Proteome of Gluconacetobacter Diazotrophicus Co-Cultivated with Sugarcane Plantlets

Total Page:16

File Type:pdf, Size:1020Kb

Proteome of Gluconacetobacter Diazotrophicus Co-Cultivated with Sugarcane Plantlets JOURNAL OF PROTEOMICS 73 (2010) 917– 931 available at www.sciencedirect.com www.elsevier.com/locate/jprot Proteome of Gluconacetobacter diazotrophicus co-cultivated with sugarcane plantlets Marise Fonseca dos Santosa,b,⁎, Vânia Lúcia Muniz de Páduac, Eduardo de Matos Nogueirac,d, Adriana Silva Hemerlyd, Gilberto Barbosa Domontb,⁎ aFederal University of Paraná, Campus Palotina, Brazil bFederal University of Rio de Janeiro, Laboratory of Protein Chemistry/Rio de Janeiro Proteomics Network, Department of Biochemistry, Institute of Chemistry/Brazil cFederal University of the State of Rio de Janeiro, Laboratory of Molecular Biology, Department of Genetics and Molecular Biology, Brazil dFederal University of Rio de Janeiro, Institute of Medical Biochemistry, Brazil ARTICLE INFO ABSTRACT Article history: Gluconacetobacter diazotrophicus is a micro-aerobic bacterium able to fix atmospheric nitrogen Received 16 April 2009 in endophytic mode. A proteomic approach was used to analyze proteins differentially Accepted 8 December 2009 expressed in the presence and absence of sugarcane plantlets. Two-dimensional gel electrophoresis (2-DE) showed 42 spots with altered levels of expression. Analysis of these Keywords: spots by matrix-assisted laser desorption ionization time-of-flight in tandem (MALDI-TOF- Gluconacetobacter diazotrophicus TOF) identified 38 proteins. Differentially expressed proteins were associated with Differential protein expression carbohydrate and energy metabolism, folding, sorting and degradation processes, and Proteome analysis transcription and translation. Among proteins expressed in co-cultivated bacteria, four Endophytic interaction belong to membrane systems; others, like a transcription elongation factor (GreA), a 60 kDa Sugarcane chaperonin (GroEL), and an outer membrane lipoprotein (Omp16) have also been described in other plant–bacteria associations, indicating a common protein expression pattern as a result of symbiosis. A high protein content of 60 kDa chaperonin isoforms was detected as non-differentially expressed proteins of the bacteria proteome. These results allow the assessment of the physiological significance of specific proteins to G. diazotrophicus metabolism and to the pathways involved in bacteria–host endophytic interaction. © 2009 Elsevier B.V. All rights reserved. 1. Introduction benefit diverse plant hosts [5–8]. Furthermore, this bacterium has also been detected in mealy bugs that inhabit sugarcane Gluconacetobacter diazotrophicus is a nitrogen-fixing, aerobic α- fields [4]. Although G. diazotrophicus has been detected in proteobacterium [1] isolated from sugarcane (Saccharum spp.) rizosphere of non-vegetative, propagated plants, its occur- that colonizes the plant's apoplast and xylem [2,3] in an rence in sugarcane rizosphere is less well documented [9]. endophytic manner [4,5]. In addition to sugarcane, G. diazo- The biotechnological relevance of the G. diazotrophicus— trophicus can associate with Cameroon grass (Pennisetum sugarcane symbiosis is due to the economic importance of the purpureum), sweet potato (Ipomoea batatas), pineapple (Ananas crop. Brazil is one of the largest sugar producers and is comosus), and coffee (Coffea arabica), indicating a potential to responsible for 30% of sugarcane culture in the world [10,11]. Abbreviations: BNF, Biological nitrogen fixation. ⁎ Corresponding authors. Domont is to be contacted at Departamento de Bioquimica, Instituto de Química, UFRJ, Brazil. Tel./fax: +55 21 2562 7353. E-mail address: [email protected] (G.B. Domont). 