Probability Distributions

Probability Distributions

Statistical Methods in Particle Physics 2. Probability Distributions Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 2017/18 Gaussian https://en.wikipedia.org/wiki/Normal_distribution 1 (x µ)2 g(x; µ, σ)= exp − p − 2σ2 2⇡ ✓ ◆ Mean: E[x]=µ Variance: V [x]=σ2 1 x2 μ = 0, σ = 1 ("standard normal distribution"): φ(x)= e− 2 p2⇡ Cumulative distribution related to error function: x 1 z2 1 x Φ(x)= e− 2 dz = erf +1 p2⇡ 2 p2 Z1 ✓ ◆ Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 2 p-value Probability for a Gaussian distribution corresponding to [μ – Zσ, μ +Zσ]: +Z 1 x2 Z P(Zσ)= e− 2 dx =Φ(Z) Φ( Z)=erf p2⇡ Z − − p2 Z− ✓ ◆ 68.27% of area within ±1σ 90% of area within ±1.645σ 95.45% of area within ±2σ 95% of area within ±1.960σ 99.73% of area within ±3σ 99% of area within ±2.576σ p-value: Two-sided Gaussian p-values probability that a random process produces a measurement thus far, or Deviation p-value (%) further, from the true mean 1 σ 31.7 2 σ 4.56 p-value =1 P(Zσ) 3 σ 0.270 − 4 σ 0.006 33 standard to report In root: TMath::Prob a “discovery” 5 σ 0.000 057 3 Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 3 Why Are Gaussians so Useful? Central limit theorem: When independent random variables are added, their properly normalized sum tends toward a normal distribution (a bell curve) even if the original variables themselves are not normally distributed. More specifically: Consider n random variables with finite variance σi2 and arbitrary pdf: n n n n y = x 2 i !1 E[y]= µi V [y]= σi i=1 i=1 X X Xi=1 Measurement uncertainties are often the sum of many independent contributions. The underlying pdf for a measurement can therefore be assumed to be a Gaussian. Many convenient features in addition, e.g., sum or difference of two Gaussian random variables is again a Gaussian. Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 4 The CLT at Work A: x taken from a uniform PD in [0,1], B: X = x1+x2 from A, 2 with µ=0.5 and σ =1/12, N=5000 N=5000, flat shoulders C: X = x1+x2+x3 from A, curved shoulders D: X=x1+x2+…+x12 from A, almost Gaussian Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 5 Multivariate Gaussian transposed column (row) vectors vectors 1 1 T 1 f (~x; µ~, V )= exp (~x µ~) V − (~x µ~) (2⇡)N/2 V 1/2 −2 − − | | ~x =(x1,...,xn), µ~ =(µ1,...,µn) E[x ]=µ V = cov[x , x ]= (x µ )(x µ ) i i i,j i j h i − i j − j i For n = 2: 2 2 σx ⇢x σy 1 1 1/σx ⇢/(σx σy ) V = 2 V − = − 2 ⇢x σy σ (1 ⇢2) ⇢/(σx σy )1/σ ✓ y ◆ − ✓− y ◆ ρ = correlation coefficient Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 6 2d Gaussian Distribution and Error Ellipse We obtain the 2d Gaussian distribution: 1 f (x1, x2; µ1, µ2, σ1, σ, ⇢)= 2⇡ σ 1 ⇢2 ⇥ 1 2 − 2 2 1 x1 µ1 p x2 µ2 x1 µ1 x2 µ2 exp − + − 2⇢ − − −2(1 ⇢2) σ σ − σ σ − "✓ 1 ◆ ✓ 2 ◆ ✓ 1 ◆✓ 2 ◆#! where ρ = cov(x1, x2)/(σ1σ2) is the correlation coefficient. Lines of constant probability correspond to constant argument of exp → this defines an ellipse 1σ ellipse: f(x1, x2) has dropped to 1/√e of its maximum value (argument of exp is –1/2): x µ 2 x µ 2 x µ x µ 1 − 1 + 2 − 2 2⇢ 1 − 1 2 − 2 =1 ⇢2 σ σ − σ σ − ✓ 1 ◆ ✓ 2 ◆ ✓ 1 ◆✓ 2 ◆ Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 7 2d Gaussian: Error Ellipse 1D projections http://www.phas.ubc.ca/~oser/p509/Lec_07.pdf s =21 fy (x)=x f (x, y)dy s =1Z1 y • PDF projections are2 (1D) Gaussians: Ellipse which contains 1 1 x µx r==0.8• Areasexp of 1σ and− 2σ 68% of the events p2⇡ −2 σx contoursx differ✓ ◆ ! 1σ ellipse (1/√e of Red ellipse:in 1D and 2D! maximum values) contour with 1 1 y µ 2 f (y)=argumentexp of − y x p −2 σ exponential2⇡y ✓ y ◆ ! set to equal y -1/2 P1D P2D Blue1σ ellipse:0.6827 0.3934 2σ 1σ x contour2σ 0.9545 0.8647 containing3 0.9973 0.9889 68%σ of 2D probability1.515σ 0.6827 1σ content.2.486σ 0.9545 2σ 3.439σ 0.9973 Physics 509 17 Luca Lista Statistical Methods for Data Analysis 43 Probability for an event to be within 1σ ellipse: 39.34% Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 8 Poisson Distribution https://en.wikipedia.org/wiki/Poisson_distribution k µ µ p(k; µ)= e− μ = 1 k! μ = 4 E[k]=µ, V [k]=µ μ = 10 Properties: ‣ n1, n2 follow Poisson distr. → n1+n2 follows Poisson distr., too ‣ Can be approximated by a Gaussian for large ν Examples: ‣ Clicks of a Geiger counter in a given time interval ‣ Number of Prussian cavalrymen killed by horse-kicks Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 9 Binomial Distribution N independent experiments ‣ Outcome of each is 'success' or 'failure' ‣ Probability for success is p N k N k f (k; N, p)= p (1 p) − E[k]=Np V [k]=Np(1 p) k − − ✓ ◆ N N! = binomial coefficient: number of different ways k k!