Dinosaurs of New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Dinosaurs of New Mexico Lucas, S.G., and Heckert, A.B., eds., 2000, Dinosaurs of New Mexico. New Mexico Museum of Natural History and Science Bulletin No. 17. 1 DINOSAURS OF NEW MEXICO: AN OVERVIEW SPENCER G. LUCASl and ANDREW B. HECKERT2 lNew Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, NM 87104; 'Department of Earth & Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 Abstract-New Mexico is in the forefront of dinosaur-collecting grounds. AnalysiS of the state's dino­ saur fossils has been far reaching, touching upon every aspect of dinosaur paleontology, including biogeography, biostratigraphy, functional morphology, paleoecology, phylogeny, taphonomy and tax­ onomy. This volume brings together studies of New Mexico's dinosaurs in all of these areas of re­ search, as well as up-to-date reviews of New Mexico's dinosaur fossil record and the scientific litera­ ture based on it. INTRODUCTION tum overlain by the Whitaker quarry and its hundreds of pre­ served Coelophysis skeletons. New Mexico's record of Late Trias­ Cope (1885) published the first scientific report of dinosaur sic dinosaurs has thus emerged as one of the most extensive fossils from New Mexico. In the 115 years that followed, discov­ known, and is significant for several reasons: eries in Triassic, Jurassic and Cretaceous rocks have placed New Mexico in the forefront of dinosaur-collecting grounds (Fig. 1). • Some of the Upper Triassic dinosaur fossils from New Analysis of New Mexico's dinosaur fossils has been far reaching, Mexico are among the oldest known dinosaurs and touching upon every aspect of dinosaur paleontology, including thus are critical to analysis of dinosaur origins. biogeography, biostratigraphy, functional morphology, paleoecol­ • Two holotype taxa of Triassic ornHhischians and as ogy, phylogeny, taphonomy and taxonomy. Indeed, this volume many as six species overall come from New Mexico brings together studies of New Mexico's dinosaurs in all of these and are a significant component of a very scanty areas of research, as well as up-to-date reviews of New Mexico's record of Triassic ornithischians worldwide. dinosaur fossil record and the scientific literature based on it. To put these articles into broader perspective, we present an over­ • The youngest herrerasaurid dinosaurs are from New view of scientific research on New Mexico's dinosaurs. Mexico. • Recent discovery of the Snyder quarry near Ghost TRIASSIC DINOSAURS Ranch, and recognition of Eucoelophysis (Sullivan and In 1887, Cope proposed the first scientific name for a New Lucas, 1999), establishes a stratigraphic (temporal) Mexican dinosaur, the Triassic theropod now called Coelophysis succession of Late Triassic theropods in the Chama bauri, New Mexico's State Fossil by act of the State Legislature. In basin, the only such succession known. 1947, George Whitaker's phenomenal discovery of the Upper Tri­ Furthermore, New Mexico has a substantial record of Late assic dinosaur quarry at Ghost Ranch revealed a bonebed of hun­ Triassic dinosaur footprints, including both theropod and dreds (thousands?) of theropod skeletons, the singlemost exten­ prosauropod tracks (see Hunt et aI. and Lockley et aI., this vol­ sive fossil assemblage of Triassic theropods known, and probably ume). We anticipate that ongoing collecting efforts will uncover the largest, by number, accumulation of theropods in the fossil many new and significant dinosaur records from New Mexico's record. Upper Triassic strata that will continue to improve our nascent Colbert (1989) mono graphed these the·ropods, yet much understanding of dinosaur origins and early evolution. more research remains to be undertaken on them. Especially needed is a thorough study of their osteological variation to iden­ JURASSIC DINOSAURS tify features that are of ontogenetic, sexual dimorphic or alpha­ taxonomic significance. Because of this, no consensus has been Lucas and Hunt (1985) published the first comprehensive reached on how many taxa are in the Ghost Ranch quarry (see review of New Mexico's Jurassic dinosaurs, bringing together a Downs, this volume). welter of disparate reports, mostly of isolated bones and teeth Until about the time of Colbert's (1989) monograph, virtu­ from the Brushy Basin Member of the Morrison Formation. Most ally nothing was known of New Mexico's Triassic dinosaurs out­ puzzling to them was the absence of a major Morrison dinosaur side of Ghost Ranch. In that year, Hunt (1989) described a new