Journal of Machine Learning Research 17 (2016) 1-28 Submitted 3/14; Revised 5/16; Published 9/16 Characteristic Kernels and Infinitely Divisible Distributions Yu Nishiyama
[email protected] The University of Electro-Communications 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan Kenji Fukumizu
[email protected] The Institute of Statistical Mathematics 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan Editor: Ingo Steinwart Abstract We connect shift-invariant characteristic kernels to infinitely divisible distributions on Rd. Characteristic kernels play an important role in machine learning applications with their kernel means to distinguish any two probability measures. The contribution of this paper is twofold. First, we show, using the L´evy–Khintchine formula, that any shift-invariant kernel given by a bounded, continuous, and symmetric probability density function (pdf) of an infinitely divisible distribution on Rd is characteristic. We mention some closure properties of such characteristic kernels under addition, pointwise product, and convolution. Second, in developing various kernel mean algorithms, it is fundamental to compute the following values: (i) kernel mean values mP (x), x , and (ii) kernel mean RKHS inner products ∈ X mP ,mQ H, for probability measures P,Q. If P,Q, and kernel k are Gaussians, then the computationh i of (i) and (ii) results in Gaussian pdfs that are tractable. We generalize this Gaussian combination to more general cases in the class of infinitely divisible distributions. We then introduce a conjugate kernel and a convolution trick, so that the above (i) and (ii) have the same pdf form, expecting tractable computation at least in some cases.