1874-3919/$ – see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jprot.2009.12.005 918 JOURNAL OF PROTEOMICS 73 (2010) 917– 931 JOURNAL OF PROTEOMICS 73 (2010) 917– 931 919 Brazil also has a sugarcane alcohol program that produces an 2.2. Bacterial strain, maintenance and growth conditions important alternative to fossil fuels if one considers the carbon market incentive and the increasing worry about G. diazotrophicus (PAL 5) was obtained from EMBRAPA–CNPAB environmental preservation [12]. (Rio de Janeiro, Brazil). Bacteria, stored in saturated DYGS Currently, up to 60% of plant nutritional nitrogen comes medium at −80 °C in 20% glycerol [30], were used after two from biological nitrogen fixation (BNF) [9,13–15], requiring successive passages in solid LGI-P medium supplemented fewer nitrogen fertilizers than in the past, thus diminishing with 2 mg% yeast extract at 28 °C. One colony was used to pre- water and atmospheric pollution from farming. G. diazotro- inoculate 5 mL DYGS medium and grown at 28 °C with phicus, which provides BNF for sugarcane, also produces aeration (120 rpm) until an OD of 1.3. Four milliliters of the plant-growth hormones, such as auxins and gibberellins, as pre-inoculum were transferred to 200 mL of DYGS medium at indicated by in vitro experiments [16–18].Moreover,a 28 °C with the same aeration and, after approximately 22 h, possible biological defense role has been ascribed to G. two milliliters of bacteria at 1.3 OD was aseptically transferred diazotrophicus, due to its antagonistic activity against to the co-culture medium. Xanthomonas albilineans and Colletotrichum falcatum through, respectively, the production of bacteriocin [19,20] and likely 2.3. Plant growth and bacteria co-culture through its ability to ferment sugars and lower the pH medium to under 3.0 [21]. Sugarcane genotype SP70-1143, a high BNF variety, was used Anatomical and physiological changes in sugarcanes of throughout this work. Sugarcane plantlets free of micro- several genotypes were observed during association with organisms were obtained from sterile meristem culture and diazotrophic bacteria such as G. diazotrophicus [22]. A previous micropropagated according to the method of Hendre [31]. survey of sugarcane genes involved in symbiosis showed that Plantlets were cultured in rooting and shooting medium, a they are not only involved in general stress responses due to modified Murashige and Skoog (MS) liquid medium [32], for association with microorganisms, but rather are part of an 50–60 days, then were transferred to 30 mL flasks containing intricate system of plant/microbe signaling; several physio- MS liquid medium diluted 10-fold without hormones and logical processes are actively engaged in this particular type sucrose (MS/10 medium). The plantlets rested for seven days of plant–bacteria interaction [23]. Recently, sugarcane recep- until sterile transfer to a new set of MS/10 vials containing G. tors were described to participate directly in signaling diazotrophicus cultures inoculated two days before (item 2.2). pathways related to the establishment of plant–endophytic Approximately 40 MS/10 vials inoculated with bacteria were bacteria interaction [23–26]. It was suggested that G. diazo- prepared and maintained at 28 °C with an irradiance of 60- − − trophicus is able to contribute to plant development even mmol photons m 2 s 1 for 12 h per day. Seven days after while supporting extreme conditions of apoplastic fluid [27], plant relocation, the bacteria were collected from the liquid and that its biological activity might be regulated by organic medium by centrifugation at 12,000 g for 10 min at 4 °C. The or inorganic nitrogen compounds during its interaction with harvested cells were stored at −80 °C. Controls, that is, the plant [28]. bacteria grown in the absence of plantlets, were prepared To better understand this host–bacteria interaction, G. in a similar manner. Four biological replicate experiments diazotrophicus proteins were studied using differential protein were performed. expression analysis after in vitro culture in the absence and presence of a high BNF sugarcane host. The work was based on 2.4. Sample preparation a bottom–up proteomics approach [29], using statistical tools to evaluate the relative protein expression in 2-DE gels and Cells from each biological replicate were washed twice with − − − MALDI-TOF-TOF MS for protein identification. 