Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 9

Total Page:16

File Type:pdf, Size:1020Kb

Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 9 Chapter 9 Basic Flight Maneuvers Introduction From the previous chapters, it should be apparent that no two helicopters perform the same way. Even when flying the same model of helicopter, wind, temperature, humidity, weight, and equipment make it difficult to predict just how the helicopter will perform. Therefore, this chapter presents the basic flight maneuvers in a way that would apply to the majority of helicopters. In most cases, the techniques described apply to small training helicopters with: • A single, main rotor rotating in a counterclockwise direction (looking downward on the rotor). • An antitorque system. 9-1 Where a technique differs, it is noted. For example, a power Perform the maneuver with less intensity until all increase on a helicopter with a clockwise rotor system aspects of the machine can be controlled. The pilot requires right antitorque pedal pressure instead of left pedal must be aware of the sensitivity of the flight controls pressure. In many cases, the terminology “apply proper pedal due to the high speed of the main rotor. pressure” is used to indicate both types of rotor systems. 2. Anticipate changes in aircraft performance due to However, when discussing throt tle coordination to maintain loading or environmental condition. The normal proper rotations per minute (rpm), there is no differentiation collective increase to check rotor speed at sea level between those helicopters with a governor and those without. standard (SLS) may not be sufficient at 4,000 feet In a sense, the governor is doing the work for you. In addition, pressure altitude (PA) and 95 °F. instead of using the terms “collective pitch control” and “cyclic pitch control” throughout the chapter, these controls 3. The following flight characteristics may be expected are referred to as just “collective” and “cyclic.” during maneuvering flight and will be discussed and demonstrated by your Flight Instructor: Because helicopter performance varies with weather • Left turns, torque increases (more antitorque). conditions and aircraft loading, specific nose attitudes and This applies to most helicopters, but not all. power settings are not detailed in this handbook. In addition, • Right turns, torque decreases (less antitorque). this chapter does not detail every attitude of a helicopter in This applies to most helicopters, but not all. the various flight maneuvers, nor every move that must be made in order to perform a given maneuver. • Application of aft cyclic, torque decreases and rotor speed increases. When a maneuver is presented, there is a brief description, • Application of forward cyclic (especially when followed by the technique to accomplish the maneuver. In immediately following aft cyclic application), most cases, there is a list of common errors at the end of the torque increases and rotor speed decreases. discussion. • Always leave a way out. The Four Fundamentals • Know where the winds are. There are four fundamentals of flight upon which all • Engine failures can occur during power changes maneuvers are based: straight-and-level flight, turns, climbs, and cruise flight. One possible cause of engine and descents. All controlled flight maneuvers consist of one failure during cruise flight can be attributed to the or more of these four fundamentals of flight. If a student pilot pilot ignoring carburetor air temperatures, which is able to perform these maneuvers well, and the student’s could lead to carburetor icing and, subsequently, proficiency is based on accurate “feel” and control analysis engine failure. rather than mechanical movements, the ability to perform • Crew coordination is critical. Everyone needs any assigned maneuver is only a matter of obtaining a clear to be fully aware of what is going on, and each visual and mental conception of it. The flight instructor must crewmember has a specific duty. impart a good knowledge of these basic elements to the student and must combine them and plan their practice so that • In steep turns, the nose drops. In most cases, proper performance of each is instinctive without conscious energy (airspeed) must be traded to maintain effort. The importance of this to the success of flight training altitude as the required excess engine power may cannot be overemphasized. As the student progresses to not be available (to maintain airspeed in a 2G/60° more complex maneuvers, discounting any difficulties in turn, rotor thrust/engine power must increase by visualizing the maneuvers, most student difficulties are 100 percent). Failure to anticipate this at low caused by a lack of training, practice, or understanding of the altitude endangers the crew and passengers. principles of one or more of these fundamentals. The rate of pitch change is proportional to gross weight and density altitude. Guidelines • Normal helicopter landings usually require high Good practices to follow during maneuvering flight include: power settings, with terminations to a hover requiring the highest power setting. 