Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Fast Elliptic Curve Cryptography in Openssl
Fast Elliptic Curve Cryptography in OpenSSL Emilia K¨asper1;2 1 Google 2 Katholieke Universiteit Leuven, ESAT/COSIC [email protected] Abstract. We present a 64-bit optimized implementation of the NIST and SECG-standardized elliptic curve P-224. Our implementation is fully integrated into OpenSSL 1.0.1: full TLS handshakes using a 1024-bit RSA certificate and ephemeral Elliptic Curve Diffie-Hellman key ex- change over P-224 now run at twice the speed of standard OpenSSL, while atomic elliptic curve operations are up to 4 times faster. In ad- dition, our implementation is immune to timing attacks|most notably, we show how to do small table look-ups in a cache-timing resistant way, allowing us to use precomputation. To put our results in context, we also discuss the various security-performance trade-offs available to TLS applications. Keywords: elliptic curve cryptography, OpenSSL, side-channel attacks, fast implementations 1 Introduction 1.1 Introduction to TLS Transport Layer Security (TLS), the successor to Secure Socket Layer (SSL), is a protocol for securing network communications. In its most common use, it is the \S" (standing for \Secure") in HTTPS. Two of the most popular open- source cryptographic libraries implementing SSL and TLS are OpenSSL [19] and Mozilla Network Security Services (NSS) [17]: OpenSSL is found in, e.g., the Apache-SSL secure web server, while NSS is used by Mozilla Firefox and Chrome web browsers, amongst others. TLS provides authentication between connecting parties, as well as encryp- tion of all transmitted content. Thus, before any application data is transmit- ted, peers perform authentication and key exchange in a TLS handshake. -
The Legacy of Export-Grade Cryptography in the 21St Century
The legacy of export-grade cryptography in the 21st century Nadia Heninger University of Pennsylvania October 6, 2016 International Traffic in Arms Regulations April 1, 1992 version Category XIII--Auxiliary Military Equipment ... (b) Information Security Systems and equipment, cryptographic devices, software, and components specifically designed or modified therefore, including: (1) Cryptographic (including key management) systems, equipment, assemblies, modules, integrated circuits, components or software with the capability of maintaining secrecy or confidentiality of information or information systems, except cryptographic equipment and software as follows: (i) Restricted to decryption functions specifically designed to allow the execution of copy protected software, provided the decryption functions are not user-accessible. (ii) Specially designed, developed or modified for use in machines for banking or money transactions, and restricted to use only in such transactions. Machines for banking or money transactions include automatic teller machines, self-service statement printers, point of sale terminals or equipment for the encryption of interbanking transactions. ... Timeline of US cryptography export control I Pre-1994: Encryption software requires individual export license as a munition. I 1994: US State Department amends ITAR regulations to allow export of approved software to approved countries without individual licenses. 40-bit symmetric cryptography was understood to be approved under this scheme. I 1995: Netscape develops initial SSL protocol. I 1996: Bernstein v. United States; California judge rules ITAR regulations are unconstitutional because \code is speech" I 1996: Cryptography regulation moved to Department of Commerce. I 1999: TLS 1.0 standardized. I 2000: Department of Commerce loosens regulations on mass-market and open source software. Commerce Control List: Category 5 - Info. -
Dynamic Public Key Certificates with Forward Secrecy
electronics Article Dynamic Public Key Certificates with Forward Secrecy Hung-Yu Chien Department of Information Management, National Chi Nan University, Nantou 54561, Taiwan; [email protected] Abstract: Conventionally, public key certificates bind one subject with one static public key so that the subject can facilitate the services of the public key infrastructure (PKI). In PKI, certificates need to be renewed (or revoked) for several practical reasons, including certificate expiration, private key breaches, condition changes, and possible risk reduction. The certificate renewal process is very costly, especially for those environments where online authorities are not available or the connection is not reliable. A dynamic public key certificate (DPKC) facilitates the dynamic changeover of the current public–private key pairs without renewing the certificate authority (CA). This paper extends the previous study in several aspects: (1) we formally define the DPKC; (2) we formally define the security properties; (3) we propose another implementation of the Krawczyk–Rabin chameleon-hash- based DPKC; (4) we propose two variants of DPKC, using the Ateniese–Medeiros key-exposure-free chameleon hash; (5) we detail two application scenarios. Keywords: dynamic public key certificate; chameleon signature; certificate renewal; wireless sensor networks; perfect forward secrecy 1. Introduction Citation: Chien, H.-Y. Dynamic Certificates act as the critical tokens in conventional PKI systems. With the trust Public Key Certificates with Forward of the CA, a -
