Neuroexistentialism

Total Page:16

File Type:pdf, Size:1020Kb

Neuroexistentialism JOSEPH DUMIT neuroexistentialism Parsing the neuronal sensorium is already to dismantle through 00 analysis that which we imagine to be a comprehensive totality. If our sensorium is the sensing package that constitutes our parti- cipation in the world, then it follows that this assemblage of sensory inputs defines our boundaries, making the world present to us and by subtraction making us present to ourselves as beings in the world. This package can only seem to do this if it dis- appears—if it works invisibly, silently, quickly, and reliably. The first cyborg? “One of the first Cyborgs, this 220-gm rat has under its skin the Rose osmotic pump designed to permit continuous injections of chemicals at a slow controlled rate into an organism without any attention on the part of the organism,” Manfred E. Clynes and Nathan S. Kline, “Cyborgs and Space,” Astronautics, September 1960. In this manner, we (our sensorium + us) fit the original definition of a “cyborg” (cybernetic organism): “a homeostatic system functioning unconsciously.”1 Coined in the nascent space age by engineer-musician Manfred Clynes and pharmacologist Nathan Kline, the word cyborg was first used in 1960 to refer to a mouse dragging an attached insulin pump that osmotically regulated its blood sugar level. The mouse was certainly aware of and distracted by this new tail, so the authors’ reference to an “unconscious” system was an attempt to describe a func- tion that did not require constant active attention, or intention, on the part of the mouse-pump. This reduction Change one “part” and all parts change. in intention was seen as crucial for imagining How does the subject, the “I,” sense the astronaut-cyborg who would be too busy the sensorium? We might imagine that guiding the spacecraft, wondering at the cosmos, once the eye or fingertip processes the or conducting experiments to manage his air sense data it makes a coherent message supply, temperature, and other needs. The in- and sends it up, but this message is itself terface between the body and the technology an impulse that must be sensed by the would be “unconscious,” automatic, and taken next nerve. Each nerve or neuron in turn for granted—reflected in the etymology of the is in the position of the sensorium for 01 prefix “cyber,” which refers to the Greek word the rest of the system, being impacted for oarsman. and transponding a signal to other neu- At first the cybernetic organism’s existential rons and so on, up to the brain. Even the status was of little concern. The only question neurons in the brain are thus in a relation Kline and Clynes raised was how far we should of sensorium for their neighbors. go in embodying the cyborg. They thought And senses can lie. Recall the philoso- that the typical 1960s solution to space travel, pher Descartes sitting by his fire, won- which lugged the earth (in the form of a dering how he could trust his sense of spaceship) along with the astronaut, could be heat, light, and crackling flames. He replaced by voyagers rendered spaceworthy decided that he had no way of know- through cyborg skin, eyes, limbs, etc. They ing whether he was being deceived by thus imagined that the cyborg process would his sensory apparatus. Perhaps there was preserve “man” the subject, and especially no world outside and he had only false his projects, his will and his desires—in other signals from his senses. Implicit in this words, cyborgs would still be existentially age-old doubt is what polymath Warren human. The ’60s concept of cyborg divided McCulloch called the engineering theory man into consciousness (cognitive and defined of signals. McCulloch, trained in philoso- by attention) and body (systems-mechanical, phy, psychology, neurophysiology, and providing sensory input and active output). On psychiatry, worked and thought with this account, only consciousness was necessary Norbert Wiener from the early 1940s and to existential “man.” helped found the nascent field of cyber- But Frederik Pohl’s 1976 science-fiction book netics.3 “A signal has a double nature,” Man Plus already envisioned the existential out- wrote McCulloch in 1949, “it is a physical come of producing prosthetic cyborgs: The event, which happens only once in a book’s protagonist was provided with artificial singular world, yet it is essentially capable limbs, spectral eyes, wings with solar power; of being true or false.”4 The sensorium, his genitalia were removed because he would in this account, is thus a semiotic inter- ingest and excrete differently.2 In the end, this face with existential implications. When man-plus became other-than-man, a Martian a neuron fires, it offers a bivalent propo- subject with different desires, projects, and