10 mmol L 1 Tris, 50 mmol L 1 NaCl, 3 mmol L 1 KCl, − − 5mmolL 1 EDTA, and 1 mmol L 1 PMSF, pH 8.8 [33].Protein extractions were conducted as by Lery et al. [34] with some 2. Materials and methods modification. Pelleted cells were suspended in lysis buffer, − [8.1 mol L 1 urea, 4% (w/v) CHAPS, 1% (w/v) DTT, 2% (v/v) − 2.1. Materials Pharmalyte, 3−10, 8 mmol L 1 PMSF, 0.5% (v/v) Triton X100] − using a 1:2.5 ratio (wet weight, cells mL 1, lysis solution). Cells Reagents and 2-DE units were from GE Health Care (Uppsala, were disrupted by 20 cycles of −170° to 20 °C thermal shock, Sweden); PMSF, CHCA and bicinchoninic acid solution were sonication, and vortexing. Lysis solution was added to a 1:3.5 from Sigma (St. Louis, MO). Sequencing grade-modified final ratio, and the mixture was homogenized and centrifuged trypsin was from Promega (Madison, WI). MilliQ water was at 57,000 g for 2.5 h at 5 °C. Total protein was determined using used throughout out (Millipore, MA). All other solvents and the bicinchoninic acid solution assay [35]. Extracts were stored reagents were of analytical grade. at −80 °C until analysis. Fig. 1 – 2-DE maps of proteins from Gluconacetobacter diazotrophicus. (a) biological replicates: (A) to (D) — control bacteria; (E) to (H) — bacteria co-cultivated with sugarcane plantlets. Eight spots, representing 30% of the total protein volume, are highlighted: HSP70 (spot 388), GroEL (366, 382 and 386), GroES (107) TF (377), CSP-E (86) and 50S ribosomal protein L7/L12 (119); (b) non-differentially expressed identified proteins.
Recommended publications
  • Computer Applications Making Rapid Advances in High Throughput Microbial Proteomics (HTMP) Balakrishna Anandkumar1,§, Steve W
    Send Orders for Reprints to [email protected] Combinatorial Chemistry & High Throughput Screening, 2014, 17, 173-182 173 Computer Applications Making Rapid Advances in High Throughput Microbial Proteomics (HTMP) Balakrishna Anandkumar1,§, Steve W. Haga2,§ and Hui-Fen Wu*,3,4,5,6 1Department of Biochemistry and Biotechnology, Sourashtra College, Madurai 625004, India 2Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, 804, Taiwan 3Department of Chemistry, National Sun Yat Sen University, Kaohsiung, 804, Taiwan 4School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 800, Taiwan 5Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan 6Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, 804, Taiwan Abstract: The last few decades have seen the rise of widely-available proteomics tools. From new data acquisition devices, such as MALDI-MS and 2DE to new database searching softwares, these new products have paved the way for high throughput microbial proteomics (HTMP). These tools are enabling researchers to gain new insights into microbial metabolism, and are opening up new areas of study, such as protein-protein interactions (interactomics) discovery. Computer software is a key part of these emerging fields. This current review considers: 1) software tools for identifying the proteome, such as MASCOT or PDQuest, 2) online databases of proteomes, such as SWISS-PROT, Proteome Web, or the Proteomics Facility of the Pathogen Functional Genomics Resource Center, and 3) software tools for applying proteomic data, such as PSI-BLAST or VESPA. These tools allow for research in network biology, protein identification, functional annotation, target identification/validation, protein expression, protein structural analysis, metabolic pathway engineering and drug discovery.