quarry in New Mexico, unlike many other western states (Okla­ ornithischian dinosaur from isolated teeth found in slightly older homa, Colorado, Utah, Wyoming) in which one or more mass j. strata near Tucumcari, Revueltosaurus callenderi. Since then, nu­ death assemblages have been found in the Morrison Formation. merous Triassic dinosaur fossils-mostly isolated bones and teeth, However, the Peterson quarry near Laguna (see Heckert et al., but also partial skeletons-have come from New Mexico (see this volume) is a major dinosaur bonebed in the New Mexican Heckert et aI., this volume). Importantly, this record is Morrison Formation. First discovered in the 1960s, its significance stratigraphically superposed and thus particularly significant has only been appreciated during the last few years through the when studying Triassic dinosaur evolution. For example, the old­ yeoman collecting efforts of dedicated New Mexico Museum of est and most fragmentary Triassic dinosaurs from New Mexico Natural History volunteers directed by Ron and Rod Peterson are among the oldest known anywhere. Overlying these are more and Dan D'Andrea. The Peterson quarry is a fluvially-concen­ diverse and better preserved dinosaur faunas, including the type trated bonebed, mostly of diplodocid sauropods, but including a of Eucoelophysis baldwini Sullivan and Lucas and the Snyder quarry, very large theropod, in the Brushy Basin Member, as are most of which yielded the oldest known coelophysoid skull. These are in the great Morrison dinosaur quarries. • 2 dinosaurs Paleocene dinOSaurs?1 Ma age principal rock units I 65 Tyrannosaurus rex, Lancian Tyrannosaurus tracks, Alamosaurus (J) Edmontonian ::J Fruitland-upper Parasaurolophus, Q) Kirtland formations 0 ....... Pentaceratops UJ CO () .....J ~ UJ a: Mussentuchitian >. Dakota Group Iornithopod tracks () -;:::: Cashenranchian CO UJ Buffal 145 Peterson quarry, Diplodocus, Allosaurus, CD Morrison +-' Stegosaurus, ro Formation U --' Camarasaurus, etc. (/)- oldest New Mexican sauropods, (/) CD Summerville Formation theropod tracks « ""0 ~ ""0 ~ ......,=> 200 Apachean Coelophysis I U (/) Revueltian ornithischians, theropods (/) CD Chinle « +-'ro Group - --' Adamanian I oldest New Mexican dinosaurs I r-~ Otischalkian 225 FIGURE 1. Swrunary of New Mexico's dinosaur record. Most other New Mexican Jurassic dinosaur occurrences are shown to lack a sound scientific basis (see Lucas, this volume). singleton specimens, mostly of sauropods. Perhaps the most no­ Thus, outside of the Peterson quarry, New Mexico's record torious of New Mexico's Jurassic dinosaurs was "Seismosaurus," of Jurassic dinosaurs remains sparse. The are no Lower Jurassic the subject of several articles and a book (e.g., Gillette, 1991, 1994). rocks in New Mexico, and the Middle Jurassic rocks are mostly However, the claims of generic distinctiveness, colossal size and eolian and therefore unlikely to preserve dinosaur bones, though extensive gastroliths of "Seismosaurus" have been re-evaluated and they may contain an undiscovered dinosaur track record. Never- 3 theless, a couple of significant points can be derived from New • Asian elements in the San Juan Basin Campanian fau­ Mexico's Jurassic dinosaur fossils: nas (Nodocephalosaurus, Saurornitholestes, Prenocephale) indicate biogeographic interchange between North • A sauropod record in the Summerville Formation in America and Asia, but center(s) of origin and direc­ north-central New Mexico is among the oldest North tionality of inunigration remain unclear. American sauropods (d. Gillette, 1996). • A consensus on the ages of the dinosaur dinosaur • Generically identifiable Morrison Formation dino­ fossils close to the Cretaceous-Tertiary boundary in saurs from New Mexico are Camarasaurus, Diplodocus, the San Juan Basin has still not been achieved. The and taxa charac­ Apatosaurus, Allosaurus, Stegosaurus, pOSSibility of Paleocene dinosaur fossils here remains teristic of the Morrison Formation dinosaur fauna (Fassett et aI., 2000; Fassett and Lucas, this volume). throughout the Western Interior. This indicates no provincialization or uniqueness of the dinosaurs in During the 1980s and 1990s, Cretaceous dinosaur fossils the New Mexican portion of the Morrison basin (see began to be discovered outside of the San Juan Basin, especially Foster, this volume). in the Moreno Hill Formation in west-central New Mexico (Wolfe and Kirkland, 1998; Wolfe, this volume), in the McRae Formation Further work with pick and shovel is needed to develop a in south-central New Mexico (Lozinsky et al., 1984) and in the more significant record of Jurassic dinosaurs in New Mexico. Ringbone Formation in southwestern New Mexico (Lucas et al., 1990). Particularly interesting records from these units include: CRETACEOUS DINOSAURS (1) Zuniceratops from the Moreno Hill Formation, the oldest North American ceratopsian with brow horns, raising the possibility of Cope's (1885) first report of dinosaur fossils from New a North American origin of ceratopsids (Wolfe and Kirkland, 1998); Mexico was of teeth
