Downloaded SRA Files from Which Are Associated with Pigmentation (Table 1)

Total Page:16

File Type:pdf, Size:1020Kb

Downloaded SRA Files from Which Are Associated with Pigmentation (Table 1) Samaniego Castruita et al. BMC Genomics (2020) 21:543 https://doi.org/10.1186/s12864-020-06940-0 RESEARCH ARTICLE Open Access Analyses of key genes involved in Arctic adaptation in polar bears suggest selection on both standing variation and de novo mutations played an important role Jose Alfredo Samaniego Castruita†, Michael V. Westbury*† and Eline D. Lorenzen* Abstract Background: Polar bears are uniquely adapted to an Arctic existence. Since their relatively recent divergence from their closest living relative, brown bears, less than 500,000 years ago, the species has evolved an array of novel traits suited to its Arctic lifestyle. Previous studies sought to uncover the genomic underpinnings of these unique characteristics, and disclosed the genes showing the strongest signal of positive selection in the polar bear lineage. Here, we survey a comprehensive dataset of 109 polar bear and 33 brown bear genomes to investigate the genomic variants within these top genes present in each species. Specifically, we investigate whether fixed homozygous variants in polar bears derived from selection on standing variation in the ancestral gene pool or on de novo mutation in the polar bear lineage. Results: We find that a large number of sites fixed in polar bears are biallelic in brown bears, suggesting selection on standing variation. Moreover, we uncover sites in which polar bears are fixed for a derived allele while brown bears are fixed for the ancestral allele, which we suggest may be a signal of de novo mutation in the polar bear lineage. Conclusions: Our findings suggest that, among other mechanisms, natural selection acting on changes in genes derived from a combination of variation already in the ancestral gene pool, and from de novo missense mutations in the polar bear lineage, may have enabled the rapid adaptation of polar bears to their new Arctic environment. Keywords: Polar bear, Adaptation, Arctic, Genomics, Selection Background ecology, behaviour, and morphology. This rapid evolu- The divergence of polar bears (Ursus maritimus) from tion was proven even more substantial by stable isotope brown bears (Ursus arctos) and their adaptation to a analysis of an ancient polar bear jawbone from Svalbard, novel environment and lifestyle in the Arctic is a well- indicating that the species had already adapted to a mar- known example of rapid evolution [1, 2]. Despite having ine diet and life in the High Arctic by at least 110 kya diverged relatively recently (ca. 479–343 thousand years [3]. Therefore, in perhaps as little as 20,000 generations, ago (kya)) [1], polar bears evolved a novel and distinct polar bears evolved a suite of unique adaptations that enable them to maintain homeostasis under low temper- atures, occupy a hypercarnivorous niche, subsist on a * Correspondence: [email protected]; [email protected] † diet of primarily seals and their blubber [4], process Jose Alfredo Samaniego Castruita and Michael V. Westbury contributed equally to this work. lipids as their predominant energy source [5, 6], and GLOBE Institute, University of Copenhagen, Copenhagen, Denmark © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Samaniego Castruita et al. BMC Genomics (2020) 21:543 Page 2 of 8 camouflage into their surroundings with pigment-free is no introgressive admixture/ILS at these loci (Sup- fur [7]. plementary Figs. 1–5and7–12). However, for The rapid adaptation of such an iconic species has EDH3, seven of the brown bears cluster within the sparked a number of studies seeking to unravel the gen- diversity of polar bears, indicating some level of omic underpinnings through the use of various datasets introgression or ILS around this gene (Supplemen- and analyses [1, 2, 8]. Both Miller et al. [2] and Liu et al. tary Fig. 6). The seven brown bears were all from [1], investigated whole-genome datasets to uncover gen- the Admiralty, Baranof, and