Photosynthesis and Cellular Respiration

Total Page:16

File Type:pdf, Size:1020Kb

Photosynthesis and Cellular Respiration Biology – unit 3 examiners report; photosynthesis and cellular respiration We will be starting at 4:30pm. In the meantime, please check the following: • your computer speakers are on and volume is up, and your microphone is muted • click the chat icon to open the chat feed – use this to ask us questions • you have the accompanying Masterclass documents in front of you for reference If you are having any issues, please send us a message in the chat feed Exam Pitfalls • Some Common Pitfalls in Exam answers. 1. Not answering the question a. Always read the question in totality. Then go back and read it again to check that you have understood what is been asked. b. You interpret the question differently and you start to answer it, but you are off topic. Why? Some students haven’t had time to revise correctly, they have a set of pre-prepared answers that they fall back on or they have panicked into thinking they have understood the question. 2. Not looking at the mark scheme or the space provided a. Both the mark scheme and the space provided (if there is one) will provide clues about how much the examiners are expecting to see. Dot points are acceptable. A 4 mark question is not going to be answered by a one word response! 3. Panicking a. Some students go blank when they see the exam and it’s not what they think it should be. Step back. Take a deep breath, count to ten and then look at the paper again. Now read the question and write an answer down in your head. Examine the answer. Does it satisfy the criteria for the question? Write it down. A blank answer sheet will get no marks. 4. Time Management a. Look at the exam paper. How many multiple-choice questions and marks are there? Short answers? Plan your response time to each section and stick to it. If you finish early you can always go back and check the ones that you had doubts about. Photosynthesis the purpose of photosynthesis chloroplasts as the site of photosynthesis, an overview of their structure and evidence of their bacterial origins inputs and outputs of the light dependent and light independent (Calvin cycle) stages of photosynthesis in C3 plants (details of the biochemical pathway mechanisms are not required) factors that affect the rate of photosynthesis, including light, temperature and carbon dioxide concentration Cellular respiration the purpose of cellular respiration the location of, and the inputs and outputs of, glycolysis including ATP yield (details of the biochemical pathway mechanisms are not required) mitochondria as the site of aerobic cellular respiration, an overview of their structure and evidence of their bacterial origins the main inputs and outputs of the Krebs (citric acid) cycle and electron transport chain including ATP yield (details of the biochemical pathway mechanisms are not required) the location of anaerobic cellular respiration, its inputs and the difference in outputs between animals and yeasts including ATP yield factors that affect the rate of cellular respiration, including temperature, glucose availability and oxygen concentration Photosynthesis and Cellular Respiration Chapter 5 Photosynthesis Key knowledge • the purpose of photosynthesis • chloroplasts as the site of photosynthesis – Structure – Evidence of bacterial origins • inputs and outputs of the light dependent and light independent (Calvin cycle) stages of photosynthesis in C3 plants – details of the biochemical pathway mechanisms are not required • factors that affect the rate of photosynthesis – Light – Temperature – carbon dioxide concentration • What do these food webs have in common? • Where do we place Homo sapiens in these food webs? • What provides energy to all living things within our biosphere? ATP energy ATP used for: •Synthesis of anabolic reactions (such as synthesis of biomacromolecules) •Active transport •Other ‘active’ processes Endergonic and exergonic reactions ATP ADP + Pi ADP + Pi ATP Photosynthesis: importance • Sunlight (light energy) is the ultimate source of energy for almost all living organisms • Chlorophyll (a green pigment molecule) in green plants traps light energy and transforms it into chemical energy by the process of photosynthesis • Plants, algae and some bacteria are called autotrophs or producers because they produce their own food (or organic matter) in the form of carbohydrates; from