Recommended publications
  • Morrison Formation 37 Cretaceous System 48 Cloverly Formation 48 Sykes Mountain Formation 51 Thermopolis Shale 55 Mowry Shale 56
    THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING By CHRISTOPHER JAY CARSON Bachelor of Science Oklahoma State University 1998 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE July, 2000 THE STRUCTURAL AND STRATIGRAPHIC FRAMEWORK OF THE WARM SPRINGS RANCH AREA, HOT SPRINGS COUNTY, WYOMING Thesis Approved: Thesis Advisor ~~L. ... ~. ----'-"'-....D~e~e:.-g-e----- II ACKNOWLEDGEMENTS I wish to express appreciation to my advisor Dr. Arthur Cleaves for providing me with the opportunity to compile this thesis, and his help carrying out the fieldwork portion of the thesis. My sincere appreciation is extended to my advisory committee members: Dr. Stan Paxton, Dr. Gary Stewart, and Mr. David Schmude. I wish to thank Mr. Schmude especially for the great deal of personal effort he put forth toward the completion of this thesis. His efforts included financial, and time contributions, along with invaluable injections of enthusiasm, advice, and friendship. I extend my most sincere thank you to Dr. Burkhard Pohl, The Big Hom Basin Foundation, and the Wyoming Dinosaur Center. Without whose input and financial support this thesis would not have been possible. In conjunction I would like to thank the staff of the Wyoming Dinosaur Center for the great deal of help that I received during my stay in Thermopolis. Finally I wish to thank my friends and family. To my friends who have pursued this process before me, and with me; thank you very much.
    [Show full text]
  • Upper Paleozoic and Cretaceous Stratigraphy of the Hidalgo County Area, New Mexico Eugene Greenwood, F
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/21 Upper Paleozoic and Cretaceous stratigraphy of the Hidalgo County area, New Mexico Eugene Greenwood, F. E. Kottlowski, and A. K. Armstrong, 1970, pp. 33-44 in: Tyrone, Big Hatchet Mountain, Florida Mountains Region, Woodward, L. A.; [ed.], New Mexico Geological Society 21st Annual Fall Field Conference Guidebook, 176 p. This is one of many related papers that were included in the 1970 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States.
    [Show full text]
  • [PDF] Dinosaur Eggshell from the Red Sandstone Group of Tanzania
    Journal of Vertebrate Paleontology 24(2):494±497, June 2004 q 2004 by the Society of Vertebrate Paleontology NOTE DINOSAUR EGGSHELL FROM THE RED SANDSTONE GROUP OF TANZANIA MICHAEL D. GOTTFRIED1, PATRICK M. O'CONNOR2, FRANKIE D. JACKSON3, ERIC M. ROBERTS4, and REMEGIUS CHAMI5, 1Mich- igan State University Museum, East Lansing, Michigan, 48824, [email protected]; 2College of Osteopathic Medicine, Ohio University, Athens, Ohio, 45701; 3Department of Earth Sciences, Montana State University, Bozeman, Montana, 59717; 4Department of Geology and Geophysics, University of Utah, Salt Lake City, Utah, 84112, 5Antiquities Unit, P.O. Box 2280, Dar es Salaam, Tanzania Investigations over the last several decades at Gondwanan Mesozoic Although the age of the Red Sandstone Group is poorly understood (see localities have signi®cantly expanded our knowledge of the diversity Damblon et al., 1998), a Cretaceous age is suggested at this site based and distribution of Southern Hemisphere dinosaurs. These records are on (1) the overall composition of the fauna, which includes titanosaurid? primarily based on skeletal remains, but included among them are in- sauropods and both avian and nonavian theropods, as well as osteo- stances of preserved eggshell, notably from Argentina (e.g., Calvo et glossomorph ®shes, and (2) the possibility that these deposits may be al., 1997; Chiappe et al., 1998) and India (e.g., Khosla and Sahni, 1995). approximately coeval with the Cretaceous dinosaur beds of Malawi (Ja- In general, however, dinosaur eggshell is relatively poorly known from cobs et al., 1990), which lie ca. 200 km southeast of the Mbeya region. Gondwana, and from Africa in particular.