Chichagof islands in Al- omic regions showing signatures of selection. Together, aska, an area known to be inhabited by introgressed these studies revealed different yet complementary sets brown bears [9]. We therefore excluded EDH3 from of genes, pathways, and phenotypes that were likely further analysis. shaped by natural selection during polar bear evolution. Genes showing the strongest signal of positive selection Non-synonymous differences between polar bears and are involved in adipose tissue development, fatty acid brown bears metabolism, heart function, and fur pigmentation [1], in- For this analysis, we only considered dinucleotide sites dicating these are key processes in polar bear adaptation coding for non-synonymous amino acid changes. Firstly, to the Arctic. we calculated the percentages of sites fixed within polar Using all currently available nuclear genomes from bears (Table 1), which ranged between 10 of 8424 cod- polar bears (n = 109) and brown bears (n = 33), we set ing sites (0.12%) in FCGBP to 18 of 3957 coding sites out to determine the nature of the polar bear-specific (0.45%) in LAMC3. We compared this to the number of amino acid changes in the top genes showing the stron- sites also fixed in brown bears for an alternative allele. gest signal of positive selection in the polar bear lineage Seven out of the eleven genes contained sites showing as reported by Liu et al., (Table 1 and supplementary this pattern (Table 1). More specific information regard- Table S1)[1]. This increase in sample number and ing gene positions, amino acid changes, and allele counts spatial coverage enabled us to more comprehensively in- can be found in supplementary Table S2. vestigate the origins of polar bear-specific substitutions. By comparing the target gene regions across the two Fixed derived missense mutations in polar bear species based on this comprehensive dataset, we (i) de- To understand the origins of the variants fixed in the termine the number and location of missense substitu- polar bear lineage relative to brown bears (i.e. whether tions specific to the polar bear lineage (ii) address they are derived or ancestral), we compared the polar whether the polar bear variants derive from standing bear and brown bear alleles to the giant panda (Ailuro- variation or de novo mutations, (iii) evaluate whether poda melanoleuca) reference sequence, assuming the an- the variants fixed in polar bears may lead to functional cestral variant is retained in the panda. This was to changes in the genes. reduce any noise caused by changes occurring in the brown bear lineage after its divergence from polar bears. Results Therefore, we only included sites where polar bears ac- Population structure and admixture quired a derived allele, while brown bears retained the To gain a better understanding of whether selection ancestral state. Seven of the eleven genes of interest had acted upon standing variation in the polar/brown bear at least one site showing this pattern (Table 1, Fig. 1). ancestral lineage or on de novo mutations in the polar The number of such sites varied from zero (CUL7, bear lineage, we first needed to determine whether de- FCGBP, LAMC3, and XIRP1) to twelve (TTN). More rived variants were already present in the ancestral gene specific information regarding the gene positions and al- pool. However, as admixture from polar bears into lele counts can be found in supplementary Table S3. brown bears has been well documented [1, 2, 9–11], we first investigated admixture at our selected genes. If any Influence on protein structure introgression from polar bears persists in the brown bear To evaluate whether the fixed derived amino acid gene pool, inferences of the origins of these variants changes in polar bears (also fixed for the ancestral allele (standing variation or de novo) may be biased. To do in brown bears) had any functional influence on the pro- this, we ran independent PCAs on each of the twelve tein function, we implemented three independent ana- genes analysed including the 50 kb flanking regions up lyses to predict the functional effects of the amino acid and downstream of the genes. change in humans. Amino acid changes that appeared to Clear genetic differentiation between polar bears and have a functional influence according to at least one of brown bears has been shown at a genome-wide scale [1, the three tests were found in four genes, with varying 2]. For eleven of the twelve genes, polar bears and brown numbers of sites displaying this in each gene, TTN (9 bears form separate clusters, which we expect if there sites), LYST (3 sites),
