Widespread Bidirectional Promoters Are the Major Source of Cryptic Transcripts in Yeast

Total Page:16

File Type:pdf, Size:1020Kb

Widespread Bidirectional Promoters Are the Major Source of Cryptic Transcripts in Yeast Vol 457 | 19 February 2009 | doi:10.1038/nature07747 LETTERS Widespread bidirectional promoters are the major source of cryptic transcripts in yeast Helen Neil1, Christophe Malabat1, Yves d’Aubenton-Carafa2, Zhenyu Xu3, Lars M. Steinmetz3 & Alain Jacquier1 Pervasive and hidden transcription is widespread in eukaryotes1–4, termination6,7 as well as the distinction between overlapping yet dis- but its global level, the mechanisms from which it originates and tinct transcripts, which proved critical for the detection of sense CUTs its functional significance are unclear. Cryptic unstable tran- that often overlap mRNA 59 ends (see below). Two barcoded libraries scripts (CUTs) were recently described as a principal class of were constructed, the first one from a wild-type poly(A) RNA fraction RNA polymerase II transcripts in Saccharomyces cerevisiae5. as a control and the second one from the CUT fraction (polyadeny- These transcripts are targeted for degradation immediately after lated in vitro for 39 SAGE synthesis), giving rise to 48,118 and 67,022 synthesis by the action of the Nrd1–exosome–TRAMP com- tags, respectively (see Supplementary Fig. 2 and Methods). plexes6,7. Although CUT degradation mechanisms have been ana- The distribution of the sequenced 39 SAGE tags along the yeast lysed in detail, the genome-wide distribution at the nucleotide genome was non-random (P value , 10216 for both libraries, chi- resolution and the prevalence of CUTs are unknown. Here we squared test), but instead highly organized in clusters (see Supple- report the first high-resolution genomic map of CUTs in yeast, mentary Methods for cluster determination and Supplementary revealing a class of potentially functional CUTs and the intrinsic Table 3 for a detailed description of the clusters). Analysis of these bidirectional nature of eukaryotic promoters. An RNA fraction clusters (Supplementary Fig. 3) indicates that CUTs are distinct from highly enriched in CUTs was analysed by a 39 Long-SAGE (serial mRNAs yet derive from well-defined transcription units and not from analysis of gene expression) approach adapted to deep sequencing. random transcriptional noise. The resulting detailed genomic map of CUTs revealed that they We defined 1,779 clusters with at least four tags from the CUT derive from extremely widespread and very well defined transcrip- fraction (class I, as defined in Supplementary Fig. 3). Most clusters tion units and do not result from unspecific transcriptional noise. (1,496; ‘CUTs’ in Supplementary Table 3) do not correspond to Moreover, the transcription of CUTs predominantly arises within annotated features (open reading frames (ORFs) and non-coding nucleosome-free regions, most of which correspond to promoter RNAs (ncRNAs)). Northern blot analyses of a few revealed hetero- regions of bona fide genes. Some of the CUTs start upstream from geneous transcripts with a small average size of between 200 and 500 messenger RNAs and overlap their 59 end. Our study of glycolysis nucleotides (nt; Fig. 1a) and Nrd1-dependent transcription termina- genes, as well as recent results from the literature8–11, indicate that tion (Supplementary Fig. 4)—two characteristics of previously such concurrent transcription is potentially associated with reg- known CUTs5–7. Among the remaining clusters from this class, 106 ulatory mechanisms. Our data reveal numerous new CUTs with could be assigned to non-coding RNA precursors, and 134 clusters, such a potential regulatory role. However, most of the identified located within intron-containing pre-mRNAs, probably represent CUTs corresponded to transcripts divergent from the promoter degradation products of these transcripts, as suggested from previous regions of genes, indicating that they represent by-products of studies14,15 (‘ncRNAs’ and ‘pre-mRNAs’ in Supplementary Table 3). divergent transcription occurring at many and possibly most pro- Forty-three clusters remained unclassified (mostly found within moters. Eukaryotic promoter regions are thus intrinsically bi- repetitive elements; ‘others’ in Supplementary Table 3). Trans- directional, a fundamental property that escaped previous analyses cription start sites (TSSs) were precisely mapped for 68 of the because in most cases divergent transcription generates short-lived CUTs (Supplementary Table 4 combining 59 RACE data from unstable transcripts present at very low steady-state levels. Supplementary Fig. 5 and RNase H experiment data from Fig. 2, To gain insight on the possible role of CUTs, we determined their Supplementary Fig. 6 and data not shown). The 59 ends of these complete genomic organization. Because CUTs are capped and CUTs were usually heterogeneous, with multiple TSSs. Taking the mainly degraded by the nuclear exosome and the TRAMP (Trf4– most distal TSS identified as the reference for the 59 end and the Air1/Air2–Mtr4 polyadenylation) complexes5, an RNA fraction maximum 39 SAGE density as the reference for the 39 end positions, highly enriched for CUTs (CUT fraction) was prepared by tandem it gave a mean size of 258 6 89 nt (6 standard deviation) for the affinity purification (TAP12; see Methods) from a strain in which (1) CUTs. In addition, to complete the global visualization of these tran- Cbp20 (also known as Cbc2), a component of the nuclear cap-binding scripts, we used the same CUT and poly(A) RNA fractions to perform complex, was TAP-tagged and (2) two components of the nuclear tiling array hybridizations with a modified procedure adapted from degradation machineries were missing (Rrp6 and Trf4 (also known ref. 16 (see Supplementary Methods). These data validated the iden- as Pap2)). Supplementary Fig. 1 shows that the model CUT NEL025c tification of CUTs performed with the SAGE experiment and con- was enriched several thousand fold in this fraction relative to wild- firmed that these transcripts are short. However, technical reasons, type total RNA. To analyse these transcripts, we used an improved specific to the nature of the CUT samples, prevented the use of these 39 Long-SAGE technique13 (adapted to 454 Roche pyro-sequencing) data for global statistical analyses (see Supplementary Methods). because it allowed the characterization of the highly heterogeneous 39 These data are thus provided for illustration purposes only and can ends of the CUTs that result from their Nrd1-dependent transcription be visualized, together with the SAGE data, at http://www.pasteur.fr/ 1Institut Pasteur, Unite´ de Ge´ne´tique des Interactions Macromole´culaires, CNRS, URA2171, 75015 Paris, France. 2Centre de Ge´ne´tique Mole´culaire, CNRS, Alle´e de la Terrasse, 91198 Gif-sur-Yvette, France. 3European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 1038 ©2009 Macmillan Publishers Limited. All rights reserved NATURE | Vol 457 | 19 February 2009 LETTERS ab123456 Feature (ORF or ncRNA) c 8 622 S CUTs Tandem 527 6 sense (TS) 198 404 4 934 Sense Tandem 2 antisense (TA) 736 307 0 –1,000 –800 –600 –400 –200 0 200 400 600 800 1,000 242 –2 238 Divergent (D) 217 Number of clusters –4 449 201 190 –6 180 A CUTs Antisense CUTs –8 poly(A) Convergent (C) 103 160 Distance from start of features (nt) Figure 1 | Genome-wide analyses of 39 SAGE-tag clusters. a, Northern blot the start of feature. The orange arrows labelled S CUTs and A CUTs analyses of new CUTs. RNAs from Cbp20–TAP purification (100 ng), symbolize sense and antisense CUTs, respectively, relative to the performed with the rrp6D depl-trf4 strain (LMA587) grown in YPD downstream feature (blue arrow). Note that the peak of the blue curve in the supplemented with doxycyclin, were separated on a 5% polyacrylamide gel sense direction corresponds to the ends of tandem upstream mRNAs. and analysed with different riboprobes: (1) CGR088wTa2, (2) CER176wTa3- c, Classification of CUT clusters according to the type of associated