    [Show full text]
  • The Cretaceous System in Central Sierra County, New Mexico
    The Cretaceous System in central Sierra County, New Mexico Spencer G. Lucas, New Mexico Museum of Natural History, Albuquerque, NM 87104, [email protected] W. John Nelson, Illinois State Geological Survey, Champaign, IL 61820, [email protected] Karl Krainer, Institute of Geology, Innsbruck University, Innsbruck, A-6020 Austria, [email protected] Scott D. Elrick, Illinois State Geological Survey, Champaign, IL 61820, [email protected] Abstract (part of the Dakota Formation, Campana (Fig. 1). This is the most extensive outcrop Member of the Tres Hermanos Formation, area of Cretaceous rocks in southern New Upper Cretaceous sedimentary rocks are Flying Eagle Canyon Formation, Ash Canyon Mexico, and the exposed Cretaceous sec- Formation, and the entire McRae Group). A exposed in central Sierra County, southern tion is very thick, at about 2.5 km. First comprehensive understanding of the Cretaceous New Mexico, in the Fra Cristobal Mountains, recognized in 1860, these Cretaceous Caballo Mountains and in the topographically strata in Sierra County allows a more detailed inter- pretation of local geologic events in the context strata have been the subject of diverse, but low Cutter sag between the two ranges. The ~2.5 generally restricted, studies for more than km thick Cretaceous section is assigned to the of broad, transgressive-regressive (T-R) cycles of 150 years. (ascending order) Dakota Formation (locally deposition in the Western Interior Seaway, and includes the Oak Canyon [?] and Paguate also in terms of Laramide orogenic
    [Show full text]
  • Palaeoecology and Depositional Environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania)
    Mitt. Mus. Nat.kd. Berl., Geowiss. Reihe 5 (2002) 19-44 10.11.2002 Palaeoecology and depositional environments of the Tendaguru Beds (Late Jurassic to Early Cretaceous, Tanzania) Martin Aberhan ', Robert Bussert2, Wolf-Dieter Heinrich', Eckhart Schrank2, Stephan Schultkal, Benjamin Sames3, Jiirgen =wet4 & Saidi Kapilima5 With 6 figures, 2 tables, and 2 plates Abstract The Late Jurassic to Early Cretaceous Tendaguru Beds (Tanzania, East Africa) have been well known for nearly a century for their diverse dinosaur assemblages. Here, we present sedimentological and palaeontological data collected by the German- Tanzanian Tendaguru Expedition 2000 in an attempt to reconstruct the palaeo-ecosystems of the Tendaguru Beds at their type locality. Our reconstructions are based on sedimentological data and on a palaeoecological analysis of macroinverte- brates, microvertebrates, plant fossils and microfossils (ostracods, foraminifera, charophytes, palynomorphs). In addition, we included data from previous expeditions, particularly those on the dinosaur assemblages. The environmental model of the Tendaguru Beds presented herein comprises three broad palaeoenvironmental units in a marginal marine setting: (1) Lagoon-like, shallow marine environments above fair weather wave base and with evidence of tides and storms. These formed behind barriers such as ooid bar and siliciclastic sand bar complexes and were generally subject to minor salinity fluctuations. (2) Extended tidal flats and low-relief coastal plains. These include low-energy, brackish coastal lakes and ponds as well as pools and small fluvial channels of coastal plains in which the large dinosaurs were buried. Since these environments apparently were, at best, poorly vegetated, the main feeding grounds of giant sauropods must have been elsewhere.