inorganic compounds (water and carbon dioxide) • Animal, fungi and many bacteria are heterotrophs or consumers because they cannot produce their own food; they must consume (ingest or absorb) food (organic matter) in order to survive Red = photosynthesising organisms Photosynthesis: what is it? • is a reduction reaction (involves the removal of oxygen from an organic compound) – ‘reduction of carbon dioxide’ • is an anabolic, endergonic chemical reaction (i.e. requires energy) Reactant involved in photosynthesis: Products of photosynthesis: carbon dioxide (CO2) Glucose (C6H12O6) light energy Oxygen (O2) water (H2O) OR 6CO2 + 12H2O C6H12O6 + 6O2 + 6H2O Source of the reactants in plants? Source of the reactants in water dwelling photosynthetic organisms? Photosynthesis: where does it occur? Generally within cells in green leaves MESOPHYLL CELL grana stroma CHLOROPLAST CROSS-SECTION OF A LEAF http://www.robinsonlibrary.com/science/botany/anatomy/insideleaf.htm Stomata (stoma - plural) • Pores in a plant’s cuticle (protective surface) through which gases (including water vapor, CO2 and O2) are exchanged between the plant and the atmosphere Oxygen (O2) Carbon Dioxide (CO ) 2 Guard Cell Guard Cell Mesophyll Cell http://pixgood.com/mesophyll-cell-diagram.html Chloroplast • organelle in cytosol of plant cells Stroma (fluid matrix – contains enzymes for photosynthesis) – not present in non- also contains ribosomes and DNA photosynthesising cells (e.g. root Thylakoids (contain chlorophyll) hair cells) Outer Membrane stacks of flattened discs • contains a series of flattened Inner Membrane Granum (internal layers of membrane sacs (thylakoids) membrane) arranged into stacks called grana • Chlorophyll is found in the grana – light dependent reactions of photosynthesis occur here • Fluid of chloroplast is called the stroma and contains enzymes – light independent reactions of photosynthesis occur here – DNA and ribosomes also found Grana (plural) within http://www.vce.bioninja.com.au/aos-1-molecules-of-life/biochemical-processes/photosynthesis.html Endosymbiosis theory origin of chloroplasts • Chloroplasts were probably free-living prokaryotes in ‘ancient times’ since they contain ribosomes and DNA like cyanobacteria • Chloroplasts have a double membrane – Suggests they lived endosymbiotically within another cell Thylakoids contain chlorophyll Thylakoid Membrane Thylakoid Space Granum Chlorophyll molecules • Located in the thylakoid membranes. • Chlorophyll pigment molecules trap light energy by absorbing certain wavelengths of light (blue - 420 nm and red - 660 nm are most important). • Plants are green because green light is reflected from them, not absorbed. Wavelength of Light (nm) Photosynthesis reaction Involves two main chemical reactions 1. Light Reaction or Light Dependent Reaction Produces energy from sunlight in the form of ATP and NADPH. 2. Dark reaction or Light Independent Reaction or The Calvin cycle Uses energy (ATP and NADPH) from the light dependent reaction to make carbohydrates (glucose) from carbon dioxide and water http://www.vce.bioninja.com.au/aos-1-molecules-of-life/biochemical-processes/photosynthesis.html Light-dependent stage Light-independent stage What affects the rate of photosynthesis? Cellular Respiration Key knowledge • the purpose of cellular respiration • the location of, and the inputs and outputs of glycolysis including ATP yield • mitochondria as the site of aerobic cellular respiration, an overview of their structure and evidence of their bacterial origins • the main inputs and outputs of the Krebs (citric acid) cycle and electron transport chain including ATP yield • the location of anaerobic cellular respiration, its inputs and the difference in outputs between animals and yeasts including ATP yield • factors that affect the rate of cellular respiration, including temperature, glucose availability and oxygen concentration Cellular respiration • Cellular respiration is the controlled release of energy, via a series of enzyme-catalysed reactions, from organic compounds in cells to form ATP • The main organic compound used for this process is glucose, however lipids and proteins can also be broken down via modified processes – Animals must consume food to provide them with a constant supply of energy – When an animal is starved it obtains its energy from its own body tissues – when glucose (and all glycogen stores) is used up, fats and then proteins are used (97% of fat tissue, 