.5.1 Internal
Recommended publications
  • Three-Dimensional Structure of Holo 3A,20J3-Hydroxysteroid
    Proc. Nati. Acad. Sci. USA Vol. 88, pp. 10064-10068, November 1991 Biochemistry Three-dimensional structure of holo 3a,20j3-hydroxysteroid dehydrogenase: A member of a short-chain dehydrogenase family (x-ray crystaflography/steroid-metabolizing enzyme/dinucleotide-linked oxldoreductase/sterold-protein interaction/sequence and folding homologies) DEBASHIS GHOSH*t, CHARLES M. WEEKS*, PAWEL GROCHULSKI*t, WILLIAM L. DUAX*, MARY ERMAN*, ROBERT L. RIMSAY§, AND J. C. ORR§ *Medical Foundation of Buffalo, 73 High Street, Buffalo, NY 14203; and Memorial University of Newfoundland, St. John's, Newfoundland, Canada AlB 3V6 Communicated by Herbert A. Hauptman, July 18, 1991 (receivedfor review May 14, 1991) ABSTRACT The x-ray structure of a short-chain dehy- the substrate binding regions, offers further insight concern- drogenase, the bacterial holo 3a,20/3-hydroxysteroid dehydro- ing the significance of conserved residues and their possible genase (EC 1.1.1.53), is described at 2.6 A resolution. This roles in substrate specificity and overall enzyme function. enzyme is active as a tetramer and crystallizes with four identical subunits in the asymmetric unit. It has the a/( fold characteristic ofthe dinucleotide binding region. The fold ofthe MATERIALS AND METHODS rest of the subunit, the quarternary structure, and the nature The crystals, grown in the presence of 4 mM NADH, belong ofthe cofactor-enzyme interactions are, however, significantly to the space group P43212 having unit cell dimensions a = different from those observed in the long-chain dehydrogena- 106.2 A and c = 203.8 A and contain one full tetramer (106 ses. The architecture of the postulated active site is consistent kDa) in the asymmetric unit (13).
    [Show full text]
  • Effect of Paternal Age on Aneuploidy Rates in First Trimester Pregnancy Loss
    Journal of Medical Genetics and Genomics Vol. 2(3), pp. 38-43, August 2010 Available online at http://www.academicjournals.org/jmgg ©2010 Academic Journals Full Length Research Paper Effect of paternal age on aneuploidy rates in first trimester pregnancy loss Vitaly A. Kushnir, Richard T. Scott and John L. Frattarelli 1Department of Obstetrics, Gynecology and Women’s Health, New Jersey Medical School, MSB E-506, 185 South Orange Avenue, Newark, NJ, 07101-1709, USA. 2Department of Obstetrics, Gynecology and Reproductive Sciences, Robert Wood Johnson Medical School UMDNJ, Division of Reproductive Endocrinology and Infertility, New Brunswick, NJ. Reproductive Medicine Associates of New Jersey, Morristown NJ, USA. Accepted 16 July, 2010 A retrospective cohort analysis of patients undergoing IVF cycles at an academic IVF center was performed to test the hypothesis that male age may influence aneuploidy rates in first trimester pregnancy losses. All patients had a first trimester pregnancy loss followed by evacuation of the pregnancy and karyotyping of the abortus. Couples undergoing anonymous donor oocyte ART cycles (n = 50) and 23 couples with female age less than 30 years undergoing autologous oocyte ART cycles were included. The oocyte age was less than 30 in both groups; thereby allowing the focus to be on the reproductive potential of the aging male. The main outcome measure was the effect of paternal age on aneuploidy rate. No increase in aneuploidy rate was noted with increasing paternal age (<40 years = 25.0%; 40-50 years = 38.8%; >50 years = 25.0%). Although there was a significant difference in the male partner age between oocyte recipients and young patients using autologous oocytes (33.7 7.6 vs.