    [Show full text]
  • Palynology of the Dinosaur Beds of Tendaguru (Tanzania) - Preliminary Results
    Mitt. Mus. Nat.kd . Berl., Geowiss. Reihe 2 (1999) 171-183 19.10.1999 Palynology of the Dinosaur Beds of Tendaguru (Tanzania) - Preliminary Results Eckart Schrank' With 2 figures, 3 plates and 2 tables Abstract The Tendaguru Beds, southeastern Tanzania, have yielded two palynological assemblages of Kimmeridgian to Tithonian age: (1) the Anapiculatisporites-Densoisporites-Trisaccites assemblage from the Middle Saurian Beds and (2) the Barbatacysta-Pa- reodinia assemblage from the overlying Smeei Beds. A third assemblage with Rhizophagites and rare angiosperm pollen from the Upper Saurian Beds is contaminated by recent and subrecent material . The Anapiculatisporites-Densoisporites-Trisaccites assemblage is characterized by the presence of freshwater algae (Ovoidi- tes), pteridopyhtic-bryophytic spores and gymnosperm (conifer) pollen, with Classopollis as the most abundant element . Among the rare elements of this assemblage is the questionable dinoflagellate Mendicodinium ? quadratum, possibly a Kim- meridgian-Tithonian marker. The miospores show palaeobiogeographic links to Southern Gondwana, especially Madagascar, Australia, Argentina and India. Deposition of this assemblage took place in an aquatic environment with strong palynological influx from a terrestrial source and questionable marine influence. The Barbatacysta-Pareodinia assemblage contains a considerable number of dinoflagellates suggesting deposition in a mari- ne environment. The terrestrially-derived miospores are impoverished and dominated by conifer pollen, while pteridophytic- bryophytic spores form a very subordinate element or are absent. Key words: Dinoflagellates, pollen, spores, Late Jurassic, Tanzania. Zusammenfassung Die Tendaguru-Schichten, Südost-Tansania, haben zwei palynologische Assoziationen, deren Alter als Kimmeridge bis Tithon interpretiert wird, geliefert . Die Anapiculatisporites-Densoisporites-Trisaccites-Assoziation stammt aus den Mittleren Saurier- schichten, und die Barbatacysta-Pareodinia-Assoziation charakterisiert die darüberlagernden Smeei-Schichten .
    [Show full text]
  • A Census of Dinosaur Fossils Recovered from the Hell Creek and Lance Formations (Maastrichtian)
    The Journal of Paleontological Sciences: JPS.C.2019.01 1 TAKING COUNT: A Census of Dinosaur Fossils Recovered From the Hell Creek and Lance Formations (Maastrichtian). ______________________________________________________________________________________ Walter W. Stein- President, PaleoAdventures 1432 Mill St.. Belle Fourche, SD 57717. [email protected] 605-210-1275 ABSTRACT: A census of Hell Creek and Lance Formation dinosaur remains was conducted from April, 2017 through February of 2018. Online databases were reviewed and curators and collections managers interviewed in an effort to determine how much material had been collected over the past 130+ years of exploration. The results of this new census has led to numerous observations regarding the quantity, quality, and locations of the total collection, as well as ancillary data on the faunal diversity and density of Late Cretaceous dinosaur populations. By reviewing the available data, it was also possible to make general observations regarding the current state of certain exploration programs, the nature of collection bias present in those collections and the availability of today's online databases. A total of 653 distinct, associated and/or articulated remains (skulls and partial skeletons) were located. Ceratopsid skulls and partial skeletons (mostly identified as Triceratops) were the most numerous, tallying over 335+ specimens. Hadrosaurids (Edmontosaurus) were second with at least 149 associated and/or articulated remains. Tyrannosaurids (Tyrannosaurus and Nanotyrannus) were third with a total of 71 associated and/or articulated specimens currently known to exist. Basal ornithopods (Thescelosaurus) were also well represented by at least 42 known associated and/or articulated remains. The remaining associated and/or articulated specimens, included pachycephalosaurids (18), ankylosaurids (6) nodosaurids (6), ornithomimids (13), oviraptorosaurids (9), dromaeosaurids (1) and troodontids (1).