31% of skeletal muscle tissue and 27% of blood can be used) • Two types of cellular respiration – Aerobic respiration – occurs in the presence of oxygen; involves the oxidation of glucose – Anaerobic respiration - occurs in the absence of oxygen Nature of Biology 2 Jacaranda Plus http://www.vce.bioninja.com.au/aos-1-molecules-of-life/biochemical-processes/cell-respiration.html Cellular respiration • Two types – Aerobic respiration (requires oxygen and mostly takes place in mitochondria) – Anaerobic respiration (does not require oxygen and takes place in cytosol of cell) • Aerobic respiration can be divided into three main stages: – Glycolysis (occurs in cytosol of cell) – Kreb’s cycle (occurs in mitochondria) – Electron transport chain (occurs
Recommended publications
  • Comparing Aerobic Vs. Anaerobic Respiration
    Comparing Aerobic vs. Anaerobic Respiration Objective: Students will compare the two types of cellular respiration: aerobic respiration and anaerobic respiration (fermentation). Students will note similarities and differences between the two processes including when, where, and how each process occurs. Students will develop a concept map using Inspiration indicating the criteria for aerobic and anaerobic respiration. This concept map will indicate: Three similarities between the two processes. Two types of cells that perform each process. Location in the cell where each process occurs. Oxygen requirements for each process. Reactants and products for each process. Energy output for each process. Two different types of anaerobic respiration. Reactants and products for each. Types of cells that perform each process. Introduction: This activity will follow a fermentation (anaerobic respiration) lab using yeast. This lab will address the process of alcoholic fermentation. Students will perform push-ups to experience lactic acid build-up in muscle cells. These activities will gain interest in the process of anaerobic respiration. Students will have already studied the detailed process of aerobic cellular respiration. Procedure: Students will work in pairs or trios to answer questions (as seen in benchmarks) on aerobic and anaerobic respiration. Students will use previous notes and lab activities to summarize main ideas for aerobic and anaerobic respiration. Individually, students will create a concept map using Inspiration to further integrate and separate the two processes. Accommodations: Instructions will be provided in written format as well as read orally. Instructions will also be on an overhead. One example will be provided for students on how to summarize data.
    [Show full text]
  • Glycolysis/Embden-Meyerhof-Parnas Pathway (EMP Pathway)
    Reaspiration iving cells require a continuous supply of energy for maintaining various life activities. This energy is obtained by oxidizing the organic compounds (carbohydrates, proteins, and lipids) Lin the cells. This process of harvesting chemical energy for metabolic activities in the form of ATP by oxidising the food molecules is called ‘respiration’. The most common substrate used in respiration for oxidation is glucose. Factor affecting the respiration (1) Oxygen Content of the Atmosphere: The percentage of oxygen in the surrounding atmosphere greatly influence the rate of respiration. But reduction of the oxygen content of the air, however, causes no significant lowering in the respiratory rate until the percentage drops to about 10%. With the increase of oxygen concentration in the atmosphere, the rate of respiration also increases, but this effect is not as accelerating as might be expected. In certain plants, like rice, on removal of oxygen the rate of respiration in terms of total carbon dioxide produced actually increases. This indicates that anaerobic respiration comes into action when oxygen is no longer available and that the plant, if it has to make up for the relative inefficiency of this system, has to respire faster. (2) Effect of Temperature: Like most chemical reactions, the rate of respiration is greatly influenced by temperature. If the rise is at a much higher starting temperature, say between 20° and 30°C, then the Q 10 may fall below 2. In certain cases the rate of respiration increases at lower temperature. increase in the rate of respiration is primarily due to increase in the quantity of respirable materials (such as soluble carbohydrates) which tend to accumulate in Irish potato at temperature slightly above 0°C.