Recommended publications
  • Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights
    RESEARCH ARTICLE Single Amino Acid Repeats in the Proteome World: Structural, Functional, and Evolutionary Insights Amitha Sampath Kumar, Divya Tej Sowpati, Rakesh K. Mishra* Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad, 500007, India * [email protected] a11111 Abstract Microsatellites or simple sequence repeats (SSR) are abundant, highly diverse stretches of short DNA repeats present in all genomes. Tandem mono/tri/hexanucleotide repeats in the coding regions contribute to single amino acids repeats (SAARs) in the proteome. While SSRs in the coding region always result in amino acid repeats, a majority of SAARs arise due to a combination of various codons representing the same amino acid and not as a con- OPEN ACCESS sequence of SSR events. Certain amino acids are abundant in repeat regions indicating a Citation: Kumar AS, Sowpati DT, Mishra RK (2016) Single Amino Acid Repeats in the Proteome positive selection pressure behind the accumulation of SAARs. By analysing 22 proteomes World: Structural, Functional, and Evolutionary including the human proteome, we explored the functional and structural relationship of Insights. PLoS ONE 11(11): e0166854. amino acid repeats in an evolutionary context. Only ~15% of repeats are present in any doi:10.1371/journal.pone.0166854 known functional domain, while ~74% of repeats are present in the disordered regions, sug- Editor: Eugene A. Permyakov, Russian Academy of gesting that SAARs add to the functionality of proteins by providing flexibility, stability and Medical Sciences, RUSSIAN FEDERATION act as linker elements between domains. Comparison of SAAR containing proteins across Received: August 28, 2016 species reveals that while shorter repeats are conserved among orthologs, proteins with Accepted: November 5, 2016 longer repeats, >15 amino acids, are unique to the respective organism.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Aurora B/AIM1 Antibody A
    Revision 1 C 0 2 - t Aurora B/AIM1 Antibody a e r o t S Orders: 877-616-CELL (2355) [email protected] Support: 877-678-TECH (8324) 4 9 Web: [email protected] 0 www.cellsignal.com 3 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source: UniProt ID: Entrez-Gene Id: WB, IP, F H M R Mk Endogenous 40 Rabbit Q96GD4 9212 Product Usage Information Application Dilution Western Blotting 1:1000 Immunoprecipitation 1:100 Flow Cytometry 1:50 Storage Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA and 50% glycerol. Store at –20°C. Do not aliquot the antibody. Specificity / Sensitivity Aurora B/AIM1 Antibody detects endogenous levels of Aurora B/AIM1 protein. Species Reactivity: Human, Mouse, Rat, Monkey Source / Purification Polyclonal antibodies are produced by immunizing animals with a synthetic peptide corresponding to the amino terminus of human Aurora B/AIM1. Antibodies are purified by protein A and peptide affinity chromatography. Background Aurora A (AIK) is a cell cycle-regulated Ser/Thr protein kinase that is overexpressed in many tumor cell lines (1-3). Phosphorylation of Aurora A at Thr288 within the kinase activation loop results in a significant increase in its activity and may target the protein for proteasomal degradation during mitosis (4). The closely-related kinase Aurora B (AIM1) has been implicated in multiple mitotic events (5), and siRNA silencing of Aurora B expression results in reduced histone H3 phosphorylation, aberrant chromosome alignment/segregation, and altered survivin localization (6).