    [Show full text]
  • The Endocrinology of Aging 329 (1989); J
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Erasmus University Digital Repository ARTICLES 37. T. Crook et al., Dev. Neuropsychol. 4, 261 (1986). 344 (1988); ibid. 281, 335 (1989); M. J. West, L. butions and advice, and W. G. M. Janssen, A. P. 38. M. S. Albert, Proc. Natl. Acad. Sci. U.S.A. 93, 13547 Slomianka, H. J. G. Gundersen, Anat. Rec. 231, 482 Leonard, and R. S. Woolley for expert technical as- (1996); iiii and M. B. Moss, in Handbook of (1991); M. J. West, Neurobiol. Aging 14, 275 (1993). sistance. Research in our laboratory was supported Biology of Aging, E. L. Schneider, J. W. Rowe, T. E. 56. We thank C. A. Barnes, C. Bouras, A. H. Gazzaley, by NIH grants AG05138 and AG06647, the Human Johnson, N. J. Holbrook, J. H. Morrison, Eds. (Aca- P. Giannakopoulos, C. V. Mobbs, E. A. Nimchinsky, Brain Project MHDA52145, the Charles A. Dana demic Press, San Diego, CA, ed. 4, 1996), pp. 217– P. R. Rapp, and J. C. Vickers for their crucial contri- Foundation, and the Brookdale Foundation. 233; R. Fama et al., Arch. Neurol. 54, 719 (1997); A. Convit et al., Neurobiol. Aging 18, 131 (1997); C. R. Jack Jr. et al., Neurology 49, 786 (1997). 39. J. W. Rowe and R. L. Kahn, Science 237, 143 (1987). 40. S. L. Vincent, A. Peters, J. Tigges, Anat. Rec. 223, The Endocrinology of Aging 329 (1989); J. Tigges, J. G. Herndon, A. Peters, Neurobiol. Aging 11, 201 (1990); J. Bachevalier et al., ibid.
    [Show full text]
  • Cognition and Steroidogenesis in the Rhesus Macaque
    Cognition and Steroidogenesis in the Rhesus Macaque Krystina G Sorwell A DISSERTATION Presented to the Department of Behavioral Neuroscience and the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy November 2013 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL This is to certify that the PhD dissertation of Krystina Gerette Sorwell has been approved Henryk Urbanski Mentor/Advisor Steven Kohama Member Kathleen Grant Member Cynthia Bethea Member Deb Finn Member 1 For Lily 2 TABLE OF CONTENTS Acknowledgments ......................................................................................................................................................... 4 List of Figures and Tables ............................................................................................................................................. 7 List of Abbreviations ................................................................................................................................................... 10 Abstract........................................................................................................................................................................ 13 Introduction ................................................................................................................................................................. 15 Part A: Central steroidogenesis and cognition ............................................................................................................
    [Show full text]
  • Reproductive DHEA-S
    Reproductive DHEA-S Analyte Information - 1 - DHEA-S Introduction DHEA-S, DHEA sulfate or dehydroepiandrosterone sulfate, it is a metabolite of dehydroepiandrosterone (DHEA) resulting from the addition of a sulfate group. It is the sulfate form of aromatic C19 steroid with 10,13-dimethyl, 3-hydroxy group and 17-ketone. Its chemical name is 3β-hydroxy-5-androsten-17-one sulfate, its summary formula is C19H28O5S and its molecular weight (Mr) is 368.5 Da. The structural formula of DHEA-S is shown in (Fig.1). Fig.1: Structural formula of DHEA-S Other names used for DHEA-S include: Dehydroisoandrosterone sulfate, (3beta)-3- (sulfooxy), androst-5-en-17-one, 3beta-hydroxy-androst-5-en-17-one hydrogen sulfate, Prasterone sulfate and so on. As DHEA-S is very closely connected with DHEA, both hormones are mentioned together in the following text. Biosynthesis DHEA-S is the major C19 steroid and is a precursor in testosterone and estrogen biosynthesis. DHEA-S originates almost exclusively in the zona reticularis of the adrenal cortex (Fig.2). Some may be produced by the testes, none is produced by the ovaries. The adrenal gland is the sole source of this steroid in women, whereas in men the testes secrete 5% of DHEA-S and 10 – 20% of DHEA. The production of DHEA-S and DHEA is regulated by adrenocorticotropin (ACTH). Corticotropin-releasing hormone (CRH) and, to a lesser extent, arginine vasopressin (AVP) stimulate the release of adrenocorticotropin (ACTH) from the anterior pituitary gland (Fig.3). In turn, ACTH stimulates the adrenal cortex to secrete DHEA and DHEA-S, in addition to cortisol.