genomic D, (3) CLR263wTa3-B, (4) CDR213wTa3-E, (5) CDR164cD2 and (6) intergenic regions. The genomic organization of CUTs (orange arrows) CGL235wTa2 (primers are listed in Supplementary Table 2). Marker sizes relative to surrounding features (in blue) is schematized. The number of are in nucleotides. b, Distribution of tag clusters relative to the start of CUTs in each of the four categories defined is indicated on the right. Note features. The distances between the start of features (start codons for ORFs) that 10 out of the 1,496 clusters were far from an intergenic region and and the nearest CUT 39 SAGE-tag clusters (orange curve) or mRNA 39 appear to initiate within genes, in antisense (called ‘internal antisense’ in SAGE-tag clusters (blue curve) were computed. The figure shows the Supplementary Table 3), and are not present on the scheme. smoothed distribution of these distances, on either DNA strand, centred on recherche/unites/Gim/genepy/sage.html. Notably, the number of the same TSS. It is likely that other CUTs identified here reflect the CUTs newly identified was comparable to the number of mRNAs same type of mechanism suppressing the expression of other genes. identified from the poly(A) fraction using the same criteria and with However, in most cases that we analysed by RACE or RNase H experi- an equivalent number of sequences (Supplementary Figs 3 and 7), ments, TSSs upstream from the mRNA TSS could be specifically indicating that CUT transcription units are widespread in the yeast detected in the CUT fraction. We thus predict that CUTs sharing their genome, possibly to an extent similar to mRNAs, although their TSS with the mRNA, as exemplified by Nrd1, do not constitute the transcription level is probably globally lower. most frequent class. We and others8,11 have recently shown that several To study the overall genomic organization of the CUTs, we ana- genes of the nucleotide biosynthesis pathway (URA2, URA8, IMD2, lysed the distribution of the CUT 39 SAGE clusters relative to the start IMD3, ADE12) are regulated by a previously unknown mechanism in and end of annotated genomic features (ORFs and ncRNAs).
Recommended publications
  • Modulation of Mrna and Lncrna Expression Dynamics by the Set2–Rpd3s Pathway
    ARTICLE Received 20 Apr 2016 | Accepted 7 Oct 2016 | Published 28 Nov 2016 DOI: 10.1038/ncomms13534 OPEN Modulation of mRNA and lncRNA expression dynamics by the Set2–Rpd3S pathway Ji Hyun Kim1,2,*, Bo Bae Lee1,2,*, Young Mi Oh1,2, Chenchen Zhu3,4,5, Lars M. Steinmetz3,4,5, Yookyeong Lee1, Wan Kyu Kim1, Sung Bae Lee6, Stephen Buratowski7 & TaeSoo Kim1,2 H3K36 methylation by Set2 targets Rpd3S histone deacetylase to transcribed regions of mRNA genes, repressing internal cryptic promoters and slowing elongation. Here we explore the function of this pathway by analysing transcription in yeast undergoing a series of carbon source shifts. Approximately 80 mRNA genes show increased induction upon SET2 deletion. A majority of these promoters have overlapping lncRNA transcription that targets H3K36me3 and deacetylation by Rpd3S to the mRNA promoter. We previously reported a similar mechanism for H3K4me2-mediated repression via recruitment of the Set3C histone deacetylase. Here we show that the distance between an mRNA and overlapping lncRNA promoter determines whether Set2–Rpd3S or Set3C represses. This analysis also reveals many previously unreported cryptic ncRNAs induced by specific carbon sources, showing that cryptic promoters can be environmentally regulated. Therefore, in addition to repression of cryptic transcription and modulation of elongation, H3K36 methylation maintains optimal expression dynamics of many mRNAs and ncRNAs. 1 Department of Life Science, Ewha Womans University, Seoul 03760, Korea. 2 The Research Center for Cellular Homeostasis, Ewha Womans University, Seoul 03760, Korea. 3 Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany. 4 Stanford Genome Technology Center, Stanford University School of Medicine, Stanford, California 94305, USA.