SSL Checklist for Pentesters
SSL Checklist for Pentesters Jerome Smith BSides MCR, 27th June 2014 # whoami whoami jerome • Pentester • Author/trainer – Hands-on technical – Web application, infrastructure, wireless security • Security projects – Log correlation – Dirty data – Incident response exercises • Sysadmin • MSc Computing Science (Dist) • www.exploresecurity.com | @exploresecurity Introduction • Broad review of SSL/TLS checks – Viewpoint of pentester – Pitfalls – Manually replicating what tools do (unless you told the client that SSL Labs would be testing them ) – Issues to consider reporting (but views are my own) • While SSL issues are generally low in priority, it’s nice to get them right! • I’m not a cryptographer: this is all best efforts SSLv2 • Flawed, e.g. no handshake protection → MITM downgrade • Modern browsers do not support SSLv2 anyway – Except for IE but it’s disabled by default from IE7 – That mitigates the risk these days – http://en.wikipedia.org/wiki/Transport_Layer_Security#W eb_browsers • OpenSSL 1.0.0+ doesn’t support it – Which means SSLscan won’t find it – General point: tools that dynamically link to an underlying SSL library in the OS can be limited by what that library supports SSLv2 • Same scan on different OpenSSL versions: SSLv2 • testssl.sh warns you – It can work with any installed OpenSSL version • OpenSSL <1.0.0 s_client -ssl2 switch – More on this later • Recompile OpenSSL – http://blog.opensecurityresearch.com/2013/05/fixing-sslv2-support- in-kali-linux.html • SSLyze 0.7+ is statically linked – Watch out for bug https://github.com/iSECPartners/sslyze/issues/73 -
Sicherheit in Kommunikationsnetzen (Network Security)
Sicherheit in Kommunikationsnetzen (Network Security) Transport Layer Security Dr.-Ing. Matthäus Wander Universität Duisburg-Essen Transport Layer Security (TLS) PrivateTLS data Web browser Web server ∙ Cryptographic protocol ∘ Provides security on top of reliable transport (TCP) ∘ Used to secure HTTP, SMTP, IMAP, XMPP and others ∙ Security goals ∘ Authentication of server and optionally client ∘ Data integrity (no manipulation of data) ∘ Confidentiality (encryption) Universität Duisburg-Essen Matthäus Wander 2 Verteilte Systeme History ∙ Predecessor: Secure Sockets Layer (SSL) ∘ Developed by Netscape for HTTPS (= HTTP + SSL) ∙ 1994: SSL 2.0 ∘ Insecure, major security weaknesses ∙ 1995: SSL 3.0 ∘ Insecure, deprecated since 2015 (RFC 7568) ∙ 1999: TLS 1.0, minor improvements to SSL 3.0 ∘ Standardization and further development by IETF Universität Duisburg-Essen Matthäus Wander 3 Verteilte Systeme History ∙ 2003: TLS Extensions ∘ New features or security mechanisms (e.g. Encrypt-then-MAC, RFC 7366) ∙ 2006: TLS 1.1 ∘ Security improvements ∙ 2008: TLS 1.2 Presented in this lecture ∘ Added new or replaced old cryptographic algorithms ∙ TLS 1.3 is work in progress as of 2017 ∘ Outlook: new handshake and other major changes Universität Duisburg-Essen Matthäus Wander 4 Verteilte Systeme Protocol Overview Application Layer (e.g. HTTP) Handshake Change Cipher Application Alert Protocol Protocol Spec Protocol Data Protocol Record Protocol Transport Layer (e.g. TCP) ∙ TLS consists of two layers: ∘ Handshake Protocol and other protocols ∘ Record Protocol -
Lest We Remember: Cold Boot Attacks on Encryption Keys
Lest We Remember: Cold Boot Attacks on Encryption Keys J. Alex Halderman*, Seth D. Schoen†, Nadia Heninger*, William Clarkson, William Paul‡, Joseph A. Calandrino*, Ariel J. Feldman*, Jacob Appelbaum and Edward W. Felten* *Princeton University †Electronic Frontier Foundation ‡Wind River Systems USENIX Security Symposium, 2008 Presented by: Andra-Maria Ilieș Seminar in Computer Architecture 1 Executive summary ■ Problem: DRAMs lose their data gradually after the power is cut ■ Goal: Present a new type of attack which exploits remanence effect ■ Method: ■ Acquire usable full-system memory image ■ Extract cryptographic key ■ Gain access to secret data ■ Evaluation: succeeded on most popular disk encryption systems 2 Background, Problem & Goal 3 DRAM ■ A DRAM cell consists of a capacitor and an access transistor. ■ It stores data in terms of change in the capacitor. wordline access transistor bitline bitline storage bitline capacitor 4 DRAM refresh ■ DRAM capacitor charge leaks over time ■ Each DRAM row is refreshed periodically to restore charge ■ Period usually is 64 ms ■ Retention time: maximum time a cell can go without being refreshed while maintaining its stored data ■ Decay: bit flips caused by charge leak ■ Cell leak = cell decays to ground state ■ When powered off DRAM loses its data completely 5 Retention time and temperature ■ Contents survive at some extent even at room temperature ■ LINK, W., AND MAY, H. Eigenschaften von MOS - Ein Transistorspeicherzellen bei tiefen Temperaturen. Archiv fur Elekotronik und Ubertragungstechnik 33 (June 1979), 229–235 ■ DRAM showed no data loss for a full week without refresh when cooled with liquid nitrogen ■ Retention time can be increased by cooling 6 Retention time and booting ■ Chow, Jim & Pfaff, Ben & Garfinkel, Tal & Rosenblum, Mendel. -