    [Show full text]
  • Protein Expression Profile of Gluconacetobacter Diazotrophicus PAL5, a Sugarcane Endophytic Plant Growth-Promoting Bacterium
    Proteomics 2008, 8, 1631–1644 DOI 10.1002/pmic.200700912 1631 RESEARCH ARTICLE Protein expression profile of Gluconacetobacter diazotrophicus PAL5, a sugarcane endophytic plant growth-promoting bacterium Leticia M. S. Lery1, 2, Ana Coelho1, 3, Wanda M. A. von Kruger1, 2, Mayla S. M. Gonc¸alves1, 3, Marise F. Santos1, 4, Richard H. Valente1, 5, Eidy O. Santos1, 3, Surza L. G. Rocha1, 5, Jonas Perales1, 5, Gilberto B. Domont1, 4, Katia R. S. Teixeira1, 6 and Paulo M. Bisch1, 2 1 Rio de Janeiro Proteomics Network, Rio de Janeiro, Brazil 2 Unidade Multidisciplinar de Genômica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 3 Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 4 Laboratório de Química de Proteínas, Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil 5 Laboratório de Toxinologia, Departamento de Fisiologia e Farmacodinâmica- Instituto Oswaldo Cruz- Fundac¸ão Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil 6 Laboratório de Genética e Bioquímica, Embrapa Agrobiologia, Seropédica, Brazil This is the first broad proteomic description of Gluconacetobacter diazotrophicus, an endophytic Received: September 25, 2007 bacterium, responsible for the major fraction of the atmospheric nitrogen fixed in sugarcane in Revised: December 18, 2007 tropical regions. Proteomic coverage of G. diazotrophicus PAL5 was obtained by two independent Accepted: December 19, 2007 approaches: 2-DE followed by MALDI-TOF or TOF-TOF MS and 1-DE followed by chromatog- raphy in a C18 column online coupled to an ESI-Q-TOF or ESI-IT mass spectrometer.
    [Show full text]
  • For Immediate Release. Oct. 8Th, 2010 Microbesonline.Org Enhanced for Metagenomics and Metabolism
    For Immediate Release. Oct. 8th, 2010 MicrobesOnline.org Enhanced for Metagenomics and Metabolism & The Arkin lab (genomics.lbl.gov) computational biology and bioinformatics team, as part of the Joint BioEnergy Institute (JBEI, www.jbei.org) and the Virtual Institute for Microbial Stress and Survival (VIMSS, vimss.lbl.gov), has added significant new functionality to the MicrobesOnline.org web resource for comparative and functional analysis of microbial genomes. This work, led by Dylan Chivian with John Bates, Keith Keller, Morgan Price, Paramvir Dehal, under the guidance of Adam Arkin, offers the scientific community new capabilities for metagenomic and metabolic analyses. metaMicrobesOnline Figure 1. metaMicrobesOnline permits the user to select metagenomes and isolates they want to study and then perform easy searches for keywords or gene families (e.g. “amylase” or “PFAM00128”). Scanning electron microscopy image of microbial compost community courtesy Bernhard Knierim and Manfred Auer. The new meta.MicrobesOnline.org web resource, which currently contains over 1600 genomes from bacterial, archaeal, and microeukaryotic isolates, offers combined phylogenetic gene tree analysis of millions of genes from over 150 ecological and organismal metagenomes. These trees are built using our FastTree [1] program, which offers rapid highly accurate tree building, even for very large trees. Such combined analysis is superior to BLAST-based homology approaches in that trees offers the ability to place genes from environmental samples into an evolutionary context and permits more precise functional grouping within a gene family, yielding information about the key genes for a given environment. Additionally, comparison with isolate genomes gives researchers clues for which additional genes to look for to complete the components of systems, or may possess phylogenetic markers to aid in assigning the species for environmental sequence fragments, permitting the determination of which community members are responsible for which roles.