    [Show full text]
  • A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast
    A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast By Jessica M. Vera B.S. University of Wisconsin-Madison, 2007 A thesis submitted to the Faculty of the Graduate School in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Molecular, Cellular, and Developmental Biology 2015 This thesis entitled: A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast written by Jessica M. Vera has been approved for the Department of Molecular, Cellular, and Developmental Biology Tom Blumenthal Robin Dowell Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline iii Vera, Jessica M. (Ph.D., Molecular, Cellular and Developmental Biology) A Computational and Evolutionary Approach to Understanding Cryptic Unstable Transcripts in Yeast Thesis Directed by Robin Dowell Cryptic unstable transcripts (CUTs) are a largely unexplored class of nuclear exosome degraded, non-coding RNAs in budding yeast. It is highly debated whether CUT transcription has a functional role in the cell or whether CUTs represent noise in the yeast transcriptome. I sought to ascertain the extent of conserved CUT expression across a variety of Saccharomyces yeast strains to further understand and characterize the nature of CUT expression. To this end I designed a Hidden Markov Model (HMM) to analyze strand-specific RNA sequencing data from nuclear exosome rrp6Δ mutants to identify and compare CUTs in four different yeast strains: S288c, Σ1278b, JAY291 (S.cerevisiae) and N17 (S.paradoxus).
    [Show full text]
  • Genechip® Mouse Tiling 2.0R Array Set Is a Seven-Array Set Designed ORDERING INFORMATION for Chromatin Immunoprecipitation (Chip) Experiments
    ARRAYS Critical Specifi cations Feature Size 5 µm Tiling Resolution 35 base pair Hybridization Controls bioB, bioC, bioD, cre Tiling mRNA controls B. subtilis: dap, lys, phe, thr A.thaliana: CAB, RCA, RBCL, LTP4, LTP6, XCP2, RCP1, NAC1, TIM, PRKASE Array Format 49 Fluidics Protocol Fluidics Station 450: FS450_0001 Fluidics Station 400: EukGE-WS2v5, and manually add Array Holding Buffer to the cartridge prior to scan- ning Hybridization Volume 200 µL. The total fi ll volume of the cartridge is 250 µL. Library Files Mm35b_P01R_v01, Mm35b_P02R_v01, ® Mm35b_P03R_v01, Mm35b_P04R_v01, GeneChip Mouse Tiling 2.0R Mm35b_P05R_v01, Mm35b_P06R_v01, Array Set Mm35b_P07R_v01 For studying genome-wide protein/DNA interactions in chromatin ACCESSORY FILES immunoprecipitation experiments. Fluidics The fl uidics scripts can be downloaded from the Affymetrix web site. Addi- tional information, including lists of steps in the fl uidics protocol, can be found in the Affymetrix® Chromatin Immunoprecipitation Assay Protocol. Library Files Library fi les contain information about the probe array design layout and other characteristics, probe use and content, and scanning and analysis pa- rameters. Tiling arrays are accompanied by .bpmap fi les which associate each probe on the array with the genomic location. These fi les are unique for each probe array type. The library fi les can be downloaded from the following URL: www.affymetrix.com/support/technical/libraryfi lesmain.affx. INTENDED USE The GeneChip® Mouse Tiling 2.0R Array Set is a seven-array set designed ORDERING INFORMATION for chromatin immunoprecipitation (ChIP) experiments. Sequences used in the P/N Product Name Description design of the Mouse Tiling 2.0R Array Set were selected from NCBI mouse ARRAYS genome assembly (Build 33).