    [Show full text]
  • Healthy Aging
    HEALTHY AGING Presented by CONTINUING PSYCHOLOGY EDUCATION 8.4 CONTACT HOURS “The ability to prolong life is indeed within our grasp.” Marie-Francoise Schulz-Aellen (1997) Course Objective Learning Objectives The purpose of this course is to provide an Upon completion, the participant will be able to: understanding of the concept of healthy aging. 1. Discuss current biological theories regarding Major topics include current biological theories the causes of aging. of aging, physical factors, prevalent diseases 2. Explain physical factors associated with aging. and health strategies, Baltimore Longitudinal 3. Acknowledge common older adult diseases and Study of Aging, psychological factors, social their recommended preventative measures. factors, long-term care, and the nature of 4. Articulate findings from the Baltimore healthy aging. Longitudinal Study of Aging. 5. Expound upon psychological effects of aging. Accreditation 6. Understand social theories of aging, and the Provider approved by the California Board of value of social support systems. Registered Nursing, Provider # CEP 14008, for 7. Describe prevalent concerns in long-term care. 8.4 Contact Hours. 8. Discuss key characteristics which promote In accordance with the California Code of healthy aging. Regulations, Section 2540.2(b) for licensed vocational nurses and 2592.2(b) for psychiatric technicians, this course is accepted by the Board of Vocational Nursing and Psychiatric Technicians Faculty for 8.4 contact hours of continuing education Neil Eddington, Ph.D. credit. Richard Shuman, MFT Mission Statement Continuing Psychology Education provides the highest quality continuing education designed to fulfill the professional needs and interests of nurses. Resources are offered to improve professional competency, maintain knowledge of the latest advancements, and meet continuing education requirements mandated by the profession.
    [Show full text]
  • Somatopause, Weaknesses of the Therapeutic Approaches and the Cautious Optimism Based on Experimental Ageing Studies with Soy Isoflavones
    EXCLI Journal 2018;17:279-301 – ISSN 1611-2156 Received: November 06, 2017, accepted: March 10, 2018, published: March 21, 2018 Review article: SOMATOPAUSE, WEAKNESSES OF THE THERAPEUTIC APPROACHES AND THE CAUTIOUS OPTIMISM BASED ON EXPERIMENTAL AGEING STUDIES WITH SOY ISOFLAVONES Vladimir Ajdžanović1*, Svetlana Trifunović1, Dragana Miljić2, Branka Šošić-Jurjević1, Branko Filipović1, Marko Miler1, Nataša Ristić1, Milica Manojlović-Stojanoski1, Verica Milošević1 1 Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia 2 Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia * Corresponding author: Vladimir Z. Ajdžanović, PhD, Department of Cytology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Despot Stefan Blvd. 142, 11060 Belgrade, Serbia, Tel: +381-11-2078-321; Fax: +381-11-2761-433, E-mail: [email protected] http://dx.doi.org/10.17179/excli2017-956 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/). ABSTRACT The pathological phenomenon of somatopause, noticeable in hypogonadal ageing subjects, is based on the growth hormone (GH) production and secretion decrease along with the fall in GH binding protein and insulin-like growth factor 1 (IGF-1) levels, causing different musculoskeletal, metabolic and mental issues. From the perspective of safety and efficacy, GH treatment is considered to be highly controversial, while some other therapeutic ap- proaches (application of IGF-1, GH secretagogues, gonadal steroids, cholinesterase-inhibitors or various combi- nations) exhibit more or less pronounced weaknesses in this respect.
