Dasmahapatra Et Al. 2007
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Biology of Heliconius and Related Genera
Annual Reviews www.annualreviews.org/aronline Ann.Rev. EntomoL 1981. 26:427-J6 Copyright@1981 by AnnualReviews Inc, All rightsreserved THE BIOLOGY OF HELICONIUS 06215 AND RELATED GENERA Keith S. Brown, Jr. Departmentode Zoologia, Instituto de Biologia, UniversidadeEstadual de Carnpinas, C. P. 1170 Campinas,S~o Paulo 13.100 Brazil OVERVIEWAND PERSPECTIVES Biological studies of mimeticNeotropical butterflies in the nymphalidtribe Helieoniini have twice comefull cycle in the past 100 years. Bates’s classic writings (6, 7), reflecting observations during his lengthy stay on the Ama- zon, used these insects in a proposal of the phenomenonof mimicry and in support of Darwinian paradigms of adaptation and evolution. During the following thirty years, field biological studies of heliconians were relegated to second place behind heated arguments about "mimicry" in museum specimens; an important exception was the pioneering work of the brothers Fritz and WilhelmMiiller in southern Brazil (100-105). Most papers in this period involved taxonomic description of the seemingly endless phenotypes in the tribe. In the early 1900s, however,a synthesis of heliconiine systemat- by University of Arizona Library on 06/09/07. For personal use only. ics (119, 121) opened the way for field studies during subsequent years Kaye(87, 88), Michael(95, 96), Collenette (43), Moss(98), Beebe (in and others. Both these biological studies (primarily undertaken by Eu- Annu. Rev. Entomol. 1981.26:427-457. Downloaded from arjournals.annualreviews.org ropean visitors to the Neotropics) and the systematic work, which by then was mostly restricted to namingnew individual forms and aberrations, were interrupted in the pre-World War II period. -
February 2013
If this page does not display correctly, contact Karl Legler at [email protected] Badger ButterFlyer The e-Newsletter of the Southern Wisconsin Butterfly Association JANUARY/FEBRUARY, 2013 WEB SITE: http://www.naba.org/chapters/nabawba/ 1 NEXT SWBA MEETING: Tuesday, April 16 (mark your calendar!) Meet at 7:00 p.m. in Madison at the Warner Park Community Recreation Center, 1625 Northport Drive. Public Programs: 1) Landscaping for Butterflies and other Wildlife (Larry and Emily Scheunemann) In this 30 minute program we will learn about the landscaping of 18 acres of Conservation Reserve Program land (CRP), restored prairie and the creation of a Monarch Waystation. (Tagged Monarchs were recovered in Mexico!) Relax and enjoy pictures of flowers and butterflies as we look forward to another season of both! 2) Dragonflies of Wisconsin: (Karl Legler) A 30 minute program. The 116 Dragonflies of Wisconsin are immensely appealing with their gigantic eyes, intricately veined wings, beautifully colorful bodies, the high-speed flight of an acrobatic aerialist, an insatiable appetite for other flying insects, and a truly fascinating sex life! We will highlight some of the most interesting species in the state. 3) Photo Show and Tell Eastern Amberwing Share some of your favorite butterfly, caterpillar, moth, or dragonfly photos and enjoy the photos of others. You are welcome IN THIS ISSUE: to briefly comment about the subject of your photos. Please 1. NEXT SWBA MEETING email up to 8 digital photos (as file attachments) to Mike Reese at ON TUESDAY, APRIL 16. 2. FIELD TRIPS IN 2013. [email protected] Otherwise, you can bring 3. -
The Speciation History of Heliconius: Inferences from Multilocus DNA Sequence Data
The speciation history of Heliconius: inferences from multilocus DNA sequence data by Margarita Sofia Beltrán A thesis submitted for the degree of Doctor of Philosophy of the University of London September 2004 Department of Biology University College London 1 Abstract Heliconius butterflies, which contain many intermediate stages between local varieties, geographic races, and sympatric species, provide an excellent biological model to study evolution at the species boundary. Heliconius butterflies are warningly coloured and mimetic, and it has been shown that these traits can act as a form of reproductive isolation. I present a species-level phylogeny for this group based on 3834bp of mtDNA (COI, COII, 16S) and nuclear loci (Ef1α, dpp, ap, wg). Using these data I test the geographic mode of speciation