    [Show full text]
  • Genomic Analyses Reveal Global Functional Alterations That Promote Tumor Growth and Novel Tumor Suppressor Genes in Natural Killer-Cell Malignancies
    Leukemia (2009) 23, 1139–1151 & 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 $32.00 www.nature.com/leu ORIGINAL ARTICLE Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies J Iqbal1,9, C Kucuk1,9, RJ deLeeuw2, G Srivastava3, W Tam4, H Geng5, D Klinkebiel6, JK Christman6, K Patel1, K Cao5, L Shen3, K Dybkaer7, IFL Tsui2, H Ali5, N Shimizu8,WYAu3, WL Lam2 and WC Chan1 1Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA; 2British Columbia Cancer Research Centre, Vancouver, British columbia, Canada; 3Departments of Pathology and Medicine, University of Hong Kong, Hong Kong, Hong Kong; 4Department of Pathology, Weill Medical College of Cornell University, New York, NY, USA; 5Department of Computer Science, University of Nebraska at Omaha, Omaha, NE, USA; 6Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; 7Department of Hematology, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark and 8Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan Natural killer (NK)-cell malignancies are among the most rare in western countries but relatively frequent in East Asia, and aggressive lymphoid neoplasms with very poor prognosis. Central and South America.3 The diagnostic characteristics of We performed array comparative genomic hybridization analysis on a number of NK cell lines and primary tumors to NK-cell malignancies include germline T-cell receptor and gain better understanding of the pathogenesis and tumor immunoglobulin gene configurations with expression of NK biology of these malignancies. We also obtained transcriptional cell-associated markers such as CD16 and CD56, but not profiles of genes residing in these regions and compared them surface CD3.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Primary Sequence Contribution to the Optical Function of the Eye Lens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kingston University Research Repository OPEN Primary sequence contribution to the SUBJECT AREAS: optical function of the eye lens PROTEINS K. Mahendiran1, C. Elie2, J.-C. Nebel1, A. Ryan1 & B. K. Pierscionek1 PROTEIN FUNCTION PREDICTIONS 1Faculty of Science Engineering and Computing, Kingston University, Penhryn Road, Kingston-upon-Thames, KT1 2EE, UK, 2Department of Bioengineering, Nice Sophia Antipolis University Engineering School, Templiers Campus, 06410 Biot, France. Received 25 February 2014 The crystallins have relatively high refractive increments compared to other proteins. The Greek key motif Accepted in bc-crystallins was compared with that in other proteins, using predictive analysis from a protein database, 17 April 2014 to see whether this may be related to the refractive increment. Crystallins with Greek keys motifs have significantly higher refractive increments and more salt bridges than other proteins with Greek key Published domains. Specific amino acid substitutions: lysine and glutamic acid residues are replaced by arginine and 6 June 2014 aspartic acid, respectively as refractive increment increases. These trends are also seen in S-crystallins suggesting that the primary sequence of crystallins may be specifically enriched with amino acids with appropriate values of refractive increment to meet optical requirements. Comparison of crystallins from five species: two aquatic and three terrestrial shows that the lysine/arginine
    [Show full text]
  • DNMT1 and AIM1 Imprinting in Human Placenta Revealed Through A
    Das et al. BMC Genomics 2013, 14:685 http://www.biomedcentral.com/1471-2164/14/685 RESEARCH ARTICLE Open Access DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation Radhika Das1, Yew Kok Lee1, Ruslan Strogantsev2, Shengnan Jin1, Yen Ching Lim1, Poh Yong Ng1, Xueqin Michelle Lin1, Keefe Chng1, George SH Yeo3, Anne C Ferguson-Smith2 and Chunming Ding1* Abstract Background: Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent- of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. Results: Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. Conclusions: Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions.
    [Show full text]
  • An Application of Text Categorization Methods to Gene Ontology Annotation
    An Application of Text Categorization Methods to Gene Ontology Annotation Kazuhiro Seki Javed Mostafa Laboratory of Applied Informatics Research Laboratory of Applied Informatics Research Indiana University, Bloomington Indiana University, Bloomington 1320 East Tenth Street, LI 011 1320 East Tenth Street, LI 011 Bloomington, Indiana 47405-3907 Bloomington, Indiana 47405-3907 [email protected] [email protected] ABSTRACT 1. INTRODUCTION This paper describes an application of IR and text categorization Given the intense interest and fast growing literature, biomedicine methods to a highly practical problem in biomedicine, specifically, is an attractive domain for exploration of intelligent information Gene Ontology (GO) annotation. GO annotation is a major activity processing techniques, such as information retrieval (IR), informa- in most model organism database projects and annotates gene func- tion extraction, and information visualization. As a result, it has tions using a controlled vocabulary. As a first step toward automatic been increasingly drawing much attention of researchers in IR and GO annotation, we aim to assign GO domain codes given a specific other related communities [6, 7, 9, 17]. As far as we know, how- gene and an article in which the gene appears, which is one of the ever, there have been few products of research efforts focusing on task challenges at the TREC 2004 Genomics Track. We approached this particular domain in past SIGIR conferences. This paper in- the task with careful consideration of the specialized terminology troduces a successful application of general IR and text categoriza- and paid special attention to dealing with various forms of gene tion methods to this evolving field of research targeting biomedical synonyms, so as to exhaustively locate the occurrences of the tar- texts.