1. Move the cyclic only as fast as trim, torque, and rotor speed can be maintained. When entering a maneuver • The cyclic position relative to the horizon and the trim, rotor, or torque reacts quicker than determines the helicopter’s travel and attitude. anticipated, pilot limitations have been exceeded. If continued, an aircraft limitation will be exceeded. 9-2 Straight-and-Level Flight Although the cyclic is sensitive, there is a slight delay in control reaction, and it is necessary to anticipate actual Straight-and-level flight is flight in which constant altitude movement of the helicopter. When making cyclic inputs to and heading are maintained. The attitude of the rotor disk control the altitude or airspeed of a helicopter, take care not relative to the horizon determines the airspeed. The horizontal to overcontrol. If the nose of the helicopter rises above the stabilizer design determines the helicopter’s attitude when level-flight attitude, apply forward pressure to the cyclic to stabilized at an airspeed and altitude. Altitude is primarily bring the nose down. If this correction is held too long, the controlled by use of the collective. nose drops too low. Since the helicopter continues to change attitude momentarily after the controls reach neutral, return Technique the cyclic to neutral slightly before the desired attitude is To maintain forward flight, the rotor tip-path plane must reached. This principle holds true for any cyclic input. be tilted forward to obtain the necessary horizontal thrust component from the main rotor. By doing this, it causes the Since helicopters are not very stable, but are inherently very nose of the helicopter to lower which in turn will cause the controllable, if a gust or turbulence causes the nose to drop, airspeed to increase. In order to counteract this, the pilot the nose tends to continue to drop instead of returning to a must find the correct power setting to maintain level flight by straight-and-level attitude as it would on a fixed-wing aircraft. adjusting the collective. [Figure 9-1] The horizontal stabilizer Therefore, a pilot must remain alert and fly the helicopter aids in trimming the helicopter about its transverse, horizontal at all times. axis, and reduces the amount of nose tuck that would occur. On several helicopters, it is designed as a negative lift airfoil, Common Errors which produces a lifting force in a downward direction. 1. Failure to trim the helicopter properly, tending to hold When in straight-and-level flight, any increase in the antitorque pedal pressure and opposite cyclic. This is collective, while holding airspeed constant, causes the commonly called cross-controlling. helicopter to climb. A decrease in the collective, while holding 2. Failure to maintain desired airspeed. airspeed constant, causes the helicopter to descend. A change in the collective requires a coordinated change of the throttle 3. Failure to hold proper control position to maintain to maintain a constant rpm. Additionally, the antitorque pedals desired ground track. need to keep the helicopter in trim around the vertical axis. 4. Failure to allow helicopter to stabilize at new airspeed. To increase airspeed in straight-and-level flight, apply Turns forward pressure on the cyclic and raise the collective as A turn is a maneuver used to change the heading of the necessary to maintain altitude. To decrease airspeed, apply helicopter. The aerodynamics of a turn were previously rearward pressure on the cyclic and lower the collective, as discussed in Chapter 2, Aerodynamics of Flight. necessary, to maintain altitude. Technique Before beginning any turn, the area in the direction of the turn must be cleared not only at the helicopter’s altitude, but also above and below. To enter a turn from straight-and-level flight, apply sideward pressure on the cyclic in the direction the turn is to be made. This is the only control movement MR MR STARTER TR lOW L CLTCH TEMP CHIP N CHIP FEL RPM 0 10 E R KNOTS 20 I00 FEET 30 0 needed to start the turn. Do not use the pedals to assist the 20 30 9 I 110 110 100 120 20 20 100 100 110 40 40 MPH I0 I0 2 90 90 8 CALIBRATED ALT 50 TO 29.8 80 80 90 20,000 FEET 29.9 100 30.0 70 70 60 I0 I0 60 60 50 90 70 20 20 7 50 50 80 3 80 6 4 RPM 60 5 70 STB PR TEST turn. Use the pedals only to compensate for torque to keep 20 L R 30 0 15 25 24 5 15 33 P MANFOLD VERTICAL SPEED PRESS 2 100 FEET PER MINTE 10 30 0 20 IN Hg 3 ALg. 5 DN 5 35 6 5 2 15 2 MIN TRN 0 DC ELEC the helicopter in trim around the vertical axis. [Figure 9-2] N 3 33 6 30 GS E W 12 24 NAV FUEL 15 Keeping the fuselage in the correct streamlined position 245 II5 S 26 26 21 20 T I00 P R OBS I E R E G M S H P S T around the vertical axis facilitates the helicopter flying Figure 9-1.