    [Show full text]
  • Systematic Evaluation of Variability in Chip-Chip Experiments Using Predefined DNA Targets
    Downloaded from genome.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Systematic evaluation of variability in ChIP-chip experiments using predefined DNA targets David S. Johnson,1,24 Wei Li,2,24,25 D. Benjamin Gordon,3 Arindam Bhattacharjee,3 Bo Curry,3 Jayati Ghosh,3 Leonardo Brizuela,3 Jason S. Carroll,4 Myles Brown,5 Paul Flicek,6 Christoph M. Koch,7 Ian Dunham,7 Mark Bieda,8 Xiaoqin Xu,8 Peggy J. Farnham,8 Philipp Kapranov,9 David A. Nix,10 Thomas R. Gingeras,9 Xinmin Zhang,11 Heather Holster,11 Nan Jiang,11 Roland D. Green,11 Jun S. Song,2 Scott A. McCuine,12 Elizabeth Anton,1 Loan Nguyen,1 Nathan D. Trinklein,13 Zhen Ye,14 Keith Ching,14 David Hawkins,14 Bing Ren,14 Peter C. Scacheri,15 Joel Rozowsky,16 Alexander Karpikov,16 Ghia Euskirchen,17 Sherman Weissman,18 Mark Gerstein,16 Michael Snyder,16,17 Annie Yang,19 Zarmik Moqtaderi,20 Heather Hirsch,20 Hennady P. Shulha,21 Yutao Fu,22 Zhiping Weng,21,22 Kevin Struhl,20,26 Richard M. Myers,1,26 Jason D. Lieb,23,26 and X. Shirley Liu2,26 1–23[See full list of author affiliations at the end of the paper, just before the Acknowledgments section.] The most widely used method for detecting genome-wide protein–DNA interactions is chromatin immunoprecipitation on tiling microarrays, commonly known as ChIP-chip. Here, we conducted the first objective analysis of tiling array platforms, amplification procedures, and signal detection algorithms in a simulated ChIP-chip experiment.
    [Show full text]
  • Modeling Dna Methylation Tiling Array Data
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 2010 - 22nd Annual Conference Proceedings MODELING DNA METHYLATION TILING ARRAY DATA Gayla Olbricht [email protected] Bruce A. Craig R. W. Doerge Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Olbricht, Gayla; Craig, Bruce A.; and Doerge, R. W. (2010). "MODELING DNA METHYLATION TILING ARRAY DATA," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1061 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University MODELING DNA METHYLATION TILING ARRAY DATA Gayla R. Olbricht1, Bruce A. Craig1, and R. W. Doerge1;2 1Department of Statistics, Purdue University, West Lafayette, IN 47907, U.S.A. 2Department of Agronomy, Purdue University, West Lafayette, IN 47907, U.S.A. Abstract: Epigenetics is the study of heritable changes in gene function that occur without a change in DNA sequence. It has quickly emerged as an essential area for understanding inheri- tance and variation that cannot be explained by the DNA sequence alone. Epigenetic modifications have the potential to regulate gene expression and may play a role in diseases such as cancer.
    [Show full text]
  • Genechip Arabidopsis Tiling 1.0R Array
    ARRAYS Critical Specifi cations Feature Size 5 µm Tiling Resolution 35 base pair Hybridization Controls bioB, bioC, bioD, cre Tiling mRNA controls B. subtilis: dap, lys, phe, thr A. thaliana: CAB, RCA, RBCL, LTP4, LTP6, XCP2, RCP1, NAC1, TIM, PRKASE Array Format 49 Fluidics Protocol Fluidics Station 450: FS450_0001 Fluidics Station 400: EukGE-WS2v5, and manually add Array Holding Buffer to the cartridge prior to scanning Hybridization Volume 200 µL. The total fi ll volume of the cartridge is 250 µL. Library Files At35b_MR_v04 At35b_MR_v04-2_TIGRv5.bpmap GeneChip® Arabidopsis Tiling 1.0R Array RECOMMENDED ANALYSIS SOFTWARE 1. Affymetrix® Tiling Array Software (TAS) For studying protein/DNA interactions or identifying novel tran- 2. Integrated Genome Browser scripts in Arabidopsis thaliana. TAS and the Integrated Genome Browser are available for download from www.affymetrix.com ACCESSORY FILES Fluidics The fl uidics scripts can be downloaded from the Affymetrix web site. Addi- tional information, including lists of steps in the fl uidics protocol, can be found in the Affymetrix® Chromatin Immunoprecipitation Assay Protocol oror thethe GeneChip® WT Double-Stranded Target Assay Manual. Library Files Library fi les contain information about the probe array design layout and other characteristics, probe use and content, and scanning and analysis pa- INTENDED USE rameters. Tiling arrays are accompanied by .bpmap fi les which associate each The GeneChip® Arabidopsis Tiling 1.0R Array is designed for identifying probe on the array with the genomic location. These fi les are unique for each novel transcripts or mapping sites of protein/DNA interaction in chromatin probe array type. The library fi les can be downloaded from the following immunoprecipitation (ChIP) experiments.