in Heliconius and whether mimicry could drive speciation. I found little evidence for allopatric speciation. There are frequent shifts in colour pattern within and between sister species which have a positive and significant correlation with species diversity; this suggests that speciation is facilitated by the evolution of novel mimetic patterns. My data is also consistent with the idea that two major innovations in Heliconius, adult pollen feeding and pupal-mating, each evolved only once. By comparing gene genealogies from mtDNA and introns from nuclear Tpi and Mpi genes, I investigate recent speciation in two sister species pairs, H. erato/H. himera and H. melpomene/H. cydno. There is highly significant discordance between genealogies of the three loci, which suggests recent speciation with ongoing gene flow. Finally, I explore the phylogenetic relationships between races of H. melpomene using an AFLP band tightly linked to the Yb colour pattern locus (which determines the yellow bar in the hindwing). -
Butterflies (Lepidoptera: Papilionoidea) in a Coastal Plain Area in the State of Paraná, Brazil
62 TROP. LEPID. RES., 26(2): 62-67, 2016 LEVISKI ET AL.: Butterflies in Paraná Butterflies (Lepidoptera: Papilionoidea) in a coastal plain area in the state of Paraná, Brazil Gabriela Lourenço Leviski¹*, Luziany Queiroz-Santos¹, Ricardo Russo Siewert¹, Lucy Mila Garcia Salik¹, Mirna Martins Casagrande¹ and Olaf Hermann Hendrik Mielke¹ ¹ Laboratório de Estudos de Lepidoptera Neotropical, Departamento de Zoologia, Universidade Federal do Paraná, Caixa Postal 19.020, 81.531-980, Curitiba, Paraná, Brazil Corresponding author: E-mail: [email protected]٭ Abstract: The coastal plain environments of southern Brazil are neglected and poorly represented in Conservation Units. In view of the importance of sampling these areas, the present study conducted the first butterfly inventory of a coastal area in the state of Paraná. Samples were taken in the Floresta Estadual do Palmito, from February 2014 through January 2015, using insect nets and traps for fruit-feeding butterfly species. A total of 200 species were recorded, in the families Hesperiidae (77), Nymphalidae (73), Riodinidae (20), Lycaenidae (19), Pieridae (7) and Papilionidae (4). Particularly notable records included the rare and vulnerable Pseudotinea hemis (Schaus, 1927), representing the lowest elevation record for this species, and Temenis huebneri korallion Fruhstorfer, 1912, a new record for Paraná. These results reinforce the need to direct sampling efforts to poorly inventoried areas, to increase knowledge of the distribution and occurrence patterns of butterflies in Brazil. Key words: Atlantic Forest, Biodiversity, conservation, inventory, species richness. INTRODUCTION the importance of inventories to knowledge of the fauna and its conservation, the present study inventoried the species of Faunal inventories are important for providing knowledge butterflies of the Floresta Estadual do Palmito. -
Copy Number Variation and Expression Analysis Reveals a Nonorthologous Pinta Gene Family Member Involved in Butterfly Vision
GBE Copy Number Variation and Expression Analysis Reveals a Nonorthologous Pinta Gene Family Member Involved in Butterfly Vision Aide Macias-Munoz~ 1,*, Kyle J. McCulloch1,2,andAdrianaD.Briscoe1,* 1Department of Ecology and Evolutionary Biology, University of California, Irvine 2FAS Center for Systems Biology, Harvard University *Corresponding authors: E-mails: [email protected];[email protected]. Accepted: November 8, 2017 Abstract Vertebrate (cellular retinaldehyde-binding protein) and Drosophila (prolonged depolarization afterpotential is not apparent [PINTA]) proteins with a CRAL-TRIO domain transport retinal-based chromophores that bind to opsin proteins and are neces- sary for phototransduction. The CRAL-TRIO domain gene family is composed of genes that encode proteins with a common N- terminal structural domain. Although there is an expansion of this gene family in Lepidoptera, there is no lepidopteran ortholog of pinta. Further, the function of these genes in lepidopterans has not yet been established. Here, we explored the molecular evolution and expression of CRAL-TRIO domain genes in the butterfly Heliconius melpomene in order to identify a member of this gene family as a candidate chromophore transporter. We generated and searched a four tissue transcriptome and searched a reference genome for CRAL-TRIO domain genes. We expanded an insect CRAL-TRIO domain gene phylogeny to include H. melpomene and used 18 genomes from 4 subspecies to assess copy number variation. A transcriptome-wide differential expression analysis comparing four tissue types identified a CRAL-TRIO domain gene, Hme CTD31, upregulated in heads suggesting a potential role in vision for this CRAL-TRIO domain gene. RT-PCR and immunohistochemistry confirmed that Hme CTD31 and its protein product are expressed in the retina, specifically in primary and secondary pigment cells and in tracheal cells. -