Recommended publications
  • Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks
    Purdue University Purdue e-Pubs Department of Electrical and Computer Department of Electrical and Computer Engineering Technical Reports Engineering August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Purdue University School of Electrical Engineering Shaheen Ahmad Purdue University School of Electrical Engineering Follow this and additional works at: https://docs.lib.purdue.edu/ecetr Pallett, Tobias J. and Ahmad, Shaheen, "Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks" (1991). Department of Electrical and Computer Engineering Technical Reports. Paper 317. https://docs.lib.purdue.edu/ecetr/317 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Real-Time Helicopter Flight Control: Modelling and Control by Linearization and Neural Networks Tobias J. Pallett Shaheen Ahmad TR-EE 91-35 August 1991 Real-Time Helicopter Flight Control: Modelling and Control by Lineal-ization and Neural Networks Tobias J. Pallett and Shaheen Ahmad Real-Time Robot Control Laboratory, School of Electrical Engineering, Purdue University West Lafayette, IN 47907 USA ABSTRACT In this report we determine the dynamic model of a miniature helicopter in hovering flight. Identification procedures for the nonlinear terms are also described. The model is then used to design several linearized control laws and a neural network controller. The controllers were then flight tested on a miniature helicopter flight control test bed the details of which are also presented in this report. Experimental performance of the linearized and neural network controllers are discussed.
    [Show full text]
  • Helicopter Physics by Harm Frederik Althuisius López
    Helicopter Physics By Harm Frederik Althuisius López Lift Happens Lift Formula Torque % & Lift is a mechanical aerodynamic force produced by the Lift is calculated using the following formula: 2 = *4 '56 Torque is a measure of how much a force acting on an motion of an aircraft through the air, it generally opposes & object causes that object to rotate. As the blades of a Where * is the air density, 4 is the velocity, '5 is the lift coefficient and 6 is gravity as a means to fly. Lift is generated mainly by the the surface area of the wing. Even though most of these components are helicopter rotate against the air, the air pushes back on the rd wings due to their shape. An Airfoil is a cross-section of a relatively easy to measure, the lift coefficient is highly dependable on the blades following Newtons 3 Law of Motion: “To every wing, it is a streamlined shape that is capable of generating shape of the airfoil. Therefore it is usually calculated through the angle of action there is an equal and opposite reaction”. This significantly more lift than drag. Drag is the air resistance attack of a specific airfoil as portrayed in charts much like the following: reaction force is translated into the fuselage of the acting as a force opposing the motion of the aircraft. helicopter via torque, and can be measured for individual % & -/ 0 blades as follows: ! = #$ = '()*+ ∫ # 1# , where $ is the & -. Drag Force. As a result the fuselage tends to rotate in the Example of a Lift opposite direction of its main rotor spin.