    [Show full text]
  • The Paf1 Complex Broadly Impacts the Transcriptome of Saccharomyces Cerevisiae
    Genetics: Early Online, published on May 15, 2019 as 10.1534/genetics.119.302262 The Paf1 complex broadly impacts the transcriptome of Saccharomyces cerevisiae Mitchell A. Ellison*, Alex R. Lederer*, Marcie H. Warner*, Travis N. Mavrich*, Elizabeth A. Raupach*, Lawrence E. Heisler†, Corey Nislow‡, Miler T. Lee*, Karen M. Arndt* *Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA, 15260 †Terrance Donnelly Centre and Banting & Best Department of Medical Research, University of Toronto, Toronto ON, Canada ‡Department of Pharmaceutical Sciences, University of British Columbia, Vancouver BC, Canada Copyright 2019. Ellison et al. Running title: Transcription regulation by Paf1C Key words: Paf1 complex, RNA polymerase II, histone modifications, chromatin, noncoding RNA Corresponding author: Karen M. Arndt Department of Biological Sciences University of Pittsburgh 4249 Fifth Avenue Pittsburgh, PA 15260 412-624-6963 [email protected] 2 Ellison et al. ABSTRACT The Polymerase Associated Factor 1 complex (Paf1C) is a multifunctional regulator of eukaryotic gene expression important for the coordination of transcription with chromatin modification and post-transcriptional processes. In this study, we investigated the extent to which the functions of Paf1C combine to regulate the Saccharomyces cerevisiae transcriptome. While previous studies focused on the roles of Paf1C in controlling mRNA levels, here we took advantage of a genetic background that enriches for unstable transcripts and demonstrate that deletion of PAF1 affects all classes of Pol II transcripts including multiple classes of noncoding RNAs. By conducting a de novo differential expression analysis independent of gene annotations, we found that Paf1 positively and negatively regulates antisense transcription at multiple loci. Comparisons with nascent transcript data revealed that many, but not all, changes in RNA levels detected by our analysis are due to changes in transcription instead of post- transcriptional events.
    [Show full text]
  • Statistical Methods for Affymetrix Tiling Array Data
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 2009 - 21st Annual Conference Proceedings STATISTICAL METHODS FOR AFFYMETRIX TILING ARRAY DATA Gayla Olbricht [email protected] Nagesh Sardesai Stanton B. Gelvin Bruce A. Craig R. W. Doerge See next page for additional authors Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Olbricht, Gayla; Sardesai, Nagesh; Gelvin, Stanton B.; Craig, Bruce A.; and Doerge, R. W. (2009). "STATISTICAL METHODS FOR AFFYMETRIX TILING ARRAY DATA," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1080 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Author Information Gayla Olbricht, Nagesh Sardesai, Stanton B. Gelvin, Bruce A. Craig, and R. W. Doerge This is available at New Prairie Press: https://newprairiepress.org/agstatconference/2009/proceedings/9 Conference on Applied Statistics in Agriculture Kansas State University STATISTICAL METHODS FOR AFFYMETRIX TILING ARRAY DATA Gayla R. Olbricht1, Nagesh Sardesai2, Stanton B. Gelvin2, Bruce A. Craig1, and R.W. Doerge1 1Department of Statistics, Purdue University, 250 North University Street, West Lafayette, IN 47907-2066 USA; 2Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA Abstract Tiling arrays are a microarray technology currently being used for a variety of genomic and epigenomic applications, such as the mapping of transcription, DNA methylation, and histone modifications.