will. sition—it only “implies” that it was What Pohl intuited was that there could be tripped by something in the world (true); no obvious separation between sensorium and it could also be cause for existential doubt subject, consciousness and body—nor between (false).5 Or, as McCulloch noted, “If you sensation, cognition, attention, and affect. press on your eye, you will see a light when there is no light. The signal is just as physical as ever, but because it arose in the wrong way or in the wrong place, it is a false signal, just as false as a ring on the telephone when light- ning strikes the wires.”6 McCulloch read a lot of Leibniz and some Spinoza. As an engineer he thought constantly about the problems of real machines, but as a psychiatrist he thought constantly about problems that humans have with their thinking. He found both 00 realms uncanny. He was fond of identifying what he called “ex- istential objects” in which each neuron-to-neuron connection is itself an interface, a sensory problem, and therefore a truth problem. For McCulloch, the difference between physics and communication engineering was profound. While the physicist saw the signal as the same signal when it arrived, the commu- nication engineer began to comprehend that signals were mere messages in a game of telephone (where each person whispers an “identical”phrase to the next, invariably garbling it in the pro- cess). Every transponding event generates a new signal. Every reception must make a judgment: “Man always has a background of nervous activity . it separates physics, for which the signals are only something that happens or else does not happen, from communication engineering, for which these same signals are also either true or false.”7 What McCulloch posed with his semiotic systems theory is, then, neuroexistentialism. Each interface, gap, and infinitesimal delay poses the question of truth. A physicist can cheat with his absolute, but a neuronal system exists in time and as such is already past zero. So as his physicist colleagues fantasized about pure information, a signal positioned against noise, the systems theorist McCulloch, with his uncanny psychic objects, wanted to know much more. A sensation of light—was it a real flash of photons, or was it just pressure on a closed eyelid? A single phone ring—was it a secret admirer finally getting enough nerve to call, or lightning on the phone line? The phone did ring, the signal is undeniable, but is it true? Such inquiries summoned yet another existential question: Could one speak of circuits or machines that desire and will? For the communication engineer, appetitive circuits and the sensorium they produce are infinitely networked and expansive —they both act on the world and get signals from the world.8 What McCulloch was locating in such circuitry was the stuff of human will: “Because what we intend and what we do are not always the same, we are forced to distinguish between what we will and what we shall do. Hence the notion of existential fact about our neurons: They are the ‘will’. Any computing machine which can capable of calculating all calculable things. detect a discrepancy between what it calculated But that was only the beginning. The and its actual output may be said to have a will conclusion to the paper is more startling, of its own.”9 and little discussed. Here the authors not- The subject or circuit is thus already a ed that if even simplistic “neurons” could “desiring machine” (to use Deleuze and be considered already human, then the Guattari’s phrase), already stuck trying to decide question of the “subject” of these neurons whether it is willing successfully, whether it is needs to be posed. These nervous nets 01 functioning correctly, and whether it is getting are deterministic forward in time, but good information, all at the same time. Yet undetermined backward. That is, given time, too, is part of the problem because com- the state of a net at time T, the state of the munication circuits are in time and take time. net at the time segment T+1 is predictable, We see this clearly as we try to adjust to but the state of the net at the earlier time new technologies. If someone doesn’t respond T-1 is not. Was it a photon or a fingertip? to an e-mail, how do we interpret this signal? That simply cannot be determined at the Our anxieties take historically specific forms: level of a single neuron, or even within Did the server go down? Did it get there, did the neural net. they not check, did it get put into spam, did If we were such subjects as these they read and not reply, are they mad at me, neural nets, reasoned McCulloch, we did they send a response that got lost? Every really couldn’t know whether what we moment of waiting is interpreted as a signal think just happened actually happened.