    [Show full text]
  • The Role and the Use of the Rudder
    of us have ignorantly followed sim- The Role and the Use plistic rules. When the aircraft is in equilibrium flight, it is not accelerating in any di- of the Rudder rection or about any axis. It is only then that the attitude indicators are reli- able. You know how long it takes for Daniel L. Johnson, Different parts of the aircraft may the airspeed indicator to catch up with reporter be in quite different air. This causes a change in angle of attack. Such lags uncommanded pitch, yaw, and roll are present in all indicators, reflecting changes, to which we respond swiftly time needed for the aircraft to come "It is interesting that we, as student with control movements. The thermal into equilibrium after any change in a pilots, are given several hard and fast tries to spit you out. force or moment. rules, which, as we venture out on our There are two situations in which The primary purpose of the vertical own, arent so hard and fast after all." this is especially important: circling in stabilizer is to achieve yaw, or weath- — RBick a thermal and landing in turbulence. ercock, stability. When the fuselage is We also learn that we cannot correct yawed, the vertical stabilizer creates a - Author caveat: I have done my best to every wrinkle in the air, and we must restoring moment that realigns it with be faithful to the science while clarifying learn to "fly attitude," knowing when the airflow, in the same way a weather- control use. But like all inexpert writing, to let the little wrinkles average them- vane works.
    [Show full text]
  • Helicopter Flying Handbook (FAA-H-8083-21B) Chapter 8
    Chapter 8 Ground Procedures and Flight Preparations Introduction Once a pilot takes off, it is up to him or her to make sound, safe decisions throughout the flight. It is equally important for the pilot to use the same diligence when conducting a preflight inspection, making maintenance decisions, refueling, and conducting ground operations. This chapter discusses the responsibility of the pilot regarding ground safety in and around the helicopter and when preparing to fly. 8-1 Preflight There are two primary methods of deferring maintenance on rotorcraft operating under part 91. They are the deferral Before any flight, ensure the helicopter is airworthy by provision of 14 CFR part 91, section 91.213(d) and an FAA- inspecting it according to the rotorcraft flight manual (RFM), approved MEL. pilot’s operating handbook (POH), or other information supplied either by the operator or the manufacturer. The deferral provision of 14 CFR section 91.213(d) is Remember that it is the responsibility of the pilot in command widely used by most pilot/operators. Its popularity is due (PIC) to ensure the aircraft is in an airworthy condition. to simplicity and minimal paperwork. When inoperative equipment is found during preflight or prior to departure, the In preparation for flight, the use of a checklist is important decision should be to cancel the flight, obtain maintenance so that no item is overlooked. [Figure 8-1] Follow the prior to flight, determine if the flight can be made under the manufacturer’s suggested outline for both the inside and limitations imposed by the defective equipment, or to defer outside inspection.
    [Show full text]
  • Paper Helicopters Preparation
    Paper Helicopters Preparation CLASS LEVEL First – sixth class OBJECTIVES Content Strand and Strand Unit Energy & forces, Forces Through investigation the child should be enabled to come to appreciate that gravity is a force, SESE: Science Curriculum page 87. In this activity children explore how some things fall and how varying the size of the rotor blades, the shape of the rotor blades and the weight of a paper helicopter affect the way a helicopter spins. Skill development Through completing the strand units of the science curriculum the child should be enabled to design, plan and carry out simple experiments, having regard to one or two variables and the need to sequence tasks and tests, SESE: Science Curriculum page 79. This activity helps them understand fair testing by changing only one variable (i.e. shape only or length only) at a time. Investigating; experimenting; observing; analysing; measuring/timing; recording and communicating. CURRICULUM LINKS Mathematics Data / representing and interpreting data SESE: History Continuity and change over time/ technological and scientific developments over long periods BACKGROUND A previous activity on how things fall (i.e. the weight of the object is not a factor – Galileo and the Leaning Tower of Pisa) would help understanding of this activity, but not essential. MATERIALS/EQUIPMENT Paper, Ruler, Paper Clips, Scissors Templates of different sizes PREPARATION Test out a few thicknesses of paper/cardboard first to see that some of them spin. BACKGROUND The shape of the helicopter rotor blades make it spin INFORMATION when dropped from a height. Gravity pulls the helicopter down. The air resists the movement and pushes up each rotor separately, causing the helicopter to spin.