    [Show full text]
  • Acute Stimulation of White Adipocyte Respiration by PKA-Induced Lipolysis Einav Yehuda-Shnaidman,1 Ben Buehrer,2 Jingbo Pi,1 Naresh Kumar,3 and Sheila Collins1,4
    ORIGINAL ARTICLE Acute Stimulation of White Adipocyte Respiration by PKA-Induced Lipolysis Einav Yehuda-Shnaidman,1 Ben Buehrer,2 Jingbo Pi,1 Naresh Kumar,3 and Sheila Collins1,4 OBJECTIVE—We examined the effect of ␤-adrenergic receptor BAT and WAT is different. Brown adipocytes possess a (␤AR) activation and cAMP-elevating agents on respiration and rich complement of mitochondria and are the only cell mitochondrial uncoupling in human adipocytes and probed the type to express uncoupling protein (UCP1). After cate- underlying molecular mechanisms. cholamine stimulation of the ␤-adrenergic receptors ␤ RESEARCH DESIGN AND METHODS—Oxygen consumption ( ARs), UCP1 activation (by the released FAs) increases rate (OCR, aerobic respiration) and extracellular acidification the proton conductance of the inner mitochondrial mem- rate (ECAR, anaerobic respiration) were examined in response brane (IMM) and dissipates the electrochemical proton to isoproterenol (ISO), forskolin (FSK), and dibutyryl-cAMP gradient that is the driving force for ATP synthesis in a (DB), coupled with measurements of mitochondrial depolariza- process termed “mitochondrial uncoupling” (rev. in 1,2). tion, lipolysis, kinase activities, and gene targeting or knock- Catecholamine stimulation also increases Ucp1 gene ex- down approaches. pression and mitochondrial mass, altogether resulting in RESULTS—ISO, FSK, or DB rapidly increased oxidative and robust oxidation of FAs for heat production and energy glycolytic respiration together with mitochondrial depolarization expenditure. White adipocytes have fewer mitochondria in human and mouse white adipocytes. The increase in OCR was and negligible amounts of UCP1. Upon ␤AR stimulation of oligomycin-insensitive and contingent on cAMP-dependent pro- WAT, FAs liberated by lipolysis are mostly released into tein kinase A (PKA)-induced lipolysis.
    [Show full text]
  • Anaerobic Respiration - Fermentation
    Anaerobic Respiration - Fermentation ! "Be ready to discuss •" Why do we need oxygen? Anaerobic Respiration - Fermentation KEY CONCEPT Fermentation allows the production of a small amount of ATP without oxygen. Anaerobic Respiration - Fermentation •" If no oxygen is available, cells can obtain energy through the process of anaerobic respiration. •" A common anaerobic process is fermentation. •" Fermentation is not an efficient process and results in the formation of far fewer ATP molecules than aerobic respiration. There are two primary fermentation processes: 1." Lactic Acid Fermentation 2." Alcohol Fermentation Anaerobic Respiration - Fermentation Lactic acid fermentation occurs when oxygen is not available. For example, in muscle tissues during rapid and vigorous exercise, muscle cells may be depleted of oxygen. They then switch from respiration to fermentation. Anaerobic Respiration - Fermentation The pyruvic acid formed during glycolysis is broken down to lactic acid and energy is released (which is used to form ATP). Glucose → Pyruvic acid → Lactic acid + energy Anaerobic Respiration - Fermentation •"The process of lactic acid fermentation replaces the process of aerobic respiration so that the cell can have a continual source of energy, even in the absence of oxygen. •"However this shift is only temporary and cells need oxygen for sustained activity. Anaerobic Respiration - Fermentation •"Lactic acid that builds up in the tissue causes a burning, painful sensation. Anaerobic Respiration - Fermentation Alcohol fermentation occurs in yeasts and some bacteria. Pyruvic acid formed during glycolysis is broken down to produce alcohol and carbon dioxide and is released (which is used to form ATP). Anaerobic Respiration - Fermentation Glucose → Pyruvic acid → alcohol + carbon dioxide + energy Anaerobic Respiration - Fermentation •" Fermentation is used in food production.