Recommended publications
  • Constructing Artificial Intelligence Paul Edwards, the Closed World
    * c 4 1 v. N > COMPUTERS . discourse »"• "u m com *»» *l't"'tA PAUL N. EDWARDS The Closed World Inside Technology edited by Wiebe E. Bijker, W. Bernard Carlson, and Trevor Pinch Wiebe E. Bijker, Of Bicycles, Bahelites, and Bulbs: Toward a Theory of Sociotechnical Change Wiebe E. Bijker and John Law, editors, Shaping Technology/Building Society: Studies m Sociotechnical Change Stuart S. Blume, Insight and Industry: On the Dynamics of Technological Change in Medicine Louis L. Bucciarelli, Designing Engineers Geoffrey C. Bowker, Science on the Run: Information Management and Industrial Geophysics at Schlumberger, 1920-1940 H. M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines Paul N. Edwards, The Closed World: Computers and the Politics of Discourse in Cold War America Pamela E. Mack, Viewing the Earth: The Social Construction of the Landsat Satellite System Donald MacKenzie, Inventing Accuracy: A Historical Sociology of Nuclear Missile Guidance Donald MacKenzie, Knowing Machines: Essays on Technical Change The Closed World Computers and the Politics of Discourse in Cold War America Paul N. Edwards The MIT Press Cambridge, Massachusetts London, England ©1996 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Baskerville by Pine Tree Composition, Inc. and printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Edwards, Paul N. The closed world : computers and the politics of discourse in Cold War America / Paul N.
    [Show full text]
  • A Logical Calculus of the Ideas Immanent in Nervous Activity*
    Bulletin of Mothemnticnl Biology Vol. 52, No. l/2. pp. 99-115. 1990. oo92-824OjW$3.OO+O.MI Printed in Great Britain. Pergamon Press plc Society for Mathematical Biology A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN NERVOUS ACTIVITY* n WARREN S. MCCULLOCH AND WALTER PITTS University of Illinois, College of Medicine, Department of Psychiatry at the Illinois Neuropsychiatric Institute, University of Chicago, Chicago, U.S.A. Because of the “all-or-none” character of nervous activity, neural events and the relations among them can be treated by means of propositional logic. It is found that the behavior of every net can be described in these terms, with the addition of more complicated logical means for nets containing circles; and that for any logical expression satisfying certain conditions, one can find a net behaving in the fashion it describes. It is shown that many particular choices among possible neurophysiological assumptions are equivalent, in the sense that for every net behaving under one assumption, there exists another net which behaves under the other and gives the same results, although perhaps not in the same time. Various applications of the calculus are discussed. 1. Introduction. Theoretical neurophysiology rests on certain cardinal assumptions. The nervous system is a net of neurons, each having a soma and an axon. Their adjunctions, or synapses, are always between the axon of one neuron and the soma of another. At any instant a neuron has some threshold, which excitation must exceed to initiate an impulse. This, except for the fact and the time of its occurence, is determined by the neuron, not by the excitation.
    [Show full text]
  • THE INTELLECTUAL ORIGINS of the Mcculloch
    JHBS—WILEY RIGHT BATCH Top of ID Journal of the History of the Behavioral Sciences, Vol. 38(1), 3–25 Winter 2002 ᭧ 2002 John Wiley & Sons, Inc. (PHYSIO)LOGICAL CIRCUITS: THE INTELLECTUAL ORIGINS OF THE Base of 1st McCULLOCH–PITTS NEURAL NETWORKS line of ART TARA H. ABRAHAM This article examines the intellectual and institutional factors that contributed to the col- laboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Historians and scientists alike often refer to the McCulloch–Pitts paper as a landmark event in the history of cybernetics, and funda- mental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch–Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Al- though they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch– Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena. ᭧ 2002 John Wiley & Sons, Inc.
    [Show full text]
  • THE RISE of CYBORG CULTURE OR the BOMB WAS a CYBORG David Porush
    Document generated on 09/25/2021 8 a.m. Surfaces THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG David Porush SUR LA PUBLICATION ÉLECTRONIQUE Article abstract ON ELECTRONIC PUBLICATION Pictured by the author as a cybernetic rather than an atomic age, the Cold War Volume 4, 1994 is shown to be structured by the quest for a cybernetic modelling of human intelligence capable to eliminate uncertainty. The rise of the cyborg figure in URI: https://id.erudit.org/iderudit/1064963ar science fiction is brought into consideration as an illustration. DOI: https://doi.org/10.7202/1064963ar See table of contents Publisher(s) Les Presses de l’Université de Montréal ISSN 1188-2492 (print) 1200-5320 (digital) Explore this journal Cite this article Porush, D. (1994). THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG. Surfaces, 4. https://doi.org/10.7202/1064963ar Copyright © David Porush, 1994 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research. https://www.erudit.org/en/ THE RISE OF CYBORG CULTURE OR THE BOMB WAS A CYBORG David Porush ABSTRACT Pictured by the author as a cybernetic rather than an atomic age, the Cold War is shown to be structured by the quest for a cybernetic modelling of human intelligence capable to eliminate uncertainty.