    [Show full text]
  • From Gene Expression to Functional Foods
    cancers Article Computational Approaches for Cancer-Fighting: From Gene Expression to Functional Foods Francesco Monticolo and Maria Luisa Chiusano * Department of Agricultural Sciences, Università degli Studi di Napoli Federico II, Via Università 100, 80055 Portici, Italy; [email protected] * Correspondence: [email protected] Simple Summary: It is today widely accepted that a healthy diet can be one of the fundamental approaches to prevent the risk of cancer. To this aim, nutrigenomics studies are indeed providing a precious source of information, favoring the search for compounds that could affect gene expression in a favorable way. Here we present a computational study to select candidate compounds that could play a role in cancer prevention and care. Starting from analyses of gene expression, we identified 7 genes that have opposite expression trends in apoptotic treatments when compared with 8 different cancer types. In addition, based on structure similarity with 6 compounds that affect the expression patterns of these genes in a favorable way against 8 cancer types, we selected 23 natural compounds as suitable candidates for further tests as possible novel drugs or for the design of functional food for cancer treatment and prevention. Abstract: It is today widely accepted that a healthy diet is very useful to prevent the risk for cancer or its deleterious effects. Nutrigenomics studies are therefore taking place with the aim to test the effects Citation: Monticolo, F.; Chiusano, of nutrients at molecular level and contribute to the search for anti-cancer treatments. These efforts M.L. Computational Approaches for are expanding the precious source of information necessary for the selection of natural compounds Cancer-Fighting: From Gene useful for the design of novel drugs or functional foods.
    [Show full text]
  • Aey2, a New Mutation in the ßb2-Crystallin–Encoding Gene Of
    Aey2, a New Mutation in the ␤B2-Crystallin–Encoding Gene of the Mouse Jochen Graw,1 Jana Lo¨ster,1 Dian Soewarto,2 Helmut Fuchs,2 Andre´ Reis,3,4 Eckhard Wolf,5 Rudi Balling,1,6 and Martin Hrabe´ de Angelis2 PURPOSE. During an ethylnitrosourea (ENU) mutagenesis he ␤- and ␥-crystallins form the major part of the water- screen, mice were tested for the occurrence of dominant Tsoluble proteins of the eye lens. The ␤- and ␥-crystallins are cataracts. One particular mutant was found that caused pro- recognized as members of a superfamily and have been con- gressive opacity and was referred to as Aey2. The purpose of sidered for a long time to be present only in the eye and mainly the study was to provide a morphologic description, to map in the ocular lens.1,2 However, just recently, expression of the the mutant gene, and to characterize the underlying molecular ␤B2-crystallin mRNA and protein was reported also in brain lesion. and testis.3 The common characteristic of all ␤- and ␥-crystal- METHODS. Isolated lenses were photographed, and histologic lins is the so-called Greek key motif. Crystallography of bovine sections of the eye were analyzed according to standard pro- ␤B2- and ␥B-crystallins has shown that each of the ␤- and cedures. Linkage analysis was performed using a set of micro- ␥-crystallins is composed of two domains, each of them built satellite markers covering all autosomal chromosomes. cDNA up by two Greek key motifs.4,5 from candidate genes was amplified after reverse transcription It is widely accepted that ␤- and ␥-crystallins evolved in two of lens mRNA.
