Novel Therapeutic Interventions Towards Improved Management of Septic Arthritis Jian Wang1* and Liucai Wang2
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												
												The Ligand-Specific Co-Receptor Function of CD44 for Receptor
The ligand-specific co-receptor function of CD44 for receptor tyrosine kinases Zur Erlangung des akademischen Grades eines DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) Fakultät für Chemie und Biowissenschaften Karlsruher Institut für Technologie (KIT) - Universitätsbereich genehmigte DISSERTATION von Christian Jung aus Karlsruhe Dekan: Prof. Dr. Martin Bastmeyer Referent: PD Dr. Véronique Orian-Rousseau Korreferent: Prof. Dr. Doris Wedlich Tag der mündlichen Prüfung: 18.4.2012 I Ich versichere, dass ich meine Arbeit selbständig angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt, sowie die wörtlich oder inhaltlich übernommenen Stellen als solche kenntlich gemacht und die Satzung der Universität Karlsruhe (TH) zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet habe. Christian Jung, März 2012 II Zusammenfassung Listeria monocytogenes, ein gram-positives Bakterium, verursacht die Krankheit Listeriose. Eine Möglichkeit, wie L.monocytogenes Wirbeltierzellen infizieren kann, ist das Binden des Bakteriums an die Rezeportyrosinkinase (RTK) Met auf der Wirtszelle durch das bakterielle Protein InlB. Dieses Binden führt zur Aktivierung von Met und schließlich zur Aufnahme in die Zelle. Der erste Teil meine Doktorarbeit zeigt, dass die Infektion von nicht-phagozytotischen Zellen mittels InlB zusätzlich vom Ko-Rezeptor CD44v6 abhängig ist. Desweiteren kann diese bakterielle Infektion mit einem CD44v6-Peptid blockiert werden. Zusätzlich zu der Ko-Rezeptorfunktion von CD44v6 für InlB und Met, die ich gezeigt habe, wurde CD44v6 bereits als Ko-Rezeptor für die Induktion von Met und VEGFR- 2 durch ihre authentischen Liganden HGF and VEGF-A identifiziert. Im zweiten und Hauptteil meiner Doktorarbeit habe ich untersucht, ob diese Ko-Rezeptorfunktion von CD44v6 spezifisch von den Liganden, den Rezeptoren oder beiden bestimmt wird. - 
												
												In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus Pneumoniae
In Vivo Dual RNA-Seq Analysis Reveals the Basis for Differential Tissue Tropism of Clinical Isolates of Streptococcus pneumoniae Vikrant Minhas,1,4 Rieza Aprianto,2,4 Lauren J. McAllister,1 Hui Wang,1 Shannon C. David,1 Kimberley T. McLean,1 Iain Comerford,3 Shaun R. McColl,3 James C. Paton,1,5,6,* Jan-Willem Veening,2,5 and Claudia Trappetti,1,5 Supplementary Information Supplementary Table 1. Pneumococcal differential gene expression in the lungs 6 h post-infection, 9-47-Ear vs 9-47M. Genes with fold change (FC) greater than 2 and p < 0.05 are shown. FC values highlighted in blue = upregulated in 9-47-Ear, while values highlighted in red = upregulated in 9- 47M. Locus tag in 9-47- Product padj FC Ear Sp947_chr_00844 Sialidase B 3.08E-10 313.9807 Sp947_chr_02077 hypothetical protein 4.46E-10 306.9412 Sp947_chr_00842 Sodium/glucose cotransporter 2.22E-09 243.4822 Sp947_chr_00841 N-acetylneuraminate lyase 4.53E-09 227.7963 scyllo-inositol 2-dehydrogenase Sp947_chr_00845 (NAD(+)) 4.36E-09 221.051 Sp947_chr_00848 hypothetical protein 1.19E-08 202.7867 V-type sodium ATPase catalytic subunit Sp947_chr_00853 A 1.29E-06 100.5411 Sp947_chr_00846 Beta-glucoside kinase 3.42E-06 98.18951 Sp947_chr_00855 V-type sodium ATPase subunit D 8.34E-06 85.94879 Sp947_chr_00851 V-type sodium ATPase subunit C 2.50E-05 72.46612 Sp947_chr_00843 hypothetical protein 2.17E-05 65.97758 Sp947_chr_00839 HTH-type transcriptional regulator RpiR 3.09E-05 61.28171 Sp947_chr_00854 V-type sodium ATPase subunit B 1.32E-06 50.86992 Sp947_chr_00120 hypothetical protein 3.00E-04 - 
												