    [Show full text]
  • Comparing Genomes: Databases and Computational Tools for Comparative Analysis of Prokaryotic Genomes DOI: 10.3395/Reciis.V1i2.Sup.105En
    [www.reciis.cict.fiocruz.br] ISSN 1981-6286 SUPPLEMENT – BIOINFORMATICS AND HEALTH Review Articles Comparing genomes: databases and computational tools for comparative analysis of prokaryotic genomes DOI: 10.3395/reciis.v1i2.Sup.105en Marcos Antonio Basílio Catanho de Miranda Laboratório de Genômica Laboratório de Genômica Funcional e Bioinformática Funcional e Bioinformática do Instituto Oswaldo Cruz do Instituto Oswaldo Cruz da Fundação Oswaldo da Fundação Oswaldo Cruz, Cruz, Rio de Janeiro, Brazil Rio de Janeiro, Brazil [email protected] [email protected] Wim Degrave Laboratório de Genômica Funcional e Bioinformática do Instituto Oswaldo Cruz da Fundação Oswaldo Cruz, Rio de Janeiro, Brazil [email protected] Abstract Since the 1990’s, the complete genetic code of more than 600 living organisms has been deciphered, such as bacte- ria, yeasts, protozoan parasites, invertebrates and vertebrates, including Homo sapiens, and plants. More than 2,000 other genome projects representing medical, commercial, environmental and industrial interests, or comprising mo- del organisms, important for the development of the scientific research, are currently in progress. The achievement of complete genome sequences of numerous species combined with the tremendous progress in computation that occurred in the last few decades allowed the use of new holistic approaches in the study of genome structure, orga- nization and evolution, as well as in the field of gene prediction and functional classification. Numerous public or proprietary databases and computational tools have been created attempting to optimize the access to this information through the web. In this review, we present the main resources available through the web for comparative analysis of prokaryotic genomes.
    [Show full text]
  • OMA Browser—Exploring Orthologous Relations Across 352 Complete Genomes Adrian Schneider*, Christophe Dessimoz and Gaston H
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by RERO DOC Digital Library Vol. 23 no. 16 2007, pages 2180–2182 BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btm295 Genome analysis OMA Browser—Exploring orthologous relations across 352 complete genomes Adrian Schneider*, Christophe Dessimoz and Gaston H. Gonnet Institute of Computational Science, ETH Zurich, Switzerland Received on February 8, 2007; revised and accepted on May 25, 2007 Advance Access publication June 1, 2007 Associate Editor: Alfonso Valencia ABSTRACT employ more basic algorithms, but distinguish themselves by a Motivation: Inference of the evolutionary relation between proteins, large number of analyzed sequences. in particular the identification of orthologs, is a central problem in The OMA project (Dessimoz et al., 2005) is a massive comparative genomics. Several large-scale efforts with various cross-comparison of complete genomes to identify methodologies and scope tackle this problem, including OMA the evolutionary relation between any pair of proteins. (the Orthologous MAtrix project). The main features of OMA are the large number of genomes Results: Based on the results of the OMA project, we introduce here from all kingdoms of life, the strict verification of orthology the OMA Browser, a web-based tool allowing the exploration of assignments and the determination of the phylogenetic orthologous relations over 352 complete genomes. Orthologs can be relationship between any two proteins. These major differences viewed as groups across species, but also at the level of sequence to other orthologs projects will be explained in the following pairs, allowing the distinction among one-to-one, one-to-many and subsections.
    [Show full text]
  • Glucanoacetobacter
    GLUCANOACETOBACTER INTRODUCTION Glucanoacetobacter is a genuine in the phylum proto bacteria. It is like rod shape and circular ends. It can be classified as gram negative bacterium. The bacterium is known for stimulating plant growth and being tolerant to acetic acid with one to three lateral flagella and known to be found on sugar cane. Gluconacetobacter diazotrophicus was discovered in Brazil by Bladimir A Cavalcante and Johannna/Dobereiner. Domain: Bacteria Phylum: Proteobacteria Class :Alphaproteobacteria Order : Rhodospirillales Family: Acetobacteraceae Genus:Gluconacetobacter Species:G.diazotrophicus CHARACTERISTICS Originally found in Alagoas, Brazil, Gluconacetobacter diazotrophicus is a bacterium that has several interesting features and aspects which are important to note. The bacterium was first discovered by Vladimir A. Cavalcante and Johanna Dobereiner while analyzing sugarcane in Brazil. Gluconacetobacter diazotrophicus is a part of the Acetobacteraceae family and started out with the name, Saccharibacter nitrocaptans, however, the bacterium is renamed as Acetobacter diazotrophicus because the bacterium is found to belong with bacteria that are able to tolerate acetic acid. Again, the bacterium’s name was changed to Gluconacetobacter diazotrophicus when its taxonomic position was resolved using 16s ribosomal RNA analysis. In addition to being a part of the Acetobacter family, Gluconacetobacter azotrophicus belongs to the Proteobacteria phylum, the Alphaprotebacteria class, and the Gluconacetobacter genus while being a part of the Rhodosprillales order. Other nitrogen-fixing species in this same genus include Gluconacetobacter azotocaptans and Gluconacetobacter johannae. Gluconacetobacter diazotrophicus cells are shaped like rods, have ends that are circular or round, and have anywhere from one to three flagella that are lateral. Based on these descriptions of the cell, Gluconacetobacter diazotrophicus can be classified with the bacillus genus.