Download Articles
QL 541 .1866 ENT The Journal of Research Lepidoptera Volume 46 2013 ISSN 0022 4324 (PRINT) 2156 5457 (ONLINE) THE LEPIDOPTERA RESEARCH FOUNDATION The Journal of Research on the Lepidoptera www.lepidopteraresearchfoundation.org ISSN 0022 4324 (print) 2156 5457 (online) Published by: The Lepidoptera Research Foundation, Inc. 9620 Heather Road Beverly Hills, California 90210-1757 TEL (310) 274 1052 E-mail: Editorial: [email protected] Technical: [email protected] Founder: William Hovanitz (1915-1977) Editorial Staff: Konrad Fiedler, University of Vienna, Editor [email protected] Nancy R. Vannucci, info manager [email protected] Associate Editors: Annette Aiello, Smithsonian Institution [email protected] Joaquin Baixeras, Universitat de Valencia [email protected] Marcelo Duarte, Universidade de Sao Paulo [email protected] Klaus Fischer, University of Greifswald [email protected] Krushnamegh Kunte, Natl. Center for Biol. Sci, India [email protected] Gerardo Lamas, Universidad Mayor de San Marcos [email protected]. pe Rudi Mattoni [email protected] Soren Nylin, Stockholm University [email protected] Naomi Pierce, Harvard University [email protected] Robert Robbins, Smithsonian Institution [email protected] Daniel Rubinoff, University of Hawaii [email protected] Josef Settele, Helmholtz Cntr. for Environ. Research-UFZ [email protected] Arthur M. Shapiro, University of California - Davis [email protected] Felix Sperling, University of Alberta [email protected] Niklas Wahlberg, University of Turku [email protected] Shen Horn Yen, National Sun Yat-Sen University [email protected] Manuscripts and notices material must be sent to the editor, Konrad Fiedler [email protected]. -
BUTTERFLIES in Thewest Indies of the Caribbean
PO Box 9021, Wilmington, DE 19809, USA E-mail: [email protected]@focusonnature.com Phone: Toll-free in USA 1-888-721-3555 oror 302/529-1876302/529-1876 BUTTERFLIES and MOTHS in the West Indies of the Caribbean in Antigua and Barbuda the Bahamas Barbados the Cayman Islands Cuba Dominica the Dominican Republic Guadeloupe Jamaica Montserrat Puerto Rico Saint Lucia Saint Vincent the Virgin Islands and the ABC islands of Aruba, Bonaire, and Curacao Butterflies in the Caribbean exclusively in Trinidad & Tobago are not in this list. Focus On Nature Tours in the Caribbean have been in: January, February, March, April, May, July, and December. Upper right photo: a HISPANIOLAN KING, Anetia jaegeri, photographed during the FONT tour in the Dominican Republic in February 2012. The genus is nearly entirely in West Indian islands, the species is nearly restricted to Hispaniola. This list of Butterflies of the West Indies compiled by Armas Hill Among the butterfly groupings in this list, links to: Swallowtails: family PAPILIONIDAE with the genera: Battus, Papilio, Parides Whites, Yellows, Sulphurs: family PIERIDAE Mimic-whites: subfamily DISMORPHIINAE with the genus: Dismorphia Subfamily PIERINAE withwith thethe genera:genera: Ascia,Ascia, Ganyra,Ganyra, Glutophrissa,Glutophrissa, MeleteMelete Subfamily COLIADINAE with the genera: Abaeis, Anteos, Aphrissa, Eurema, Kricogonia, Nathalis, Phoebis, Pyrisitia, Zerene Gossamer Wings: family LYCAENIDAE Hairstreaks: subfamily THECLINAE with the genera: Allosmaitia, Calycopis, Chlorostrymon, Cyanophrys, -
De Grave & Fransen. Carideorum Catalogus