												Investigation of Peptidyl-Prolyl Cis/Trans Isomerases in the Virulence of Staphylococcus
Investigation of Peptidyl-prolyl cis/trans isomerases in the virulence of Staphylococcus aureus A Dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Rebecca A. Keogh August 2020 © 2020 Rebecca A. Keogh. All Rights Reserved. 2 This Dissertation titled Investigation of Peptidyl-prolyl cis/trans isomerases in the virulence of Staphylococcus aureus by REBECCA A. KEOGH has been approved for the Department of Biological Sciences and the College of Arts and Sciences by Ronan K. Carroll Assistant Professor of Biological Sciences Florenz Plassmann Dean, College of Arts and Sciences 3 ABSTRACT REBECCA A. KEOGH, Doctorate of Philosophy, August 2020, Biological Sciences Investigation of peptidyl-prolyl cis/trans isomerases in the virulence of Staphylococcus aureus Director of Dissertation: Ronan K. Carroll Staphylococcus aureus is a leading cause of both hospital and community- associated infections that can manifest in a wide range of diseases. These diseases range in severity from minor skin and soft tissue infections to life-threatening sepsis, endocarditis and meningitis. Of rising concern is the prevalence of antibiotic resistant S. aureus strains in the population, and the lack of new antibiotics being developed to treat them. A greater understanding of the ability of S. aureus to cause infection is crucial to better inform treatments and combat these antibiotic resistant superbugs. The ability of S. aureus to cause such diverse infections can be attributed to the arsenal of virulence factors produced by the bacterium that work to both evade the human immune system and assist in pathogenesis. - 
												
												2011/109440 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date _ . 9 September 2011 (09.09.2011) 2011/109440 Al (51) International Patent Classification: [CH/CH]; Chemin Des Chevreuils 1, 1188 Gimel (CH). C12Q 1/68 (2006.01) G01N 33/53 (2006.01) HOLTERMAN, Daniel [US/US]; 14465 North 14th St., Phoenix, AZ 85022 (US). (21) International Application Number: PCT/US201 1/026750 (74) Agent: AKHAVAN, Ramin; Caris Life Sciences, Inc., 6655 N. MacArthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: 1 March 201 1 (01 .03.201 1) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, English (25) Filing Language: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, (26) Publication Language: English CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (30) Priority Data: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, 61/274,124 1 March 2010 (01 .03.2010) US KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 61/357,5 17 22 June 2010 (22.06.2010) US ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 61/364,785 15 July 2010 (15.07.2010) us NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, (71) Applicant (for all designated States except US): CARIS SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, LIFE SCIENCES LUXEMBOURG HOLDINGS [LU/ TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. - 
												
												Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus Faecalis Biofilm Formation
Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus faecalis Biofilm Formation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Carniol, K., and M. S. Gilmore. 2004. Signal Transduction, Quorum- Sensing, and Extracellular Protease Activity in Enterococcus Faecalis Biofilm Formation. Journal of Bacteriology 186, no. 24: 8161–8163. doi:10.1128/jb.186.24.8161-8163.2004. Published Version doi:10.1128/JB.186.24.8161-8163.2004 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33867369 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA JOURNAL OF BACTERIOLOGY, Dec. 2004, p. 8161–8163 Vol. 186, No. 24 0021-9193/04/$08.00ϩ0 DOI: 10.1128/JB.186.24.8161–8163.2004 Copyright © 2004, American Society for Microbiology. All Rights Reserved. GUEST COMMENTARY Signal Transduction, Quorum-Sensing, and Extracellular Protease Activity in Enterococcus faecalis Biofilm Formation Karen Carniol1,2 and Michael S. Gilmore1,2* Department of Ophthalmology, Harvard Medical School,1 and The Schepens Eye Research Institute,2 Boston, Massachusetts Biofilms are surface-attached communities of bacteria, en- sponse regulator proteins (10). Only one of the mutants gen- cased in an extracellular matrix of secreted proteins, carbohy- erated, fsrA, impaired the ability of E. faecalis strain V583A to drates, and/or DNA, that assume phenotypes distinct from form biofilms in vitro. - 
												