    [Show full text]
  • Metaproteomics Characterization of the Alphaproteobacteria
    Avian Pathology ISSN: 0307-9457 (Print) 1465-3338 (Online) Journal homepage: https://www.tandfonline.com/loi/cavp20 Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar To cite this article: José Francisco Lima-Barbero, Sandra Díaz-Sanchez, Olivier Sparagano, Robert D. Finn, José de la Fuente & Margarita Villar (2019) Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssusgallinae (De Geer, 1778), Avian Pathology, 48:sup1, S52-S59, DOI: 10.1080/03079457.2019.1635679 To link to this article: https://doi.org/10.1080/03079457.2019.1635679 © 2019 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group Accepted author version posted online: 03 Submit your article to this journal Jul 2019. Published online: 02 Aug 2019. Article views: 694 View related articles View Crossmark data Citing articles: 3 View citing articles Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=cavp20 AVIAN PATHOLOGY 2019, VOL. 48, NO. S1, S52–S59 https://doi.org/10.1080/03079457.2019.1635679 ORIGINAL ARTICLE Metaproteomics characterization of the alphaproteobacteria microbiome in different developmental and feeding stages of the poultry red mite Dermanyssus gallinae (De Geer, 1778) José Francisco Lima-Barbero a,b, Sandra Díaz-Sanchez a, Olivier Sparagano c, Robert D. Finn d, José de la Fuente a,e and Margarita Villar a aSaBio.
    [Show full text]
  • Acetobacteraceae Sp., Strain AT-5844 Catalog No
    Product Information Sheet for HM-648 Acetobacteraceae sp., Strain AT-5844 immediately upon arrival. For long-term storage, the vapor phase of a liquid nitrogen freezer is recommended. Freeze- thaw cycles should be avoided. Catalog No. HM-648 Growth Conditions: For research use only. Not for human use. Media: Tryptic Soy broth or equivalent Contributor: Tryptic Soy agar with 5% sheep blood or Chocolate agar or Carey-Ann Burnham, Ph.D., Medical Director of equivalent Microbiology, Department of Pediatrics, Washington Incubation: University School of Medicine, St. Louis, Missouri, USA Temperature: 35°C Atmosphere: Aerobic with 5% CO2 Manufacturer: Propagation: BEI Resources 1. Keep vial frozen until ready for use, then thaw. 2. Transfer the entire thawed aliquot into a single tube of Product Description: broth. Bacteria Classification: Rhodospirillales, Acetobacteraceae 3. Use several drops of the suspension to inoculate an agar Species: Acetobacteraceae sp. slant and/or plate. Strain: AT-5844 4. Incubate the tube, slant and/or plate at 35°C for 18-24 Original Source: Acetobacteraceae sp., strain AT-5844 was hours. isolated at the St. Louis Children’s Hospital in Missouri, USA, on May 28, 2010, from a leg wound infection of a Citation: human patient that was stepped on by a bull.1 Acknowledgment for publications should read “The following Comments: Acetobacteraceae sp., strain AT-5844 (HMP ID reagent was obtained through BEI Resources, NIAID, NIH as 9946) is a reference genome for The Human Microbiome part of the Human Microbiome Project: Acetobacteraceae Project (HMP). HMP is an initiative to identify and sp., Strain AT-5844, HM-648.” characterize human microbial flora.