De Grave & Fransen. Carideorum catalogus (Crustacea: Decapoda). Zool. Med. Leiden 85 (2011) 407 Fig. 48. Synalpheus hemphilli Coutière, 1909. Photo by Arthur Anker. Synalpheus iphinoe De Man, 1909a = Synalpheus Iphinoë De Man, 1909a: 116. [8°23'.5S 119°4'.6E, Sapeh-strait, 70 m; Madura-bay and other localities in the southern part of Molo-strait, 54-90 m; Banda-anchorage, 9-36 m; Rumah-ku- da-bay, Roma-island, 36 m] Synalpheus iocasta De Man, 1909a = Synalpheus Iocasta De Man, 1909a: 119. [Makassar and surroundings, up to 32 m; 0°58'.5N 122°42'.5E, west of Kwadang-bay-entrance, 72 m; Anchorage north of Salomakiëe (Damar) is- land, 45 m; 1°42'.5S 130°47'.5E, 32 m; 4°20'S 122°58'E, between islands of Wowoni and Buton, northern entrance of Buton-strait, 75-94 m; Banda-anchorage, 9-36 m; Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl-banks), 13 m; 5°28'.2S 134°53'.9E, 57 m; 8°25'.2S 127°18'.4E, an- chorage between Nusa Besi and the N.E. point of Timor, 27-54 m; 8°39'.1 127°4'.4E, anchorage south coast of Timor, 34 m; Mid-channel in Solor-strait off Kampong Menanga, 113 m; 8°30'S 119°7'.5E, 73 m] Synalpheus irie MacDonald, Hultgren & Duffy, 2009: 25; Figs 11-16; Plate 3C-D. [fore-reef (near M1 chan- nel marker), 18°28.083'N 77°23.289'W, from canals of Auletta cf. sycinularia] Synalpheus jedanensis De Man, 1909a: 117. [Anchorage off Pulu Jedan, east coast of Aru-islands (Pearl- banks), 13 m] Synalpheus kensleyi (Ríos & Duffy, 2007) = Zuzalpheus kensleyi Ríos & Duffy, 2007: 41; Figs 18-22; Plate 3. -
Characterising Reproductive Barriers Between Three Closely Related Heliconius Butterfly Taxa
Characterising reproductive barriers between three closely related Heliconius butterfly taxa. Lucie M. Queste MSc by Research University of York, Biology November 2015 1 Abstract Debates about the possibility of divergence in the face of gene flow have been an ongoing feature in the field of speciation. However, recent theoretical studies and examples in nature have demonstrated evidence for such a process. Much research now focuses on finding more evidence of reinforcement such as stronger isolation in sympatric populations. Genomic studies have also been investigating the role of gene flow in sympatric speciation and the formation of islands of divergence. Heliconius butterflies offer extensive opportunities to answer such questions. Here, I test whether male colour pattern preference and female host plant preference act as reproductive barriers in three Heliconius taxa with varying degrees of geographic overlap. Further experiments on the F2 hybrids of two of these taxa aimed to identify the underlying genomic architecture of these traits. My results suggest that male colour pattern preference and host preference are acting as reproductive barriers. Stronger differences between the sympatric species were found demonstrating evidence for reinforcement and divergence with gene flow. Initial analyses of the F2 hybrid phenotypes suggest that several loci control these traits and pave the way for future genetic analyses to further understand the role of gene flow in speciation. 2 Table of Contents Abstract 2 Table of Contents 3 List of Figures 4 List of Tables 5 Acknowledgements 6 Author’s Declaration 7 Chapter 1 – Introduction 8 1. Speciation 8 2. Heliconius 15 3. Aims and Objectives 20 Chapter 2 – Identifying traits acting as reproductive barriers between three taxa of 21 Heliconius with varying levels of gene flow. -
Divergence of Chemosensing During the Early Stages of Speciation
Divergence of chemosensing during the early stages of speciation Bas van Schootena,b,1,2, Jesyka Meléndez-Rosaa,1,2, Steven M. Van Belleghema, Chris D. Jigginsc, John D. Tand, W. Owen McMillanb, and Riccardo Papaa,b,e,2 aDepartment of Biology, University of Puerto Rico, Rio Piedras, San Juan, Puerto Rico 00925; bSmithsonian Tropical Research Institution, Balboa Ancón, 0843-03092 Panama, Republic of Panama; cDepartment of Zoology, University of Cambridge, CB2 8PQ Cambridge, United Kingdom; dRoche NimbleGen Inc., Madison, WI 53719; and eMolecular Sciences and Research Center, University of Puerto Rico, San Juan, Puerto Rico 00907 Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved June 1, 2020 (received for review December 5, 2019) Chemosensory communication is essential to insect biology, play- few studies have identified chemosensory genes involved in re- ing indispensable roles during mate-finding, foraging, and ovipo- productive isolation (9, 15, 16). sition behaviors. These traits are particularly important during To date, most of the work on the genetic basis of chemo- speciation, where chemical perception may serve to establish spe- sensory signaling has been conducted on insects, with an em- cies barriers. However, identifying genes associated with such phasis on Drosophila and moths (e.g., Heliothis and Bombyx). complex behavioral traits remains a significant challenge. Through However, in the past few years, the growing accessibility of a combination of transcriptomic and genomic approaches, we whole-genome and transcriptome sequencing has allowed us to characterize the genetic architecture of chemoperception and the describe chemosensory genes for a number of new butterfly role of chemosensing during speciation for a young species pair of species. -