    [Show full text]
  • Ocean Life, Bioenergetics and Metabolism
    Ocean life, bioenergetics and metabolism Biological Oceanography (OCN 621) Matthew Church (MSB 612) Ecosystems are hierarchically organized • Atoms → Molecules → Cells → Organisms→ Populations→ Communities • This organizational system dictates the pathways that energy and material travel through a system. • Cells are the lowest level of structure capable of performing ALL the functions of life. Classification of life Two primary cellular forms • Prokaryotes: lack internal membrane-bound organelles. Genetic information is not separated from other cell functions. Bacteria and Archaea are prokaryotes. Note however this does not imply these divisions of life are closely related. • Eukaryotes: membrane-bound organelles (nucleus, mitochrondrion, etc .). Compartmentalization (organization) of different cellular functions allows sequential intracellular activities In the ocean, microscopic organisms account for >50% of the living biomass. Controls on types of organisms, abundances, distributions • Habitat: The physical/chemical setting or characteristics of a particular environment, e.g., light vs. dark, cold vs. warm, high vs. low pressure • Each marine habitat supports a somewhat predictable assemblage of organisms that collectively make up the community, e.g., rocky intertidal community, coral reef community, abyssobenthic community • The structure and function of the individuals/populations in these communities arise from evolution and selective adaptations in response to the habitat characteristics • Niche: The role of a particular organism in an integrated community •The ocean is not homogenous: spatial and temporal variability in habitats Clearly distinguishable ocean habitats with elevated “plant” biomass in regions where nutrients are elevated The ocean is stirred more than mixed Sea Surface Temperature Chl a (°C) (mg m-3) Spatial discontinuities at various scales (basin, mesoscale, microscale) in ocean habitats play important roles in controlling plankton growth and distributions.
    [Show full text]
  • Plant Physiology and Plant Development
    Plant Physiology and Plant Development PTS 351 B.Sc. B.Ed. Semester – VI Course Instructor Dr. Gautam Kumar Dr. Gautam Kr. Dept. of Life Sc. 1 Carbon Assimilation Light absorption and energy conversion Carbon dioxide uptake and assimilation Calvin Cycle (C3 Pathway) Hatch-Slack pathway (C4 Pathway) Photorespiration (C2 Pathway)/Glycolate metabolism Dr.Gautam Kr. Dept. of Life Sc. 2 • Visible light is electromagnetic radiation of wavelengths 400 to 700 nm, a small part of the electromagnetic spectrum ranging from violet to red. • The energy of a single photon (a quantum of light) is greater at the violet end of the spectrum than at the red end; shorter wavelength (and higher frequency) corresponds to higher energy. Dr.Gautam Kr. Dept. of Life Sc. 3 Solar energy as the ultimate source of all biological energy Photosynthetic organisms use the energy of sunlight to manufacture glucose and other organic products, which heterotrophic cells use as energy and carbon sources. The light reactions of photosynthesis generate energy rich NADPH and ATP at the expense of solar energy. These products are used in the carbon assimilation reactions, which occur in light or darkness, to reduce CO2 to form trioses and more complex compounds (such as glucose) derived from trioses. Dr.Gautam Kr. Dept. of Life Sc. 4 Absorption of visible light by Photo-pigments Plants are green because their pigments absorb light from the red and blue regions of the spectrum, leaving primarily green light to be reflected or transmitted Absorption spectra of the pigments with the spectrum of sunlight reaching the earth’s surface Dr.Gautam Kr.
    [Show full text]
  • Understanding the Role of Anaerobic Respiration in Burkholderia Thailandensis and B
    1 Understanding the role of anaerobic respiration in Burkholderia thailandensis and B. pseudomallei survival and virulence Submitted by Clio Alexandra Martin Andreae to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Science May 2014 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature………………………………………………………………………………… 2 Abstract Burkholderia pseudomallei is the causative agent of melioidosis, a disease endemic in Northern Australia and Southeast Asia. Melioidosis can present with acute, chronic and latent infections and can relapse several months or years after initial presentation. Currently not much is known about the ways in which B. pseudomallei can persist within the host, although it has been speculated that the ability to survive within an anaerobic environment will play some role. B. pseudomallei is able to survive anaerobically for extended periods of time but little is known about the molecular basis of anaerobic respiration in this pathogenic species. Bioinformatic analysis was used to determine the respiratory flexibility of both B. pseudomallei and B. thailandensis, identifying multiple genes required for aerobic and anaerobic respiration, and molybdopterin biosynthesis. Using B. thailandensis as a model organism a transposon mutant library was created in order to identify genes required for anaerobic respiration.