    [Show full text]
  • GTL PI Meeting 2006 Abstracts Molecular Interactions
    Milestone 1 Section 4 Molecular Interactions 32 Exploring the Genome and Proteome of Desulfitobacterium hafniense DCB2 for its Protein Complexes Involved in Metal Reduction and Dechlorination James M. Tiedje1* ([email protected]), John Davis2, Sang-Hoon Kim1, David Dewitt1, Christina Harzman1, Robin Goodwin1, Curtis Wilkerson1, Joan Broderick1,3, and Terence L. Marsh1 1Michigan State University, East Lansing, MI; 2Columbus State University, Columbus, GA; and 3Montana State University, Bozeman, MT Desulfitobacterium hafniense is an anaerobic, low GC, Gram-positive spore-forming bacterium that shows considerable promise as a bioremediative competent population of sediments. Of particular relevance to its remediation capabilities are metal reduction, which changes the mobility and toxicity of metals, and chlororespiration, the ability to dechlorinate organic xenobiotics. Our work focuses on these two capabilities in D. hafniense DCB2 whose genome was recently sequenced by JGI and annotated by ORNL. We are determining the complete metal reducing repertoire of D. hafniense and the genes required for respiratory and non-respiratory metal reduction through DNA microarrays produced by ORNL and proteomics. In addition, genomic analysis identified seven putative reduc- tive dehalogenases (RDases) and we are investigating these with genetic and biochemical tools. The status of these efforts is presented below. Physiology D. hafniense is capable of reducing iron as well as uranium, selenium, copper and cobalt. With the exception of selenium, the metals were reduced under conditions where the metal was the only avail- able electron acceptor. Selenium was unable to serve in this capacity but was reduced when grown fermentatively. Grown in the presence of Se, the cellular morphology viewed with light microscopy and confirmed with SEM & TEM was elongated with small polyp-like spheres present on the outer surface and in the medium.
    [Show full text]
  • Gluconacetobacter Diazotrophicus Pal5 Enhances Plant Robustness Status Under the Combination of Moderate Drought and Low Nitrogen Stress in Zea Mays L
    microorganisms Article Gluconacetobacter diazotrophicus Pal5 Enhances Plant Robustness Status under the Combination of Moderate Drought and Low Nitrogen Stress in Zea mays L. Muhammad Aammar Tufail 1,2,3,* , María Touceda-González 2 , Ilaria Pertot 3,4 and Ralf-Udo Ehlers 2 1 Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy 2 e-nema Gesellschaft für Biotechnologie und Biologischen Pflanzenschutz mbH, Klausdorfer Str. 28-36, 24223 Schwentinental, Germany; [email protected] (M.T.-G.); [email protected] (R.-U.E.) 3 Department of Sustainable Agro-Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; [email protected] 4 Center Agriculture Food Environment (C3A), University of Trento, Via E. Mach 1, 38098 San Michele all’Adige, Italy * Correspondence: [email protected] Abstract: Plant growth promoting endophytic bacteria, which can fix nitrogen, plays a vital role in plant growth promotion. Previous authors have evaluated the effect of Gluconacetobacter diazotrophicus Pal5 inoculation on plants subjected to different sources of abiotic stress on an individual basis. The present study aimed to appraise the effect of G. diazotrophicus inoculation on the amelioration Citation: Tufail, M.A.; of the individual and combined effects of drought and nitrogen stress in maize plants (Zea mays L.). Touceda-González, M.; Pertot, I.; A pot experiment was conducted whereby treatments consisted of maize plants cultivated under Ehlers, R.-U. Gluconacetobacter drought stress, in soil with a low nitrogen concentration and these two stress sources combined, diazotrophicus Pal5 Enhances Plant with and without G.