    [Show full text]
  • Testosterone Deficiency in Men with Heart Failure: Pathophysiology and Its Clinical, Prognostic and Therapeutic Implications
    Kardiologia Polska 2014; 72, 5: 403–409; DOI: 10.5603/KP.a2014.0025 ISSN 0022–9032 ARTYKUŁ SPECJALNY / STATE-OF-THE-ART REVIEW Testosterone deficiency in men with heart failure: pathophysiology and its clinical, prognostic and therapeutic implications Ewa A. Jankowska1, 2, 3, Michał Tkaczyszyn1, Elżbieta Kalicińska2, 4, Waldemar Banasiak2, Piotr Ponikowski2, 4 1Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland 2Cardiology Department, Centre for Heart Diseases, Military Hospital, Wroclaw, Poland 3Institute of Anthropology, Polish Academy of Sciences, Wroclaw, Poland 4Department of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland HEART FAILURE: According to the data from the European Society of Cardio­ A CARDIOGERIATRIC SYNDROME logy (ESC) HF­Pilot registry [15], annual re­hospitalisation Heart failure (HF) is a disease syndrome cha­ rate and mortality among outpatients with chronic HF has racterised by large incidence and prevalence, been estimated at 31.9% and 7.2%, respectively. Thus, new which has been estimated in the developed therapeutic approaches are needed to reverse these adverse countries at 5–10/1000 persons per year epidemiological trends. In the recent years, this search for and 1–2%, respectively [1], with a clear rise new therapies for HF has focused on pathogenetic concepts of these indices with age [2–4]. In the Bri­ related to non­cardiac disturbances and abnormalities in HF tish Hillingdon study [2], the incidence of [16, 17]. In the current research on the pathophysiology and HF among subjects aged 25–34 years was natural history of HF, attention has been paid to renal dysfunc­ only 0.02/1000 persons per year, rising to tion [18–20], hepatic dysfunction [21, 22], immune activation 11.6/1000 persons per years among subjects [23], autonomic sympathetic/parasympathetic imbalance [24], aged ≥ 85 years.
    [Show full text]
  • 1970Qureshiocr.Pdf (10.44Mb)
    STUDY INVOLVING METABOLISM OF 17-KETOSTEROIDS AND 17-HYDROXYCORTICOSTEROIDS OF HEALTHY YOUNG MEN DURING AMBULATION AND RECUMBENCY A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN NUTRITION IN THE GRADUATE DIVISION OF THE TEXAS WOI\IIAN 'S UNIVERSITY COLLEGE OF HOUSEHOLD ARTS AND SCIENCES BY SANOBER QURESHI I B .Sc. I M.S. DENTON I TEXAS MAY I 1970 ACKNOWLEDGMENTS The author wishes to express her sincere gratitude to those who assisted her with her research problem and with the preparation of this dissertation. To Dr. Pauline Beery Mack, Director of the Texas Woman's University Research Institute, for her invaluable assistance and gui­ dance during the author's entire graduate program, and for help in the preparation of this dissertation; To the National Aeronautics and Space Administration for their support of the research project of which the author's study is a part; To Dr. Elsa A. Dozier for directing the author's s tucly during 1969, and to Dr. Kathryn Montgomery beginning in early 1970, for serving as the immeclia te director of the author while she was working on the completion of the investic;ation and the preparation of this dis- sertation; To Dr. Jessie Bateman, Dean of the College of Household Arts and Sciences, for her assistance in all aspects of the author's graduate program; iii To Dr. Ralph Pyke and Mr. Walter Gilchrist 1 for their ass is­ tance and generous kindness while the author's research program was in progress; To Mr. Eugene Van Hooser 1 for help during various parts of her research program; To Dr.