    [Show full text]
  • A Two-Stage Approach for Estimating the Effect of Dna Methylation on Differential Expression Using Tiling Array Technology
    Kansas State University Libraries New Prairie Press Conference on Applied Statistics in Agriculture 2008 - 20th Annual Conference Proceedings A TWO-STAGE APPROACH FOR ESTIMATING THE EFFECT OF DNA METHYLATION ON DIFFERENTIAL EXPRESSION USING TILING ARRAY TECHNOLOGY Suk-Young Yoo R. W. Doerge Follow this and additional works at: https://newprairiepress.org/agstatconference Part of the Agriculture Commons, and the Applied Statistics Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Yoo, Suk-Young and W., R. Doerge (2008). "A TWO-STAGE APPROACH FOR ESTIMATING THE EFFECT OF DNA METHYLATION ON DIFFERENTIAL EXPRESSION USING TILING ARRAY TECHNOLOGY," Conference on Applied Statistics in Agriculture. https://doi.org/10.4148/2475-7772.1101 This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For more information, please contact [email protected]. Conference on Applied Statistics in Agriculture Kansas State University A TWO-STAGE APPROACH FOR ESTIMATING THE EFFECT OF DNA METHYLATION ON DIFFERENTIAL EXPRESSION USING TILING ARRAY TECHNOLOGY Suk-Young Yoo and R.W. Doerge Department of Statistics Purdue University 150 North University Street West Lafayette, IN 47907 USA Abstract Epigenetics is the study of heritable alterations in gene function without changing the DNA sequence itself. It is known that epigenetic modifications such as DNA methylation and histone modifications are highly correlated with the regulation of gene expression. A two- stage analysis is proposed that employs a hidden Markov model and a linear model to evaluate differential expression as related to DNA methylation for the purpose of examining the effects of DNA methylation on gene regulation using tiling array technology.
    [Show full text]
  • Model-Based Analysis of Tiling-Arrays for Chip-Chip
    Model-based analysis of tiling-arrays for ChIP-chip W. Evan Johnson*†‡, Wei Li*†‡, Clifford A. Meyer*†‡, Raphael Gottardo§, Jason S. Carroll¶, Myles Brown¶, and X. Shirley Liu*‡ʈ *Department of Biostatistics and Computational Biology, Dana–Farber Cancer Institute, 44 Binney Street, Boston, MA 02115; ¶Department of Medical Oncology, Dana–Faber Cancer Institute and Harvard Medical School, 44 Binney Street, Boston, MA 02115; ‡Department of Biostatistics, Harvard School of Public Health, 655 Huntington Avenue, Boston, MA 02115; and §Department of Statistics, University of British Columbia, 333-6356 Agricultural Road, Vancouver, BC, Canada V6T 1Z2 Edited by Michael S. Waterman, University of Southern California, Los Angeles, CA, and approved June 18, 2006 (received for review February 13, 2006) We propose a fast and powerful analysis algorithm, titled Model- calculated for each probe, and then uses a running window average based Analysis of Tiling-arrays (MAT), to reliably detect regions of the t statistics to identify ChIP regions (7). This method becomes enriched by transcription factor chromatin immunoprecipitation unreliable when there are only a few replicates to estimate probe (ChIP) on Affymetrix tiling arrays (ChIP-chip). MAT models the variance. TileMap (8) proposes an empirical Bayes shrinkage baseline probe behavior by considering probe sequence and copy improvement by weighting the observed probe variance and pooled number on each array. It standardizes the probe value through the variances of all of the probes on the array. TiMAT (http:͞͞bdtnp. probe model, eliminating the need for sample normalization. MAT lbl.gov͞TiMAT) first calculates an average fold change between uses an innovative function to score regions for ChIP enrichment, ChIPs and controls for each probe, then uses a sliding-window which allows robust P value and false discovery rate calculations.
