Association of Single Nucleotide Polymorphisms in the ST3GAL4 Gene with VWF Antigen and Factor VIII Activity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Broad and Thematic Remodeling of the Surface Glycoproteome on Isogenic
bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Broad and thematic remodeling of the surface glycoproteome on isogenic cells transformed with driving proliferative oncogenes Kevin K. Leung1,5, Gary M. Wilson2,5, Lisa L. Kirkemo1, Nicholas M. Riley2,4, Joshua J. Coon2,3, James A. Wells1* 1Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA Departments of Chemistry2 and Biomolecular Chemistry3, University of Wisconsin- Madison, Madison, WI, 53706, USA 4Present address Department of Chemistry, Stanford University, Stanford, CA, 94305, USA 5These authors contributed equally *To whom correspondence should be addressed bioRxiv preprint doi: https://doi.org/10.1101/808139; this version posted October 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract: The cell surface proteome, the surfaceome, is the interface for engaging the extracellular space in normal and cancer cells. Here We apply quantitative proteomics of N-linked glycoproteins to reveal how a collection of some 700 surface proteins is dramatically remodeled in an isogenic breast epithelial cell line stably expressing any of six of the most prominent proliferative oncogenes, including the receptor tyrosine kinases, EGFR and HER2, and downstream signaling partners such as KRAS, BRAF, MEK and AKT. -
Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol . -
The Abstracts
THE ABSTRACTS Committee & International Boards Executive President of the Congress B Boris Vargaftig Brazil President of the Brazilian Society of Immunology Sérgio Costa Oliveira Brazil Honorary President of the Congress Sérgio Henrique Ferreira Brazil Executive Committee Consulting Scientific Committee Manoel Barral Neto Brazil Fernando Queiroz Cunha - Alberto Mantovani Italy Marc Peters Golden USA Treasurer Brazil Alexandre Salgado Basso Brazil Marcellus Souza Brazil João Santana da Silva Brazil Amanda Proudfoot Switzerland Marcelo Torres Bozza Brazil José Carlos Alves Filho Brazil Ana Campa Brazil Marco Aurélio Martins Brazil Mauro M. Teixeira Brazil Andrew Luster USA Marco Cassatella Italy Momtchillo Russo Brazil Antônio L . Teixeira Jr Brazil Mauro Martins Teixeira Brazil Niels O. S. Camara - Executive B. Boris Vargaftig Brazil Mauro Perretti England Secretary Brazil Bart Lambrecht Belgium Michael Parnham Germany Patrícia Torres Bozza Brazil Bernard Ryffel France Michel Chignard France Scientific Committee Cristovam Picanco Diniz Brazil Micheline Lagranderie France Mauro Martins Teixeira (Chair) Danielle G. Souza Brazil Miguel Soares Portugal Brazil Dario Zamboni Brazil Moises Bauer Brazil Fernando Queiroz Cunha Brazil Doulgas Golenbock USA Momtchillo Russo Brazil José Carlos Alves Filho Brazil Eddy Liew Scotland Niels O. S. Camara Brazil Kouji Matsushima Japan Edgar Carvalho Brazil Nikita Lomakin Russia Michel Chignard France Edson Antunes Brazil Patrícia Torres Bozza Brazil Momtchillo Russo Brazil Eugen Faist Germany Paul Foster USA Niels O. S. Camara Brazil Fernando Queiroz Cunha Brazil Paul Kubes Canada Patricia Torres Bozza Brazil Flávia do Nascimento Brazil Rafael Radi Uruguay Thiago M. Cunha Brazil Francisco Airton Rocha Brazil Reinaldo Salomão Brazil Local Committee Francisco R. M. Laurindo Brazil Renato Monteiro France Selma Maria Bezerra Jerônimo Gerard J Graham Scotland Renato S. -
Regulation and Function of Silayltransferases in Pancreatic Cancer
REGULATION AND FUNCTION OF SILAYLTRANSFERASES IN PANCREATIC CANCER Sònia Bassagañas i Puigdemont Dipòsit legal: Gi. 240-2015 http://hdl.handle.net/10803/285783 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora. -
Genomic Analysis of Allele-Specific Expression in the Mouse Liver
bioRxiv preprint doi: https://doi.org/10.1101/024588; this version posted August 13, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 TITLE: Genomic analysis of allele-specific expression in the mouse liver Ashutosh K. Pandey* and Robert W. Williams* *Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38103 bioRxiv preprint doi: https://doi.org/10.1101/024588; this version posted August 13, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 2 RUNNING TITLE: Allele-specific expression in liver KEYWORDS: BXD, DBA/2J, haplotype-aware alignment, purifying selection, cis eQTL CORRESPONDING AUTHOR: Ashutosh K. Pandey 855 Monroe Avenue, Suite 512 Memphis, TN, 38163 Phone: 901-448-1761 Email addresses: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/024588; this version posted August 13, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 3 ABSTRACT Genetic differences in gene expression contribute significantly to phenotypic diversity and differences in disease susceptibility. In fact, the great majority of causal variants highlighted by genome-wide association are in non-coding regions that modulate expression. In order to quantify the extent of allelic differences in expression, we analyzed liver transcriptomes of isogenic F1 hybrid mice. Allele-specific expression (ASE) effects are pervasive and are detected in over 50% of assayed genes. -
Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes Ashutosh Kumar Pandey University of Tennessee Health Science Center
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2015 Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes Ashutosh Kumar Pandey University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Genetic Phenomena Commons, Genetic Processes Commons, and the Medical Genetics Commons Recommended Citation Pandey, Ashutosh Kumar , "Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes" (2015). Theses and Dissertations (ETD). Paper 359. http://dx.doi.org/10.21007/etd.cghs.2015.0237. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Genetics, Functional Genomics, and Proteomics Research Advisor Robert W. Williams, Ph.D. Committee Hao Chen, Ph.D. Eldon E. Geisert, Ph.D. Ramin Homayouni, Ph.D. David R. Nelson, Ph.D. DOI 10.21007/etd.cghs.2015.0237 Comments Six month embargo expired June 2016 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/359 Functional Analysis of Genomic Variation and Impact on Molecular and Higher Order Phenotypes A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Ashutosh Kumar Pandey December 2015 Copyright © 2015 by Ashutosh Kumar Pandey. -
Identification of Gene Expression Profiles In
Kontou et al. BMC Medical Genomics (2018) 11:109 https://doi.org/10.1186/s12920-018-0427-x RESEARCHARTICLE Open Access Identification of gene expression profiles in myocardial infarction: a systematic review and meta-analysis Panagiota Kontou1, Athanasia Pavlopoulou2, Georgia Braliou1, Spyridoula Bogiatzi1, Niki Dimou3, Sripal Bangalore4 and Pantelis Bagos1,5* Abstract Background: Myocardial infarction (MI) is a multifactorial disease with complex pathogenesis, mainly the result of the interplay of genetic and environmental risk factors. The regulation of thrombosis, inflammation and cholesterol and lipid metabolism are the main factors that have been proposed thus far to be involved in the pathogenesis of MI. Traditional risk-estimation tools depend largely on conventional risk factors but there is a need for identification of novel biochemical and genetic markers. The aim of the study is to identify differentially expressed genes that are consistently associated with the incidence myocardial infarction (MI), which could be potentially incorporated into the traditional cardiovascular diseases risk factors models. Methods: The biomedical literature and gene expression databases, PubMed and GEO, respectively, were searched following the PRISMA guidelines. The key inclusion criteria were gene expression data derived from case-control studies on MI patients from blood samples. Gene expression datasets regarding the effect of medicinal drugs on MI were excluded. The t-test was applied to gene expression data from case-control studies in MI patients. Results: A total of 162 articles and 174 gene expression datasets were retrieved. Of those a total of 4 gene expression datasets met the inclusion criteria, which contained data on 31,180 loci in 93 MI patients and 89 healthy individuals. -
Unraveling the Molecular Mechanism Underlying ALS-Linked Astrocyte
Unraveling the molecular mechanism underlying ALS- linked astrocyte toxicity for motor neurons Burcin Ikiz Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2013 © 2013 Burcin Ikiz All rights reserved Abstract Unraveling the molecular mechanism underlying ALS-linked astrocyte toxicity for motor neurons Burcin Ikiz Mutations in superoxide dismutase-1 (SOD1) cause a familial form of amyotrophic lateral sclerosis (ALS), a fatal paralytic disorder. Transgenic mutant SOD1 rodents capture the hallmarks of this disease, which is characterized by a progressive loss of motor neurons. Studies in chimeric and conditional transgenic mutant SOD1 mice indicate that non-neuronal cells, such as astrocytes, play an important role in motor neuron degeneration. Consistent with this non-cell autonomous scenario are the demonstrations that wild-type primary and embryonic stem cell- derived motor neurons selectively degenerate when cultured in the presence of either mutant SOD1-expressing astrocytes or medium conditioned with such mutant astrocytes. The work in this thesis rests on the use of an unbiased genomic strategy that combines RNA-Seq and “reverse gene engineering” algorithms in an attempt to decipher the molecular underpinnings of motor neuron degeneration caused by mutant astrocytes. To allow such analyses, first, mutant SOD1- induced toxicity on purified embryonic stem cell-derived motor neurons was validated and characterized. This was followed by the validation of signaling pathways identified by bioinformatics in purified embryonic stem cell-derived motor neurons, using both pharmacological and genetic techniques, leading to the discovery that nuclear factor kappa B (NF-κB) is instrumental in the demise of motor neurons exposed to mutant astrocytes in vitro.