    [Show full text]
  • Metabolic Fate of Glucose Metabolic Fate of Fatty Acids
    CHEM464/Medh, J.D. Integration of Metabolism Metabolic Fate of Glucose • Each class of biomolecule has alternative fates depending on the metabolic state of the body. • Glucose: The intracellular form of glucose is glucose-6- phosphate. • Only liver cells have the enzyme glucose-6-phosphatase that dephosphorylates G-6-P and releases glucose into the blood for use by other tissues • G-6-P can be oxidized for energy in the form of ATP and NADH • G-6-P can be converted to acetyl CoA and then fat. • Excess G-6-P is stored away as glycogen. • G-6-P can be shunted into the pentose phosphate pathway to generate NADPH and ribose-5-phosphate. Metabolic Fate of Fatty Acids • Fatty acids are oxidized to acetyl CoA for energy production in the form of NADH. • Fatty acids can be converted to ketone bodies. KB can be used as fuel in extrahepatic tissues. • Palmityl CoA is a precursor of mono- and poly- unsaturated fatty acids. • Fatty acids are used for the biosynthesis of bioactive molecules such as arachidonic acid and eicosanoids. • Cholesterol, steroids and steroid hormones are all derived from fatty acids. • Excess fatty acids are stored away as triglycerides in adipose tissue. 1 CHEM464/Medh, J.D. Integration of Metabolism Metabolic Fate of Amino Acids • Amino acids are used for the synthesis of enzymes, transporters and other physiologically significant proteins. • Amino acid N is required for synthesis of the cell’s genetic information (synthesis of nitrogenous bases). • Several biologically active molecules such as neuro- transmitters, porphyrins etc. • Amino acids are precursors of several hormones (peptide hormones like insulin and glucagon and Amine hormones such as catecholamines).
    [Show full text]
  • Cellular Respiration 1
    Cellular Respiration 1. The process that produces FADH2 and NADH to power the electron transport chain a. Glycolysis b. the electron transport chain c. the Krebs cycle d. alcoholic fermentation 2. Aerobic respiration that involves proton pumps, ATP synthase, and the synthesis of up to 34 ATP molecules per glucose is called a. the Krebs cycle b. glycolysis c. fermentation d. the electron transport chain 3. During glycolysis, ____________ molecules of ATP are used to power the process, while ____________ molecules of ATP are made overall." a. 4; 2 b. 4; 4 c. 2; 4 d. 2; 2 4. Cellular respiration in the presence of oxygen is called a. cellular respiration b. aerobic respiration c. anaerobic respiration d. glycolysis 5. A channel protein and enzyme that makes ATP is called a. proton pump b. ATP synthase c. electron transport chain d. Krebs cycle 6. The end product of glycolysis is a. FADH2 b. Pyruvate c. Glucose d. None of the above 7. An energy-carrying compound produced during the Krebs cycle is called a. FADH2 b. NADH c. ATP d. More than one answer is true 8. Cellular respiration in the absence of oxygen is called a. aerobic respiration b. cellular respiration c. anaerobic respiration d. electron transport chain 9. An energy-carrying compound created in the Krebs Cycle and used during the Electron Transport chain is a. FADH2 b. Pyruvate c. Glucose d. Lactic acid Cellular Respiration 10. The second stage of cellular respiration, _______________, involves the creation of important electron-carriers needed to help synthesize ATP. a. the Krebs cycle b.
    [Show full text]
  • Cellular Respiration How Is Energy Transferred and Transformed in Living Systems? Why ?