(N k)! (permutations) to have k successes in N tries ✓ ◆ − Use binomial distribution to model processes with two outcomes ‣ Example: Detection efficiency (either we detect particle or not) For small p, the binomial distribution can be approximated by a Poisson distribution (more exactly, in the limit N → ∞, p → 0, N·p constant) Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 10 Negative Binomial Distribution Keep number of successes k fixed and ask for the probability of m failures before having k successes: 1 p m + k 1 E[m]=k − P(m; k, p)= − pk (1 p)m p m − ✓ ◆ 1 p m = 0, 1, ..., V [m]=k − 1 p2 Another representation: E[m]=µ m m + k 1 µ P(m; µ, k)= − k µ m µ m+k V [m]=µ 1+ ✓ ◆ 1+ k k ⇣ ⌘ 1 [relation btw. Use Gamma-fct. for non-integer values p = µ parameters] 1+ k x!:=Γ(x + 1) Example: Distribution of the number of produced particles in e+e– and proton-proton collisions reasonably well described by a NBD. Why? Empirical observation, not so obvious. Statistical Methods in Particle Physics WS 2017/18 | K. Reygers | 2. Probability Distributions 11 72 KAPITEL 4. STATISTIK in den einzelnen Intervallen stark unterschiedlich sind, kann man die Genauigkeit der einzel- nen Datenwerte nicht leicht auf einen Blick einsch¨atzen, weil sie alle verschiedene Varianzen haben. Die folgende Formel transformiert die Zahl der Eintr¨a g e i n j e d e m I n t e r v a l l ri zu neuen Variablen yi,welchealleungef¨ahrdieselbeVarianzvon1haben: y = 2 √r oder auch y = √r + r + 1. i · i i i i Dies sieht man leicht durch Anwendung von Gleichung! (4.51). Die letztere Transformation hat eine Varianz von 1.0 ( 6%) f ¨ur alle Argumente r > 1. ± i 4.5 Spezielle Wahrscheinlichkeitsdichten 4.5.1 Gleichverteilung Diese Wahrscheinlichkeitsdichte ist konstant zwischen denGrenzenx = a und x = b 1 a x < b f (x)= b a ≤ . (4.17) ⎧ − ⎨0außerhalb Sie ist in Abbildung⎩ 4.5 gezeigt. Mittelwert und Varianz sind Uniform Distribution a + b (b a)2 x = E[x]= V [x] = σ2 = − . ⟨ ⟩ 2 12 1 b a , a x b f (x; a, b)= − (0, otherwise 1 b a − Properties: Abbildung 4.5: Die Gleichverteilung mit 1 konstanter Dichte zwischen den Grenzen a E[x]= (a + b) 0 2 a b und b. 1 2 V [x]= (b a) Die Gleichverteilung wird oft U(a, b) geschrieben. Besonders wichtig ist die Verteilung U(0, 1) 12 − mit den Grenzen 0 und 1, die eine Varianz 1/12 (Standardabweichung σ = 1/√12) hat. Example: 4.5.2 Normalverteilung ‣ Strip detector: Die Normal- oder Gauß-Verteilung4 ist die wichtigste Wahrscheinlichkeitsdichte wegen ihrer resolution for one-strip clusters: großen Bedeutung in der Praxis (siehe Kapitel 4.6.3). Die Wahrscheinlichkeitsdichte ist pitch/√12 (x µ)2 1 − f (x)= e− 2σ2 x ( ∞, ∞) .(4.18) √2πσ ∈ − Die Abbildung 4.6 zeigt eine Seite aus der Originalarbeit von Gauß “Motus Corporum Coele- Statistical Methods in Particle Physicsstium”, WS wo2017/18 er | dieK. Reygers Gauß-Funktion | 2. Probability Distributions einf¨uhrt. 12 Die Normalverteilung wird von zwei Parametern bestimmt, µ und σ.DurchdirekteRechnung zeigt man, daß µ = E [x] der Mittelwert ist und σ = V [x] die Standardabweichung. Die 4Korrekt: Gauß’sche Wahrscheinlichkeitsdichte;demallgemeinenBrauchfolgendwirdsiehierauchals! Gauß- Verteilung bezeichnet. Exponential Distribution 1 x/⇠ e− x 0 f (x; ⇠)= ⇠ ≥ (0 otherwise E[x]=⇠ V [x]=⇠2 Example: Decay time of an unstable particle at rest 1 t/⌧ f (t, ⌧)= e− ⌧ = mean lifetime ⌧ Lack of memory (unique to exponential): f (t > t + t t > t )=f (t > t ) 0 1| 0 1 Probability for an unstable nucleus to decay in the next minute is independent of whether the nucleus was just created or already existed for a million years Statistical Methods in Particle Physics WS 2017/18 | K.

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    21 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us