Effects of Land Use on Butterfly (Lepidoptera: Nymphalidae) Abundance and Diversity in the Tropical Coastal Regions of Guyana and Australia
ResearchOnline@JCU This file is part of the following work: Sambhu, Hemchandranauth (2018) Effects of land use on butterfly (Lepidoptera: Nymphalidae) abundance and diversity in the tropical coastal regions of Guyana and Australia. PhD Thesis, James Cook University. Access to this file is available from: https://doi.org/10.25903/5bd8e93df512e Copyright © 2018 Hemchandranauth Sambhu The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owners of any third party copyright material included in this document. If you believe that this is not the case, please email [email protected] EFFECTS OF LAND USE ON BUTTERFLY (LEPIDOPTERA: NYMPHALIDAE) ABUNDANCE AND DIVERSITY IN THE TROPICAL COASTAL REGIONS OF GUYANA AND AUSTRALIA _____________________________________________ By: Hemchandranauth Sambhu B.Sc. (Biology), University of Guyana, Guyana M.Sc. (Res: Plant and Environmental Sciences), University of Warwick, United Kingdom A thesis Prepared for the College of Science and Engineering, in partial fulfillment of the requirements for the degree of Doctor of Philosophy James Cook University February, 2018 DEDICATION ________________________________________________________ I dedicate this thesis to my wife, Alliea, and to our little girl who is yet to make her first appearance in this world. i ACKNOWLEDGEMENTS ________________________________________________________ I would like to thank the Australian Government through their Department of Foreign Affairs and Trade for graciously offering me a scholarship (Australia Aid Award – AusAid) to study in Australia. From the time of my departure from my home country in 2014, Alex Salvador, Katherine Elliott and other members of the AusAid team have always ensured that the highest quality of care was extended to me as a foreign student in a distant land. -
Lepidoptera: Nymphalidae)
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Molecular systematics of the subfamily Limenitidinae (Lepidoptera: Nymphalidae) Bidur Dhungel1 and Niklas Wahlberg2 1 Southwestern Centre for Research and PhD Studies, Kathmandu, Nepal 2 Department of Biology, Lund University, Lund, Sweden ABSTRACT We studied the systematics of the subfamily Limenitidinae (Lepidoptera: Nymphal- idae) using molecular methods to reconstruct a robust phylogenetic hypothesis. The molecular data matrix comprised 205 Limenitidinae species, four outgroups, and 11,327 aligned nucleotide sites using up to 18 genes per species of which seven genes (CycY, Exp1, Nex9, PolII, ProSup, PSb and UDPG6DH) have not previously been used in phylogenetic studies. We recovered the monophyly of the subfamily Limenitidinae and seven higher clades corresponding to four traditional tribes Parthenini, Adoliadini, Neptini, Limenitidini as well as three additional independent lineages. One contains the genera Harma C Cymothoe and likely a third, Bhagadatta, and the other two indepen- dent lineages lead to Pseudoneptis and to Pseudacraea. These independent lineages are circumscribed as new tribes. Parthenini was recovered as sister to rest of Limenitidinae, but the relationships of the remaining six lineages were ambiguous. A number of genera were found to be non-monophyletic, with Pantoporia, Euthalia, Athyma, and Parasarpa being polyphyletic, whereas Limenitis, Neptis, Bebearia, Euryphura, and Adelpha were paraphyletic. Subjects Biodiversity, Entomology, Taxonomy Keywords Lepidoptera, Nymphalidae, Systematics, New tribe, Classification, Limenitidinae Submitted 22 November 2017 Accepted 11 January 2018 Published 2 February 2018 INTRODUCTION Corresponding author Niklas Wahlberg, The butterfly family Nymphalidae has been the subject of intensive research in many fields [email protected] of biology over the decades.