    [Show full text]
  • Over Thirty Years After the Wright Brothers
    ver thirty years after the Wright Brothers absolutely right in terms of a so-called “pure” helicop- attained powered, heavier-than-air, fixed-wing ter. However, the quest for speed in rotary-wing flight Oflight in the United States, Germany astounded drove designers to consider another option: the com- the world in 1936 with demonstrations of the vertical pound helicopter. flight capabilities of the side-by-side rotor Focke Fw 61, The definition of a “compound helicopter” is open to which eclipsed all previous attempts at controlled verti- debate (see sidebar). Although many contend that aug- cal flight. However, even its overall performance was mented forward propulsion is all that is necessary to modest, particularly with regards to forward speed. Even place a helicopter in the “compound” category, others after Igor Sikorsky perfected the now-classic configura- insist that it need only possess some form of augment- tion of a large single main rotor and a smaller anti- ed lift, or that it must have both. Focusing on what torque tail rotor a few years later, speed was still limited could be called “propulsive compounds,” the following in comparison to that of the helicopter’s fixed-wing pages provide a broad overview of the different helicop- brethren. Although Sikorsky’s basic design withstood ters that have been flown over the years with some sort the test of time and became the dominant helicopter of auxiliary propulsion unit: one or more propellers or configuration worldwide (approximately 95% today), jet engines. This survey also gives a brief look at the all helicopters currently in service suffer from one pri- ways in which different manufacturers have chosen to mary limitation: the inability to achieve forward speeds approach the problem of increased forward speed while much greater than 200 kt (230 mph).
    [Show full text]
  • Helicopter and Tiltrotor Noise Modeling Procedures Document
    ACRP Problem Statement: 89 Recommended Allocation: $250,000 Helicopter and Tiltrotor Noise Modeling Procedures Document Click here to see problem statement in IdeaHub: http://ideascale.com/t/UKsrZBVBS (Note: you must be a registered user in myACRP/IdeaHub.) TAGS: Airport Planning, Environment, Noise Impacts, Operations, Policy, Public Relations STAFF COMMENTS No comments. AVERAGE INDUSTRY RATING SUMMARY Committees1 Airport Community2 Achievable 3.00 3.50 Applicable 2.50 3.50 Implementable 2.00 3.50 Understandable 2.50 3.00 OVERALL 2.50 3.38 Notes: 1. Includes TRB aviation committees and committees from ACI-NA and AAAE. 2. Includes airport employees serving on active ACRP project panels. CLICK HERE TO SEE DETAILED INDUSTRY RATINGS CLICK HERE TO SEE DETAILED INDUSTRY COMMENTS ACRP OVERSIGHT COMMITTEE (AOC) DISPOSITION The average AOC rating among its voting members was 2.1 on a scale of 1 to 5. There was on discussion. The problem statement was not selected for ACRP funding and will be returned to the idea collection phase of ACRP’s IdeaHub. ACRP Problem Statement: 89 Helicopter and Tiltrotor Noise Modeling Procedures Document TAGS: Airport Planning, Environment, Noise Impacts, Operations, Policy, Public Relations OBJECTIVE The objective of this research effort is to develop written documentation on best available methods to model community noise generated from helicopter and tiltrotor operations. The document should address integrated and simulation modeling techniques, and methods for collecting and analyzing noise source data, and outline noise source development protocols. The language and format of the document shall be suitable for standards submission. BACKGROUND Existing noise modeling standards [SAE-AIR-1845; ICAO, Doc-29] for prediction of fixed wing community noise have been promulgated internationally and serve as the technical justification and defensible rationale upon which numerous noise models such as the Aviation Environmental Design Tool (AEDT) and the Integrated Noise Model (INM) rely.