												Host and Bacterial Determinants of Staphylococcus Aureus Nasal Colonization in Humans
University of Central Florida STARS Electronic Theses and Dissertations, 2004-2019 2014 Host and Bacterial Determinants of Staphylococcus aureus Nasal Colonization in Humans Gowrishankar Muthukrishnan University of Central Florida Part of the Medical Sciences Commons Find similar works at: https://stars.library.ucf.edu/etd University of Central Florida Libraries http://library.ucf.edu This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more information, please contact [email protected]. STARS Citation Muthukrishnan, Gowrishankar, "Host and Bacterial Determinants of Staphylococcus aureus Nasal Colonization in Humans" (2014). Electronic Theses and Dissertations, 2004-2019. 1289. https://stars.library.ucf.edu/etd/1289 HOST AND BACTERIAL DETERMINANTS OF STAPHYLOCOCCUS AUREUS NASAL COLONIZATION IN HUMANS by GOWRISHANKAR MUTHUKRISHNAN M.E. Birla Institute of Technology and Science, Pilani, India, 2007 M.S. University of Central Florida, United States of America, 2010 A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Burnett School of Biomedical Sciences in the College of Medicine at the University of Central Florida Orlando, Florida Summer Term 2014 Major Professor: Alexander M. Cole © 2014 Gowrishankar Muthukrishnan ii ABSTRACT Staphylococcus aureus (SA), an opportunistic pathogen colonizing the anterior nares in approximately 30% of the human population, causes severe hospital-associated and community-acquired infections. SA nasal carriage plays a critical role in the pathogenesis of staphylococcal infections and SA eradication from the nares has proven to be effective in reducing endogenous infections. - 
												
												(12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier Et Al
US 200601 10747A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110747 A1 Ramseier et al. (43) Pub. Date: May 25, 2006 (54) PROCESS FOR IMPROVED PROTEIN (60) Provisional application No. 60/591489, filed on Jul. EXPRESSION BY STRAIN ENGINEERING 26, 2004. (75) Inventors: Thomas M. Ramseier, Poway, CA Publication Classification (US); Hongfan Jin, San Diego, CA (51) Int. Cl. (US); Charles H. Squires, Poway, CA CI2O I/68 (2006.01) (US) GOIN 33/53 (2006.01) CI2N 15/74 (2006.01) Correspondence Address: (52) U.S. Cl. ................................ 435/6: 435/7.1; 435/471 KING & SPALDING LLP 118O PEACHTREE STREET (57) ABSTRACT ATLANTA, GA 30309 (US) This invention is a process for improving the production levels of recombinant proteins or peptides or improving the (73) Assignee: Dow Global Technologies Inc., Midland, level of active recombinant proteins or peptides expressed in MI (US) host cells. The invention is a process of comparing two genetic profiles of a cell that expresses a recombinant (21) Appl. No.: 11/189,375 protein and modifying the cell to change the expression of a gene product that is upregulated in response to the recom (22) Filed: Jul. 26, 2005 binant protein expression. The process can improve protein production or can improve protein quality, for example, by Related U.S. Application Data increasing solubility of a recombinant protein. Patent Application Publication May 25, 2006 Sheet 1 of 15 US 2006/0110747 A1 Figure 1 09 010909070£020\,0 10°0 Patent Application Publication May 25, 2006 Sheet 2 of 15 US 2006/0110747 A1 Figure 2 Ester sers Custer || || || || || HH-I-H 1 H4 s a cisiers TT closers | | | | | | Ya S T RXFO 1961. - 
												