    [Show full text]
  • How Cybernetics Connects Computing, Counterculture, and Design
    Walker Art Center — Hippie Modernism: The Struggle for Utopia — Exhibit Catalog — October 2015 How cybernetics connects computing, counterculture, and design Hugh Dubberly — Dubberly Design Office — [email protected] Paul Pangaro — College for Creative Studies — [email protected] “Man is always aiming to achieve some goal language, and sharing descriptions creates a society.[2] and he is always looking for new goals.” Suddenly, serious scientists were talking seriously —Gordon Pask[1] about subjectivity—about language, conversation, and ethics—and their relation to systems and to design. Serious scientists were collaborating to study Beginning in the decade before World War II and collaboration. accelerating through the war and after, scientists This turn away from the mainstream of science designed increasingly sophisticated mechanical and became a turn toward interdisciplinarity—and toward electrical systems that acted as if they had a purpose. counterculture. This work intersected other work on cognition in Two of these scientists, Heinz von Foerster and animals as well as early work on computing. What Gordon Pask, took an interest in design, even as design emerged was a new way of looking at systems—not just was absorbing the lessons of cybernetics. Another mechanical and electrical systems, but also biological member of the group, Gregory Bateson, caught the and social systems: a unifying theory of systems and attention of Stewart Brand, systems thinker, designer, their relation to their environment. This turn toward and publisher of the Whole Earth Catalog. Bateson “whole systems” and “systems thinking” became introduced Brand to von Foerster.[3] Brand’s Whole Earth known as cybernetics. Cybernetics frames the world in Catalog spawned a do-it-yourself publishing revolution, terms of systems and their goals.
    [Show full text]
  • Warren S. Mcculloch: What Is a Number, That a Man May Know It, and a Man, That He May Know a Number?, In: (Winter-Edition 2008/09), J
    Winter-Edition 2008/09 Warren S. McCulloch [*] What Is a Number, that a Man May Know It, and a Man, that He May Know a Number? GENTLEMEN: I am very sensible of the honor you have conferred upon me by inviting me to read this lecture. I am only distressed, fearing you may have done so under a misapprehension; for, though my interest always was to reduce epistemology to an experimental science, the. bulk of my publications has been concerned with the physics and chemistry of the brain and body of beasts. For my interest in the functional organization of the nervous system, that knowledge was as necessary as it was insufficient in all problems of communication in men and machines. I had begun to fear that the tradition of experimental epistemology I had inherited through Dusser de Barenne from Rudolph Magnus would die with me, but if you read "What the Frog's Eye Tells the Frog's Brain," written by Jerome Y. Lettvin, which appeared in the Proceedings of the Institute of Radio Engineers, November 1959, you will realize that the tradition will go on after I am gone. The inquiry into the physiological substrate of knowledge is here to stay until it is solved thoroughly, that is, until we have a satisfactory explanation of how we know what we know, stated in terms of the physics and chemistry, the anatomy and physiology, of the biological system. At the moment my age feeds on my youth – and both are unknown to you. It is not because I have reached what Oliver Wendell Holmes would call "our anecdotage" – but because all impersonal questions arise from personal reasons and are best understood from their histories – that I would begin with my youth.