    [Show full text]
  • Mutation of Melanosome Protein RAB38 in Chocolate Mice
    Mutation of melanosome protein RAB38 in chocolate mice Stacie K. Loftus*, Denise M. Larson*, Laura L. Baxter*, Anthony Antonellis*†, Yidong Chen‡, Xufeng Wu§, Yuan Jiang‡, Michael Bittner‡, John A. Hammer III§, and William J. Pavan*¶ *Genetic Disease Research Branch and ‡Cancer Genetics Branch, National Human Genome Research Institute, §Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892; and †Graduate Genetics Program, George Washington University, Washington, DC 20052 Communicated by Francis S. Collins, National Institutes of Health, Bethesda, MD, February 13, 2002 (received for review January 2, 2002) Mutations of genes needed for melanocyte function can result in crest-derived and other control cell lines. Clustering of the oculocutaneous albinism. Examination of similarities in human resulting expression profiles provided a powerful way to organize gene expression patterns by using microarray analysis reveals that the common patterns found among thousands of gene expression RAB38, a small GTP binding protein, demonstrates a similar ex- measurements and identify genes with similar distinctive expres- pression profile to melanocytic genes. Comparative genomic anal- sion patterns among the experimental samples (6). Analysis of ysis localizes human RAB38 to the mouse chocolate (cht) locus. A genes contained within a cluster has revealed that these genes are G146T mutation occurs in the conserved GTP binding domain of often functionally related within the cell (7, 8). Using this RAB38 in cht mice. Rab38cht͞Rab38cht mice exhibit a brown coat approach we identified genes clustered with known pigmenta- similar in color to mice with a mutation in tyrosinase-related tion genes, thereby categorizing RAB38 as a candidate pigmen- protein 1 (Tyrp1), a mouse model for oculocutaneous albinism.
    [Show full text]
  • Regulation of Cancer Stemness in Breast Ductal Carcinoma in Situ by Vitamin D Compounds
    Author Manuscript Published OnlineFirst on May 28, 2020; DOI: 10.1158/1940-6207.CAPR-19-0566 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Analysis of the Transcriptome: Regulation of Cancer Stemness in Breast Ductal Carcinoma In Situ by Vitamin D Compounds Naing Lin Shan1, Audrey Minden1,5, Philip Furmanski1,5, Min Ji Bak1, Li Cai2,5, Roman Wernyj1, Davit Sargsyan3, David Cheng3, Renyi Wu3, Hsiao-Chen D. Kuo3, Shanyi N. Li3, Mingzhu Fang4, Hubert Maehr1, Ah-Ng Kong3,5, Nanjoo Suh1,5 1Department of Chemical Biology, Ernest Mario School of Pharmacy; 2Department of Biomedical Engineering, School of Engineering; 3Department of Pharmaceutics, Ernest Mario School of Pharmacy; 4Environmental and Occupational Health Sciences Institute and School of Public Health, 5Rutgers Cancer Institute of New Jersey, New Brunswick; Rutgers, The State University of New Jersey, NJ, USA Running title: Regulation of cancer stemness by vitamin D compounds Key words: Breast cancer, cancer stemness, gene expression, DCIS, vitamin D compounds Financial Support: This research was supported by the National Institutes of Health grant R01 AT007036, R01 AT009152, ES005022, Charles and Johanna Busch Memorial Fund at Rutgers University and the New Jersey Health Foundation. Corresponding author: Dr. Nanjoo Suh, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 164 Frelinghuysen Road, Piscataway, New Jersey 08854. Tel: 848-445-8030, Fax: 732-445-0687; e-mail: [email protected] Disclosure of Conflict of Interest: “The authors declare no potential conflicts of interest” 1 Downloaded from cancerpreventionresearch.aacrjournals.org on October 1, 2021.
    [Show full text]