												A Bacterial Goldilocks Mechanism
INSIGHT TWO-COMPONENT SIGNALING PATHWAYS A bacterial Goldilocks mechanism Bacillus subtilis can measure the activity of the enzymes that remodel the cell wall to ensure that the levels of activity are ‘just right’. IRENE M KIM AND HENDRIK SZURMANT detector and a transcription factor that commu- Related research article Dobihal GS, Bru- nicate with one another through the transfer of a net YR, Flores-Kim J, Rudner DZ. 2019. phosphoryl group. Homeostatic control of cell wall hydrolysis An important TCS in the soil bacterium Bacil- by the WalRK two-component signaling lus subtilis and other related bacteria is the pathway in Bacillus subtilis. eLife 8:e52088. WalRK system, which is essential for viability DOI: 10.7554/eLife.52088 (Szurmant, 2012). The system, which is com- prised of the signal-detecting protein WalK and the transcription factor WalR, gets its name from its role in maintaining the cell wall (Dubrac et al., 2007). Together these two com- hen mollusks get bigger, their shells ponents regulate the expression of several auto- grow with them to accommodate lysin genes, including those for the enzymes W the changing shape and size of the LytE and CwlO, which are required for cell elon- organism being housed. Something similar also gation (Salzberg et al., 2013). Now, in eLife, happens in bacteria. The cell wall of most bacte- David Rudner and colleagues at Harvard Medical ria consists of a single macromolecule called School – including Genevieve Dobihal and Yan- peptidoglycan that surrounds the cell and is nick Brunet as joint first authors, along with made up of modified sugars that are crosslinked Josue´ Flores-Kim – report on how the WalRK through peptide side chains. - 
												
												The Characterization of a Putative Protease Expressed by Sneathia Amnii
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2015 The Characterization of a Putative Protease Expressed by Sneathia amnii Rana Mehr Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/3931 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. CHARACTERIZATION OF A PUTATIVE PROTEASE EXPRESSED BY SNEATHIA AMNII A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University by RANA MEHR B.S., Virginia Commonwealth University 2011 Director: Kimberly Jefferson, Ph.D. Associate Professor, Department of Microbiology and Immunology Virginia Commonwealth University Richmond, Virginia Virginia Commonwealth University Richmond, Virginia July, 2015 Acknowledgements I would first like to express my deepest gratitude to my mentor Dr. Kimberly Jefferson. Her continuous mentorship, trust, and support in academic, scientific, and personal experiences have empowered me to successfully complete my graduate career both academically and scientifically. She has aided my development as an independent scientist which would have not been possible without guidance. I would also like to thank the members of my graduate advisory committee: Dr. Dennis Ohman and Dr. Darrell Peterson. Their advice and direction have allowed me to better understand my project and their invaluable knowledge has made me a better scientist. - 
												
												Peptides to Tackle Leishmaniasis: Current Status and Future Directions
International Journal of Molecular Sciences Review Peptides to Tackle Leishmaniasis: Current Status and Future Directions Alberto A. Robles-Loaiza 1, Edgar A. Pinos-Tamayo 1, Bruno Mendes 2,Cátia Teixeira 3 , Cláudia Alves 3 , Paula Gomes 3 and José R. Almeida 1,* 1 Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador; [email protected] (A.A.R.-L.); [email protected] (E.A.P.-T.) 2 Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-862, Brazil; [email protected] 3 LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal; [email protected] (C.T.); [email protected] (C.A.); [email protected] (P.G.) * Correspondence: [email protected] Abstract: Peptide-based drugs are an attractive class of therapeutic agents, recently recognized by the pharmaceutical industry. These molecules are currently being used in the development of innovative therapies for diverse health conditions, including tropical diseases such as leishmaniasis. Despite its socioeconomic influence on public health, leishmaniasis remains long-neglected and categorized as a poverty-related disease, with limited treatment options. Peptides with antileishmanial effects encountered to date are a structurally heterogeneous group, which can be found in different natural sources—amphibians, reptiles, insects, bacteria, marine organisms, mammals, plants, and others—or inspired by natural toxins or proteins. This review details the biochemical and structural characteris- Citation: Robles-Loaiza, A.A.; tics of over one hundred peptides and their potential use as molecular frameworks for the design of Pinos-Tamayo, E.A.; Mendes, B.; antileishmanial drug leads. - 
												