    [Show full text]
  • Cybernetics, Information Turn, Biocomplexity
    INDIANA [email protected] Nature.com; ANDY POTTS; TURING FAMILY UNIVERSITY informatics.indiana.edu/rocha McCulloch & Pitts Memory can be maintained in circular networks of binary switches McCulloch, W. and W. Pitts [1943], "A Logical Calculus of Ideas Immanent in Nervous Activity". Bulletin of Mathematical Biophysics 5:115-133. A Turing machine program could be implemented in a finite network of binary neuron/switches Neurons as basic computing unit of the brain Circularity is essential for memory (closed loops to sustain memory) Brain (mental?) function as computing Others at Macy Meeting emphasized other aspects of brain activity Chemical concentrations and field effects (not digital) Ralph Gerard and Fredrik Bremmer INDIANA [email protected] UNIVERSITY informatics.indiana.edu/rocha cybernetics post-war science Synthetic approach Macy Conferences: 1946-53 Engineering-inspired Supremacy of mechanism Postwar culture of problem solving Interdisciplinary teams Cross-disciplinary methodology All can be axiomatized and computed Mculloch&Pitts’ work was major influence “A logical calculus of the ideas immanent in nervous activity”. Bulletin of Mathematical Biophysics 5:115-133 (1943). A Turing machine (any function) could be implemented with a network of simple binary switches (if circularity/feedback is present) Warren S. McCulloch Margaret Mead Claude Shannon INDIANA [email protected] UNIVERSITY informatics.indiana.edu/rocha cybernetics universal computers and general-purpose informatics the Josiah Macy Jr. Foundation Meetings post-war science 1946-1953 Interdisciplinary Since a large class of ordinary phenomena exhibit circular causality, and mathematics is accessible, let’s look at them with a war-time team culture Participants John Von Neumann, Leonard Savage, Norbert Wiener, Arturo Rosenblueth, Walter Pitts, Margaret Mead, Heinz von Foerster, Warren McCulloch, Gregory Bateson, Claude Shannon, Ross Ashby, etc.
    [Show full text]
  • Kathleen A. Powers Dissertation
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The Cybernetic Origins of Life Permalink https://escholarship.org/uc/item/9d8678w5 Author Powers, Kathleen Alicia Publication Date 2020 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The Cybernetic Origins of Life By Kathleen A. Powers A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies in the Graduate Division of the University of California, Berkeley Committee in charge: Chair Professor David Bates Professor James Porter Professor Emeritus Gaetan Micco Professor Sandra Eder Fall 2020 1 Abstract The Cybernetic Origins of Life by Kathleen A. Powers Doctor of Philosophy in Rhetoric and the Designated Emphasis in Science and Technology Studies University of California, Berkeley Professor David Bates, Chair This dissertation elucidates the cybernetic response to the life question of post-World War II biology through an analysis of the writings and experiments of Warren S. McCulloch. The work of McCulloch, who was both a clinician and neurophysiologist, gave rise to what this dissertation refers to as a biological, medical cybernetics, influenced by vitalist conceptions of the organism as well as technical conceptions of the organ, the brain. This dissertation argues that the question ‘what is biological life?’ served as an organizing principle for the electrical, digital model of the brain submitted in “Of Digital Computers Called Brains” (1949) and the formal, mathematical model of the brain required by the McCulloch-Pitts neuron in “A Logical Calculus of the Ideas Immanent in Nervous Activity” (1943).
    [Show full text]
  • Artificial Intelligence
    INFORMATION | ARTIFICIAL INTELLIGENCE The Man Who Tried to Redeem the World with Logic Walter Pitts rose from the streets to MIT, but couldn’t escape himself BY AMANDA GEFTER ALTER PITTS WAS USED to being bullied. in the library until he had read each volume cover to He’d been born into a tough family in cover—nearly 2,000 pages in all—and had identified W Prohibition-era Detroit, where his father, several mistakes. Deciding that Bertrand Russell him- a boiler-maker, had no trouble raising his self needed to know about these, the boy drafted a fists to get his way. The neighborhood boys weren’t letter to Russell detailing the errors. Not only did Rus- much better. One afternoon in 1935, they chased him sell write back, he was so impressed that he invited through the streets until he ducked into the local Pitts to study with him as a graduate student at Cam- library to hide. The library was familiar ground, where bridge University in England. Pitts couldn’t oblige him, he had taught himself Greek, Latin, logic, and mathe- though—he was only 12 years old. But three years later, matics—better than home, where his father insisted he when he heard that Russell would be visiting the Uni- drop out of school and go to work. Outside, the world versity of Chicago, the 15-year-old ran away from home was messy. Inside, it all made sense. and headed for Illinois. He never saw his family again. Not wanting to risk another run-in that night, Pitts In 1923, the year that Walter Pitts was born, a stayed hidden until the library closed for the eve- 25-year-old Warren McCulloch was also digesting the ning.