    [Show full text]
  • Adrenopause Andropause Growth Hormone Somatopause
    All “HRT” is not Alike! The Necessity and Safety of Menopause is a hormone-deficiency state with known deleterious Bioidentical Sex-Steroid Restoration consequences for quality of life and health. in Menopause Estradiol-progesterone-testosterone (EPT) replacement for menopause is medically necessary. Estradiol replacement is safe when transdermal and accompanied Henry Lindner, MD by sufficient progesterone and testosterone. Hormonerestoration.com Bioidentical EPT therapy does not have the cardiovascular or breast cancer risks seen with PremPro . This presentation is available on the CD, handout How to provide EPT therapy to menopausal women Adrenopause Not Just “Sex Hormones” DHEA DHEA-S Converted into estradiol and testosterone within tissues Estradiol, progesterone, and testosterone are required for the growth, function and maintenance of all tissues in both sexes! Maintain brain function and health—vital neurosteroids Maintain tissue health/strength: skin, hair, bone, muscle, heart Improve insulin sensitivity: belly fat, risk of diabetes Reduce blood pressure: improve endothelial function Prevent atherosclerosis: reduce risk of MI, stroke What about the loss of hormones with aging? J Clin Endocrinol Metab. 1997 Aug;82(8):2396-402 Andropause Somatopause Testosterone in Men Growth Hormone Baltimore Longitudinal Study of Aging (BLSA). Harman et al., 2001 Clinical Chemistry 48, No. 12, 2002 1 Thyropause Menopause 8000 Men Women Testosterone Progesterone 7000 average 6000 5000 pg/ml Estradiol Estradiol T Endocr Rev. 1995 HP response to low T4 (2.7-3.2g/dL) Dec;16(6):686-715 4000 25-55 pg/ml 0-20 pg/ml 120 P 100 80% 3000 80 E decline 2000 60 TSH 40 1000 20 0 Carle, Thyroid.
    [Show full text]
  • The Effects of Exogenous ACTH on 5-3B-Hydroxysteroid Dehydrogenase Activity in the Embryonic Avian Adrenal Gland
    Loyola University Chicago Loyola eCommons Master's Theses Theses and Dissertations 1968 The Effects of Exogenous ACTH on 5-3b-hydroxysteroid Dehydrogenase Activity in the Embryonic Avian Adrenal Gland Grover Charles Ericson Loyola University Chicago Follow this and additional works at: https://ecommons.luc.edu/luc_theses Part of the Medicine and Health Sciences Commons Recommended Citation Ericson, Grover Charles, "The Effects of Exogenous ACTH on 5-3b-hydroxysteroid Dehydrogenase Activity in the Embryonic Avian Adrenal Gland" (1968). Master's Theses. 2264. https://ecommons.luc.edu/luc_theses/2264 This Thesis is brought to you for free and open access by the Theses and Dissertations at Loyola eCommons. It has been accepted for inclusion in Master's Theses by an authorized administrator of Loyola eCommons. For more information, please contact [email protected]. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 License. Copyright © 1968 Grover Charles Ericson THE EFFECTS OF EXOGENOUS ACTH ON d -JB-HYDROXYSTEROID DEHYDROGENASE ACTIVITY IN THE EMBRYONIC AVIAN ADRENAL GLAND by Grover Charles Ericson A The.is Submitted to the Faculty ot the Graduate School of La.vo1. University in Partial Fulfillment ot the Requirements for the Degree ot Master ot Science February 1968 BIOGRAPHY Grover Charles Ericson was born in Oak Park, D.linois, on February 17. 1941. He •• graduated f'rom the Naperville COIIUlIW1ity High School, Naperville. D.l1nois in June, 19.59. He entered North Central College, Naperville. Illinois, in September, 19.59, and was awarded the Bachelor of Arts degree in June, 1964. While attending North Central College.
    [Show full text]
  • A Thesis Entitled "APPLICATIONS of GAS CHROMATOGRAPHY
    A Thesis entitled "APPLICATIONS OF GAS CHROMATOGRAPHY - MASS SPECTROMETRY IN STEROID CHEMISTRY" Submitted in part fulfilment of the requirements for admittance to the degree of Doctor of Philosophy in The University of Glasgow by T.A. Baillie, B.Sc. University of Glasgow 1973. ProQuest Number: 11017930 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11017930 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ACKNOWLEDGEMENTS I would like to express my sincere thanks to Dr. C.3.W. Brooks for his guidance and encouragement at all times, and to Professors R.A. Raphael, F.R.S., and G.W. Kirby, for the opportunity to carry out this research. Thanks are also due to my many colleagues for useful discussions, and in particular to Dr. B.S. Middleditch who was associated with me in the work described in Section 3 of this thesis. The work was carried out during the tenure of an S.R.C. Research Studentship, which is gratefully acknowledged. Finally, I would like to thank Miss 3.H.
    [Show full text]