    [Show full text]
  • The Tendaguru Formation (Late Jurassic to Early Cretaceous, Southern Tanzania): Definition, Palaeoenvironments, and Sequence Stratigraphy
    Fossil Record 12 (2) 2009, 141–174 / DOI 10.1002/mmng.200900004 The Tendaguru Formation (Late Jurassic to Early Cretaceous, southern Tanzania): definition, palaeoenvironments, and sequence stratigraphy Robert Bussert1, Wolf-Dieter Heinrich2 and Martin Aberhan*,2 1 Institut fr Angewandte Geowissenschaften, Technische Universitt Berlin, Skr. BH 2, Ernst-Reuter-Platz 1, 10587 Berlin, Germany. E-mail: [email protected] 2 Museum fr Naturkunde – Leibniz Institute for Research on Evolution and Biodiversity at the Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany. E-mail: [email protected]; [email protected] Abstract Received 8 December 2008 The well-known Late Jurassic to Early Cretaceous Tendaguru Beds of southern Tanza- Accepted 15 February 2009 nia have yielded fossil plant remains, invertebrates and vertebrates, notably dinosaurs, Published 3 August 2009 of exceptional scientific importance. Based on data of the German-Tanzanian Tenda- guru Expedition 2000 and previous studies, and in accordance with the international stratigraphic guide, we raise the Tendaguru Beds to formational rank and recognise six members (from bottom to top): Lower Dinosaur Member, Nerinella Member, Middle Dinosaur Member, Indotrigonia africana Member, Upper Dinosaur Member, and Ruti- trigonia bornhardti-schwarzi Member. We characterise and discuss each member in de- tail in terms of derivation of name, definition of a type section, distribution, thickness, lithofacies, boundaries, palaeontology, and age. The age of the whole formation appar- ently ranges at least from the middle Oxfordian to the Valanginian through Hauterivian or possibly Aptian. The Tendaguru Formation constitutes a cyclic sedimentary succes- sion, consisting of three marginal marine, sandstone-dominated depositional units and three predominantly coastal to tidal plain, fine-grained depositional units with dinosaur remains.
    [Show full text]
  • A New Maastrichtian Species of the Centrosaurine Ceratopsid Pachyrhinosaurus from the North Slope of Alaska
    A new Maastrichtian species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope of Alaska ANTHONY R. FIORILLO and RONALD S. TYKOSKI Fiorillo, A.R. and Tykoski, R.S. 2012. A new Maastrichtian species of the centrosaurine ceratopsid Pachyrhinosaurus from the North Slope of Alaska. Acta Palaeontologica Polonica 57 (3): 561–573. The Cretaceous rocks of the Prince Creek Formation contain the richest record of polar dinosaurs found anywhere in the world. Here we describe a new species of horned dinosaur, Pachyrhinosaurus perotorum that exhibits an apomorphic character in the frill, as well as a unique combination of other characters. Phylogenetic analysis of 16 taxa of ceratopsians failed to resolve relationships between P. perotorum and other Pachyrhinosaurus species (P. canadensis and P. lakustai). P. perotorum shares characters with each of the previously known species that are not present in the other, including very large nasal and supraorbital bosses that are nearly in contact and separated only by a narrow groove as in P. canadensis, and a rostral comb formed by the nasals and premaxillae as in P. lakustai. P. perotorum is the youngest centrosaurine known (70–69 Ma), and the locality that produced the taxon, the Kikak−Tegoseak Quarry, is close to the highest latitude for recovery of ceratopsid remains. Key words: Dinosauria, Centrosaurinae, Cretaceous, Prince Creek Formation, Kikak−Tegoseak Quarry, Arctic. Anthony R. Fiorillo [[email protected]] and Ronald S. Tykoski [[email protected]], Perot Museum of Nature and Science, 2201 N. Field Street, Dallas, TX 75202, USA. Received 4 April 2011, accepted 23 July 2011, available online 26 August 2011.