												Anticancer Potential of Bioactive Peptides from Animal Sources (Review)
ONCOLOGY REPORTS 38: 637-651, 2017 Anticancer potential of bioactive peptides from animal sources (Review) LiNghoNg WaNg1*, CHAO DONG2*, XIAN LI1, WeNyaN haN1 and XIULAN SU1 1Clinical Medicine Research Center of the affiliated hospital, inner Mongolia Medical University; 2College of Basic Medicine of Inner Mongolia Medical University, Huimin, Hohhot, Inner Mongolia 010050, P.R. China Received October 10, 2016; Accepted April 10, 2017 DOI: 10.3892/or.2017.5778 Abstract. Cancer is the most common cause of human death 3. Mechanisms of action of bioactive peptides underlying worldwide. Conventional anticancer therapies, including their anticancer effects chemotherapy and radiation, are associated with severe side 4. Summary and perspective effects and toxicities as well as low specificity. Peptides are rapidly being developed as potential anticancer agents that specifically target cancer cells and are less toxic to normal 1. Introduction tissues, thus making them a better alternative for the preven- tion and management of cancer. Recent research has focused Although the rates of death due to cancer have been continu- on anticancer peptides from natural animal sources, such ously declining for the past 2 decades in developed nations, as terrestrial mammals, marine animals, amphibians, and cancer remains a major public health threat in many parts of animal venoms. However, the mode of action by which bioac- the world (1). The incidence of cancer in the developing world tive peptides inhibit the proliferation of cancer cells remains is currently increasing. Specifically, 55% of new cases arise unclear. In this review, we present the animal sources from in developing nations, a figure that could reach 60% by 2020 which bioactive peptides with anticancer activity are derived and 70% by 2050. - 
												
												A Molecular Dynamics Study of the Bee Venom Melittin in Aqueous Solution, in Methanol, and Inserted in a Phospholipid Bilayer
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Eur Biophys J (2006) 35: 255–267 DOI 10.1007/s00249-005-0033-7 ARTICLE Alice Gla¨ttli Æ Indira Chandrasekhar Wilfred F. van. Gunsteren A molecular dynamics study of the bee venom melittin in aqueous solution, in methanol, and inserted in a phospholipid bilayer Received: 27 June 2005 / Revised: 5 October 2005 / Accepted: 8 October 2005 / Published online: 2 December 2005 Ó EBSA 2005 Abstract The structural properties of melittin, a small increase in membrane permeability through disruption amphipathic peptide found in the bee venom, are of the packing of lipid molecules, which is called the investigated in three different environments by molecu- ‘‘carpet effect’’ [6, 7]. However, they may also reorient to lar dynamics simulation. Long simulations have been adopt an orientation perpendicular to the bilayer sur- performed for monomeric melittin solvated in water, in face, a so-called transmembrane orientation, and then methanol, and shorter ones for melittin inserted in a associate to form either barrel-stave pores [8] or toroidal dimyristoylphosphatidylcholine bilayer. The resulting pores [9, 10] within the bilayer causing size-selective trajectories were analysed in terms of structural prop- leakage and eventually membrane-lysis [4, 11]. The erties of the peptide and compared to the available mode and effectiveness of the disruption of the mem- NMR data. While in water and methanol solution me- brane barrier function depends on the one hand on the littin is observed to partly unfold, the peptide retains its peptide concentration and on the other hand on the structure when embedded in a lipid bilayer.