    [Show full text]
  • A Wave of Nascent Transcription on Activated Human Genes
    A wave of nascent transcription on activated human genes Youichiro Wadaa,1, Yoshihiro Ohtaa,1, Meng Xub, Shuichi Tsutsumia, Takashi Minamia, Kenji Inouea, Daisuke Komuraa, Jun’ichi Kitakamia, Nobuhiko Oshidaa, Argyris Papantonisb, Akashi Izumia, Mika Kobayashia, Hiroko Meguroa, Yasuharu Kankia, Imari Mimuraa, Kazuki Yamamotoa, Chikage Matakia, Takao Hamakuboa, Katsuhiko Shirahigec, Hiroyuki Aburatania, Hiroshi Kimurad, Tatsuhiko Kodamaa,2, Peter R. Cookb,2, and Sigeo Iharaa aLaboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan; bSir Williams Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; cGraduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259, Ngatsuda, Midori-ku, Yokohama 226-8501, Japan; and dGraduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita, Osaka 565-0871, Japan Edited by Richard A. Young, Whitehead Institute, Cambridge, MA, and accepted by the Editorial Board September 1, 2009 (received for review March 12, 2009) Genome-wide studies reveal that transcription by RNA polymerase II sites where the RAD21 subunit of cohesin and CCCTC-binding (Pol II) is dynamically regulated. To obtain a comprehensive view of factor (CTCF) bind (19, 20). a single transcription cycle, we switched on transcription of five long human genes (>100 kbp) with tumor necrosis factor-␣ (TNF␣) and Results monitored (using microarrays, RNA fluorescence in situ hybridization, A Wave of premRNA Synthesis That Sweeps Down Activated Genes. At and chromatin immunoprecipitation) the appearance of nascent RNA, different times after stimulation with TNF␣, total nuclear RNA changes in binding of Pol II and two insulators (the cohesin subunit was purified and hybridized to a tiling microarray bearing RAD21 and the CCCTC-binding factor CTCF), and modifications of oligonucleotides complementary to SAMD4A, a long gene of 221 histone H3.
    [Show full text]
  • At-TAX: a Whole Genome Tiling Array Resource for Developmental Expression Analysis and Transcript Identification in Arabidopsis
    Open Access Method2008LaubingeretVolume al. 9, Issue 7, Article R112 At-TAX: a whole genome tiling array resource for developmental expression analysis and transcript identification in Arabidopsis thaliana Sascha Laubinger*, Georg Zeller*†, Stefan R Henz*, Timo Sachsenberg*, Christian K Widmer†, Naïra Naouar‡§, Marnik Vuylsteke‡§, Bernhard Schölkopf¶, Gunnar Rätsch† and Detlef Weigel* Addresses: *Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstr. 37-39, 72076 Tübingen, Germany. †Friedrich Miescher Laboratory of the Max Planck Society, Spemannstr. 39, 72076 Tübingen, Germany. ‡Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium. §Department of Molecular Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium. ¶Department of Empirical Inference, Max Planck Institute for Biological Cybernetics, Spemannstr. 38, 72076 Tübingen, Germany. Correspondence: Detlef Weigel. Email: [email protected] Published: 9 July 2008 Received: 15 May 2008 Revised: 12 June 2008 Genome Biology 2008, 9:R112 (doi:10.1186/gb-2008-9-7-r112) Accepted: 9 July 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/7/R112 © 2008 Laubinger et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Arabidopsis<p>Aods.</p> developmental expression expression atlas atlas, At-TAX, based on whole-genome tiling arrays, is presented along with associated analysis meth- Abstract Gene expression maps for model organisms, including Arabidopsis thaliana, have typically been created using gene-centric expression arrays.
    [Show full text]