    [Show full text]
  • Heims Steve Joshua the Cyb
    The Cybernetics Group Steve Joshua Heims The MIT Press Cambridge, Massachusetts London, England Contents Preface Vl! Acknowledgments Xl 1 Midcentury, U.SA. 1 2 March 8-9, 1946 14 3 Describing "Embodiments of Mind": McCulloch and His Cohorts 31 4 Raindancer, Scout, and Talking Chief 52 5 Logic Clarifying and Logic Obscuring 90 6 Problems of Deranged Minds, Artists, 115 and psychiatrists " 7 The Macy Foundation and Worldwide Mental Health 164 © 1991 Massachusetts Institute of Technology All rights reserved. No part of this book may be reproduced in any fo rm by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher. This book was set in Baskerville by C(ompset, Inc. and was printed and bound in the United States of America. Library of Congress Cataloging-in-Publication Data Heims, Steve J. The cybernetics group / Steve Joshua Heims. p. cm. Includes bibliographical references and index. ISBN 0-262-08200-4 1. Social sciences-Research-United States. 2. Cybernetics­ United States. 3. Science-Social aspects-United States. 4. Josiah Macy, Jr. Foundation. I. Title. H62.5.U5H45 1991 003' .5-dc20 91-409 elP vi Cuntents 8 Lazarsfeld, Lewin, and Political Conditions 180 9 Gestalten Go to Bits, 1: From Lewin to Bavelas 201 10 Gestalten Go to Bits, 2: Kohler's Visit 224 11 Metaphor and Synthesis 248 12 Then and Now 273 Appendix Members of the Cybernetics Group 285 Notes 287 Index 327 Preface The subject of this book is the series of multidisciplinary con­ ferences, supported by the Macy Foundation and held between 1946 and 1953, to discuss a wide array of topics that eventually came to be called cybernetics.
    [Show full text]
  • Social Studies of Science
    Social Studies of Science http://sss.sagepub.com/ Where are the Cyborgs in Cybernetics? Ronald Kline Social Studies of Science 2009 39: 331 DOI: 10.1177/0306312708101046 The online version of this article can be found at: http://sss.sagepub.com/content/39/3/331 Published by: http://www.sagepublications.com Additional services and information for Social Studies of Science can be found at: Email Alerts: http://sss.sagepub.com/cgi/alerts Subscriptions: http://sss.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav Citations: http://sss.sagepub.com/content/39/3/331.refs.html >> Version of Record - May 22, 2009 What is This? Downloaded from sss.sagepub.com at St Petersburg State University on January 11, 2014 ABSTRACT Cyborgs – cybernetic organisms, hybrids of humans and machines – have pervaded everyday life, the military, popular culture, and the academic world since the advent of cyborg studies in the mid 1980s. They have been a recurrent theme in STS in recent decades, but there are surprisingly few cyborgs referred to in the early history of cybernetics in the USA and Britain. In this paper, I analyze the work of the early cyberneticians who researched and built cyborgs. I then use that history of cyborgs as a basis for reinterpreting the history of cybernetics by critiquing cyborg studies that give a teleological account of cybernetics, and histories of cybernetics that view it as a unitary discipline. I argue that cyborgs were a minor research area in cybernetics, usually classified under the heading of ‘medical cybernetics’, in the USA and Britain from the publication of Wiener’s Cybernetics in 1948 to the decline of cybernetics among mainstream scientists in the 1960s.
    [Show full text]
  • Warren S. Mcculloch Papers Circa 1935-1968 Mss.B.M139
    Warren S. McCulloch Papers Circa 1935-1968 Mss.B.M139 American Philosophical Society 9/2000 105 South Fifth Street Philadelphia, PA, 19106 215-440-3400 [email protected] Warren S. McCulloch Papers 1860s-1987 Mss.B.M139 Table of Contents Summary Information ................................................................................................................................. 3 Background note ......................................................................................................................................... 4 Scope & content ..........................................................................................................................................6 Administrative Information .........................................................................................................................7 Indexing Terms ........................................................................................................................................... 7 Collection Inventory ....................................................................................................................................8 Series I. Correspondence......................................................................................................................... 8 Series II. Professional Papers.............................................................................................................. 108 Series III. Works by Warren S. McCulloch........................................................................................149
    [Show full text]