    Cellular Respiration How is energy transferred and transformed in living systems? Why ? Living organisms display the property of metabolism, which is a general term to describe the processes carried out to acquire and use energy. We know that people need to eat, and in our foods are various kinds of nutrients that our cells use. One large group of nutrients in our foods is carbohydrates, which supply our cells with glucose (C6H12O6). So the question is: How does the food we chew and swallow fuel our cells? Model 1 – Glycolysis Cell membrane NAD NADH ADP ATP ADP NAD ! = pyruvic acid (3 C) ATP NADH = glucose (6 C) = mitochondrion = nucleus NUCLEUS 1. Refer to Model 1. a. What is represented by the hexagon? GLUCOSE b. How many carbon atoms (C) are in one molecule of glucose? SIX 2. Refer to Model 1. a. What is represented by the triangles? PYRUVIC ACID b. How many carbon atoms (C) are in one molecule of pyruvic acid? THREE 3. In the process of glycolysis, what happens to glucose after it crosses the cell membrane into the cytoplasm of the cell? GLUCOSE IS BROKEN DOWN INTO PYRUVIC ACID (2) Cellular 1 Respiration Read This! Glycolysis occurs in the cytoplasm of cells and does not require the presence of oxygen. Therefore, the process is anaerobic. It is the first step used by cells to extract energy from glucose in the form of ATP. ATP can be directly used by cells. 4. Thinking about the number of carbon atoms in glucose and in pyruvic acid, explain why there is one molecule of glucose on the left side of the arrow and two molecules of pyruvic acid on the right side of the arrow.
    [Show full text]
  • Cellular Respiration 1 Cellular Respiration
    Cellular respiration 1 Cellular respiration Cellular respiration is the set of the metabolic reactions and processes that take place in the cells of organisms to convert biochemical energy from nutrients into adenosine triphosphate (ATP), and then release waste products.[1] The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, releasing energy in the process as weak so-called "high-energy" bonds are replaced by stronger bonds in the products. Respiration is one of the key ways a cell gains useful energy to fuel cellular activity. Cellular respiration is considered an Typical eukaryotic cell. exothermic redox reaction. The overall reaction is broken into many smaller ones when it occurs in the body, most of which are redox reactions themselves. Although technically, cellular respiration is a combustion reaction, it clearly does not resemble one when it occurs in a living cell. This difference is because it occurs in many separate steps. While the overall reaction is a combustion reaction, no single reaction that comprises it is a combustion reaction. Nutrients that are commonly used by animal and plant cells in respiration include sugar, amino acids and fatty acids, and a common oxidizing agent (electron acceptor) is molecular oxygen (O ). The energy stored in ATP (its third 2 phosphate group is weakly bonded to the rest of the molecule and is cheaply broken allowing stronger bonds to form, thereby transferring energy for use by the cell) can then be used to drive processes requiring energy, including biosynthesis, locomotion or transportation of molecules across cell membranes. Cellular respiration 2 Aerobic respiration Aerobic respiration requires oxygen in order to generate ATP.
    [Show full text]
  • 1 Cellular Respiration: Harvesting Chemical Energy Introduction
    Cellular Respiration: Harvesting Chemical Energy Chapter 9 • Objectives • Define oxidation and reduction, and, in general terms, explain how redox reactions are involved in energy exchanges. • Name the three stages of cellular respiration and state the region of the eukaryotic cell where each stage occurs. • In general terms, explain the role of the electron transport chain in cellular respiration. • Explain where and how the respiratory electron transport chain creates a proton gradient. • Distinguish between fermentation and anaerobic respiration 2 Introduction • Harvesting chemical energy forms part of a cycle involving mitochondria and chloroplasts 3 1 Catabolic Pathways and Production of ATP • Slow burning of food generates ATP – the breakdown of organic molecules is exergonic • In the absence of O 2 food molecules are “fermented” – sugars are partially degraded 5 • Cellular respiration is the most prevalent and efficient catabolic pathway – consumes oxygen and organic molecules such as glucose and yields ATP 6 2 • To keep working cells must regenerate ATP – cell respiration stores energy in ATP molecules • overall equation: –C6H12 O6 + 6O 2 → 6CO 2 + 6H 2O + energy • efficiency ~40% compared with car ~25% • Energy is used for body maintenance and voluntary activity – average human needs ~2200kcal/day 7 Redox Reactions: Oxidation and Reduction • Catabolic pathways yield energy due to the transfer of electrons • Paired endergonic-exergonic reactions are known as redox (reduction-oxidation) reactions – redox reactions transfer electrons
    [Show full text]