    [Show full text]
  • Comparative Genomics and Functional Analysis of Rhamnose Catabolic Pathways and Regulons in Bacteria Irina A
    Hope College Digital Commons @ Hope College Faculty Publications 12-23-2013 Comparative Genomics And Functional Analysis Of Rhamnose Catabolic Pathways And Regulons In Bacteria Irina A. Rodionova Sanford-Burnham Medical Research Institute Xiaoqing Li Sanford-Burnham Medical Research Institute Vera Thiel Pennsylvania State University Sergey Stolyar Pacific oN rthwest National Laboratory Krista Stanton Hope College See next page for additional authors Follow this and additional works at: http://digitalcommons.hope.edu/faculty_publications Part of the Microbiology Commons Recommended Citation Rodionova IA, Li X, Thiel V, Stolyar S, Stanton K, Fredrickson JK, Bryant DA, Osterman AL, Best AA and Rodionov DA (2013) Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria. Front. Microbiol. 4:407. doi: 10.3389/fmicb.2013.00407 This Article is brought to you for free and open access by Digital Commons @ Hope College. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Commons @ Hope College. For more information, please contact [email protected]. Authors Irina A. Rodionova, Xiaoqing Li, Vera Thiel, Sergey Stolyar, Krista Stanton, James K. Fredrickson, Donald A. Bryant, Andrei L. Osterman, Aaron A. Best, and Dmitry A. Rodionov This article is available at Digital Commons @ Hope College: http://digitalcommons.hope.edu/faculty_publications/1116 ORIGINAL RESEARCH ARTICLE published: 23 December 2013 doi: 10.3389/fmicb.2013.00407 Comparative genomics and functional analysis of rhamnose catabolic pathways and regulons in bacteria Irina A. Rodionova 1, Xiaoqing Li 1, Vera Thiel 2, Sergey Stolyar 3†, Krista Stanton 4, James K. Fredrickson 3, Donald A. Bryant 2,5, Andrei L.
    [Show full text]
  • Acetic Acid Bacteria – Perspectives of Application in Biotechnology – a Review
    POLISH JOURNAL OF FOOD AND NUTRITION SCIENCES www.pan.olsztyn.pl/journal/ Pol. J. Food Nutr. Sci. e-mail: [email protected] 2009, Vol. 59, No. 1, pp. 17-23 ACETIC ACID BACTERIA – PERSPECTIVES OF APPLICATION IN BIOTECHNOLOGY – A REVIEW Lidia Stasiak, Stanisław Błażejak Department of Food Biotechnology and Microbiology, Warsaw University of Life Science, Warsaw, Poland Key words: acetic acid bacteria, Gluconacetobacter xylinus, glycerol, dihydroxyacetone, biotransformation The most commonly recognized and utilized characteristics of acetic acid bacteria is their capacity for oxidizing ethanol to acetic acid. Those microorganisms are a source of other valuable compounds, including among others cellulose, gluconic acid and dihydroxyacetone. A number of inves- tigations have recently been conducted into the optimization of the process of glycerol biotransformation into dihydroxyacetone (DHA) with the use of acetic acid bacteria of the species Gluconobacter and Acetobacter. DHA is observed to be increasingly employed in dermatology, medicine and cosmetics. The manuscript addresses pathways of synthesis of that compound and an overview of methods that enable increasing the effectiveness of glycerol transformation into dihydroxyacetone. INTRODUCTION glucose to acetic acid [Yamada & Yukphan, 2007]. Another genus, Acetomonas, was described in the year 1954. In turn, Multiple species of acetic acid bacteria are capable of in- in the year 1984, Acetobacter was divided into two sub-genera: complete oxidation of carbohydrates and alcohols to alde- Acetobacter and Gluconoacetobacter, yet the year 1998 brought hydes, ketones and organic acids [Matsushita et al., 2003; another change in the taxonomy and Gluconacetobacter was Deppenmeier et al., 2002]. Oxidation products are secreted recognized as a separate genus [Yamada & Yukphan, 2007].
    [Show full text]