    [Show full text]
  • The Rotating Wing Aircraft Meetings of 1938 and 1939 Were the First
    The Rotating Wing Aircraft Meetings of 1938 and 1939 This advertisement showing Pitcairn’s 1932 Tandem landing at an were the first national conferences on rotorcraft. They marked estate was typical of their strategy to market to the wealthy. “If yours a transition from a technological focus on the Autogiro to the is such an estate or if you will select a neighboring field, a Pitcairn representative will gladly demonstrate the complete practicality of helicopter. In addition, these important meetings helped to this modern American scene.” With the Great Depression wearing lay the groundwork for the founding of the American Heli- on, however, the Autogiro business was moribund by the late 1930s. copter Society. – Ed. he Rotating Wing Aircraft Meeting of October 28 This was a significant gathering for the future of – 29, 1938 at the Franklin Institute in Philadel- rotary wing flight in America, coming at a time when T phia, PA, sponsored by the Philadelphia Chapter the Autogiro movement was moribund and helicopter of the Institute of the Aeronautical Sciences (IAS, the development was just about to receive a boost with forerunner of the American Institute of Aeronautics and commencement of the just-passed Dorsey-Logan Bill. Astronautics, or AIAA), was an historic gathering of And, perhaps of greater importance, those attending – those involved, committed to and researching Autogiro, including many of the leading developers of rotary wing convertiplane and helicopter flight. It was, as described flight – were actively speculating as to the future that in the preface to the conference proceedings, “the first rotary wing flight might take.
    [Show full text]
  • Historical Perspective September 2011 11
    Helicopter heroes It was 50 years ago that a prototype helicopter first flew and a legend was born—the CH-47 By Mike Lombardi urrently serving on the front lines The advantage of this unique design Just as earlier Chinooks proved of the global fight against terror- allows for low load-per-rotor area, elimi- themselves in wartime, the D model Cism, the CH-47 Chinook is the nates the need for a tail rotor, increases has played a key role for U.S. and epitome of the innovative tandem-rotor lift and stability, and provides a large allied troops in the deserts of Iraq helicopter designs produced through range for center of gravity. and the mountains of Afghanistan. the genius of helicopter pioneer Frank The HRP was followed by the U.S. The highly modified MH-47 series is Piasecki, founder of the company that Navy HUP/UH-25, the first helicopter to operated by the U.S. Army Special would later develop into the Boeing incorporate overlapping tandem rotors, Operations Forces. operations near Philadelphia. and the U.S. Air Force CH-21, a long- When the Chinook first flew in 1961 The CH-47, having been continuously range helicopter transport designed for Boeing Magazine wrote: “There is a modernized, has provided unmatched use in the Arctic. saying in the aviation industry that you capability for U.S. and allied troops since Piasecki stepped down in 1955 as can tell a winner by its appearance. The hard work and dedication of the Boeing its introduction 50 years ago this month.
    [Show full text]
  • CH-47 Chinook/Improved Cargo Helicopter (CH-47F)
    CH-47 Chinook/Improved Cargo Helicopter (CH-47F) 204 United States Army Concept and Technology Development | System Development and Demonstration | Production and Deployment | Operations and Support C H-47 Chinook/Improved Cargo Helicopter (CH-47F) Cargo Chinook/Improved H-47 — Mission — Program Status Transport ground forces, supplies, ammunition and other battle-critical cargo in support • 3QFY98 Awarded the engineering and manufacturing development of worldwide combat and contingency operations. (EMD) contract, slated for completion FY03. T55-GA-714A Engine: — Description and Specifications • 1QFY98 Commenced low-rate initial production (LRIP). As the Army’s only Objective Force heavy-lift cargo helicopter capable of intra-theater cargo movement of payloads greater than 9000 lbs, the CH-47 Chinook/Improved Cargo • 1QFY00 First unit equipped. Helicopter (CH-47F) is an essential component of the Army Vision. The CH-47F program • 2QFY00 Currently fielding for the CH-47D/MH-47D/MH-47E. will remanufacture 300 of the current fleet of 431 CH-47D Chinook helicopters, install a Extended Range Fuel System (ERFS): new digital cockpit, and make modifications to the airframe to reduce vibration. • 4QFY98 Awarded the improved ERFS II production contract. Initial The upgraded cockpit will provide future growth potential and will include a digital data deliveries were deployed in support of operations in Kosovo. bus that permits installation of enhanced communications and navigation equipment for improved situational awareness, mission performance, and survivability. Airframe struc- • 2QFY00 ERFS received a full materiel release. tural modifications will reduce harmful vibrations, reducing operations and support • 3QFY01 First flight (EMD). (O&S) costs and improving crew endurance. Other airframe modifications reduce by approximately 60 percent the time required for aircraft tear down and build-up after — Projected Activities deployment on a C-5 or C-17.
