Annu. Rev. Astron. Astrophys. 2015 The Occurrence and Architecture of Exoplanetary Systems Joshua N. Winn Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts, 02139-4307;
[email protected] Daniel C. Fabrycky Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637;
[email protected] Key Words exoplanets, extrasolar planets, orbital properties, planet formation Abstract The basic geometry of the Solar System|the shapes, spacings, and orientations of the planetary orbits|has long been a subject of fascination as well as inspiration for planet formation theories. For exoplanetary systems, those same properties have only recently come into focus. Here we review our current knowledge of the occurrence of planets around other stars, their orbital distances and eccentricities, the orbital spacings and mutual in- clinations in multiplanet systems, the orientation of the host star's rotation axis, and the properties of planets in binary-star systems. 1 INTRODUCTION Over the centuries, astronomers gradually became aware of the following properties of the Solar System: • The Sun has eight planets, with the four smaller planets (Rp = 0:4{1.0 R⊕) interior arXiv:1410.4199v1 [astro-ph.EP] 15 Oct 2014 to the four larger planets (3.9{11.2 R⊕). • The orbits are all nearly circular, with a mean eccentricity of 0.06 and individual eccentricities ranging from 0.0068{0.21. • The orbits are nearly aligned, with a root-mean-squared inclination of 1◦: 9 relative to the plane defined by the total angular momentum of the Solar System (the \invariable plane"), and individual inclinations ranging from 0◦: 33{6◦: 3.