    [Show full text]
  • A New Centrosaurine from the Late Cretaceous of Alberta, Canada, and the Evolution of Parietal Ornamentation in Horned Dinosaurs
    A new centrosaurine from the Late Cretaceous of Alberta, Canada, and the evolution of parietal ornamentation in horned dinosaurs ANDREW A. FARKE, MICHAEL J. RYAN, PAUL M. BARRETT, DARREN H. TANKE, DENNIS R. BRAMAN, MARK A. LOEWEN, and MARK R. GRAHAM Farke, A.A., Ryan, M.J., Barrett, P.M., Tanke, D.H., Braman, D.R., Loewen, M.A., and Graham, M.R. 2011. A new centrosaurine from the Late Cretaceous of Alberta, Canada, and the evolution of parietal ornamentation in horned dino− saurs. Acta Palaeontologica Polonica 56 (4): 691–702. In 1916, a centrosaurine dinosaur bonebed was excavated within the Campanian−aged deposits of what is now Dinosaur Provincial Park, Alberta, Canada. Specimens from this now−lost quarry, including two parietals, a squamosal, a skull missing the frill, and an incomplete dentary, were purchased by The Natural History Museum, London. The material was recently reprepared and identified herein as a previously unknown taxon, Spinops sternbergorum gen. et sp. nov. Based upon the available locality data and paleopalynology, the quarry lies in either the upper part of the Oldman Formation or the lower part of the Dinosaur Park Formation. The facial region of the partial skull is similar to putative mature speci− mens of Centrosaurus spp. and Styracosaurus albertensis, with short, rounded postorbital horncores and a large, erect na− sal horncore. Parietal ornamentation is consistent on both known parietals and is unique among ceratopsids. Bilateral, procurved parietal hooks occupy the P1 (medial−most) position on the dorsal surface of the parietal and are very similar to those seen in Centrosaurus apertus.
    [Show full text]
  • Pull-Apart Basins at Releasing Bends of the Sinistral Late Jurassic Mojave-Sonora Fault System
    spe393-03 page 97 Geological Society of America Special Paper 393 2005 Pull-apart basins at releasing bends of the sinistral Late Jurassic Mojave-Sonora fault system Thomas H. Anderson* Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA Jonathan A. Nourse Geological Sciences Department, California State Polytechnic University, Pomona, California 91768, USA ABSTRACT A 200–500-km-wide belt along the southwestern margin of cratonic North America is pervaded by northwest- and east-trending faults that fl ank basins con- taining thick deposits of locally derived conglomerate and sedimentary breccia. These deposits that crop out mainly in the northern part of mainland Mexico, or southern parts of Arizona and New Mexico are unconformable at their bases, have similar Upper Jurassic and/or Lower Cretaceous stratigraphic ages, and commonly preserve volcanic components in the lower parts of upward-fi ning sections. We argue that these basins share a common structural origin, based on: (1) the presence of faults, locally preserved, that generally defi ne the basin margins, (2) similar basal units comprised of coarse conglomeratic strata derived from adjacent basement, and (3) locally preserved syntectonic relationships to bounding faults. Fault orientations, and our observation that the faults (and their associated basins) extend south to the inferred trace of the Late Jurassic Mojave-Sonora megashear, suggest that the basins formed in response to transtension associated with sinistral movement along the megashear. Northwest-striking left-lateral strike-slip faults that terminate at east-striking normal faults defi ne releasing left steps at which crustal pull-apart structures formed.
    [Show full text]
  • An Abstract of the Thesis Of
    AN ABSTRACT OF THE THESIS OF _______________________Erin Roberts for the ________________________________________Master of Science (name of student) (degree) Physical Sciences, Earth Science Concentration in_________________________________________________________presented on May 9, 2019 _____________________________________________________________________ Title: Description of a Juvenile Triceratops Skull and Lower Jaw _____________________________________________________________________ and Comparison of Juvenile Ceratopsian Characteristics _____________________________________________________________________ _____________________________________________________________________ Thesis Chair:______Michael Morales______________________________________ Abstract approved:_____________________________________________________ (Thesis Advisor Signature) A juvenile Triceratops partial skull and lower jaw from the Upper Cretaceous (66 million years) Hell Creek Formation near Jordan, Montana, was collected in 2014. Having been collected near the top of the upper third of the Hell Creek, the fossil material likely belonged to Triceratops prorsus. Main elements from the skull (Emporia State University Paleontology Collection specimen number ESU 2014-1) include the parietal, the right postorbital horn, partial left postorbital horn, the right maxilla, a partial left maxilla, a left nasal, and a rostral. Both left and right dentaries and the predentary were collected. Growth stages of Triceratops are: baby, juvenile, subadult, and adult. The size
    [Show full text]