    [Show full text]
  • How to Spin Unintentionally
    so there's margin for roll correction in either direction. The yaw string in that moment, due to turbulence or normal awkwardness, will DANIEL L.JOHNSON wobble back and forth between a slip and a skid, "centered" on the average. But the wing does not care about its average air- flow; it cares about each moment's flow. How to Spin "The middle of the air" (metaphori- cally) is the safe place to be, but the centered yaw string, in a steep turn, is at the border between a skid and a slip, Unintentionally so a (literally) centered yaw string is (metaphorically) "on the edge of the air" vector pointing straight down? (centered Try to stay in the middle of the air. in a slow turn. Humorously, an actually- Do not yo near the edges of it. ball) o o J middle yaw string is metaphorically at • Does it mean drag is balanced be- The edges of the air can be recognized the brink of the cliff. by the appearance of ground, tween the wings? Thus, we should prefer the yaw string buildings, sea, trees, • Does it mean that each wing is to flop between center and our high side, and interstellar space. about equally far from stalling? not crossing the center to the low side. It is much more difficult to fly there. These things are easy to synchronize "Attention," as we explained last - unknown wit when nearly level (up to a 30-degree month, acts through 'built-in brain net- bank). But as the turn becomes steeper, works that can be improved with training hesis: Most gliding fatal accidents it becomes impossible to meet all four of and practice.
    [Show full text]
  • Current Health Trends in U.S. Military Helicopter and Tiltrotor Pilots: a Triservice Epidemiological Study
    Current Health Trends in U.S. Military Helicopter and Tiltrotor Pilots: A Triservice Epidemiological Study John S. Crowley MD MPH US Army Aeromedical Research Laboratory Angelia Cost PhD William Dodson MD MPH Dustin Huber PhD Armed Forces USAF School of Aerospace Medicine Naval Medical Research Unit Health Surveillance Branch Dayton Disclaimers Disclaimer The opinions, interpretations, conclusions, and recommendations are those of the presenter and are not necessarily endorsed by the U.S. Army and/or the U.S. Department of Defense. Citation of trade names in this presentation does not constitute an official Department of the Army endorsement or approval of the use of such commercial items. The authors have no conflicts of interest to declare. 2 Helicopters are different… “Like all novices we began with the helicopter but soon saw it had no future and dropped it. The helicopter does, with great labor, only what the balloon does without labor…The helicopter is much easier to design than an airplane, but it is worthless when done.” -Wilbur Wright 3 …Helicopter pilots are different too… Helicopter pilots are complicated… The stress of being first… » Helicopter pilots were the first to » Hover » Fly with NVGs » Use the aircraft HMD as primary flight display …Along with all the unique & common stresses of helicopter flight: » Disorientation » Vibration » Head supported mass » Altitude » Hypoxia » G forces » Posture » Fatigue » Workload » Technology 2017 Congressional Tasking SEC. 750. STUDY ON HEALTH OF HELICOPTER AND TILTROTOR PILOTS. (a) STUDY REQUIRED.—The Secretary of Defense shall carry out a study of career helicopter and tiltrotor pilots to assess potential links between the operation of helicopter and tiltrotor aircraft and acute and chronic medical conditions experienced by such pilots.
    [Show full text]