Case 2:16-Cv-06287-PD Document 8 Filed 12/06/16 Page 1 of 74
Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 1 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 2 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 3 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 4 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 5 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 6 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 7 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 8 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 9 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 10 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 11 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 12 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 13 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 14 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 15 of 74 Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 16 of 74 Exhibit A Case 2:16-cv-06287-PD Document 8 Filed 12/06/16 Page 17 of 74 J. -
Prying Open Pandora's Box: KCI Attacks Against
Prying open Pandora’s box: KCI attacks against TLS Clemens Hlauschek, Markus Gruber, Florian Fankhauser, Christian Schanes RISE – Research Industrial Systems Engineering GmbH {clemens.hlauschek, markus.gruber, florian.fankhauser, christian.schanes}@rise-world.com Abstract and implementations of the protocol: their utility is ex- tremely limited, their raison d’ˆetre is practically nil, and Protection of Internet communication is becoming more the existence of these insecure key agreement options common in many products, as the demand for privacy only adds to the arsenal of attack vectors against cryp- in an age of state-level adversaries and crime syndi- tographically secured communication on the Internet. cates is steadily increasing. The industry standard for doing this is TLS. The TLS protocol supports a multi- 1 Introduction tude of key agreement and authentication options which provide various different security guarantees. Recent at- The TLS protocol [1, 2, 3] is probably the most tacks showed that this plethora of cryptographic options widely used cryptographic protocol on the Internet. in TLS (including long forgotten government backdoors, It is designed to secure the communication between which have been cunningly inserted via export restric- client/server applications against eavesdropping, tamper- tion laws) is a Pandora’s box, waiting to be pried open by ing, and message forgery, and it also provides additional, heinous computer whizzes. Novel attacks lay hidden in optional security properties such as client authentica- plainsight. Parts of TLS areso oldthat theirfoul smell of tion. TLS is an historically grown giant: its predecessor, rot cannot be easily distinguished from the flowery smell SSL [4,5], was developed more than 20 years ago. -
ACLU V. Clapper
Case 1:13-cv-03994-WHP Document 27 Filed 08/26/13 Page 1 of 35 UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF NEW YORK AMERICAN CIVIL LIBERTIES UNION; AMERICAN CIVIL LIBERTIES UNION FOUNDATION; NEW YORK CIVIL LIBERTIES UNION; and NEW YORK CIVIL LIBERTIES UNION FOUNDATION, Plaintiffs, DECLARATION OF PROFESSOR v. EDWARD W. FELTEN JAMES R. CLAPPER, in his official capacity as Director of National Intelligence; KEITH B. Case No. 13-cv-03994 (WHP) ALEXANDER, in his official capacity as Director of the National Security Agency and Chief of the ECF CASE Central Security Service; CHARLES T. HAGEL, in his official capacity as Secretary of Defense; ERIC H. HOLDER, in his official capacity as Attorney General of the United States; and ROBERT S. MUELLER III, in his official capacity as Director of the Federal Bureau of Investigation, Defendants. DECLARATION OF PROFESSOR EDWARD W. FELTEN I, Edward W. Felten, declare under penalty of perjury, pursuant to 28 U.S.C. § 1746, that the following is true and correct: 1. The plaintiffs in this lawsuit have challenged what they term the “mass call-tracking” program of the National Security Agency, and they have asked me to explain the sensitive nature of metadata, particularly when obtained in the aggregate. Below, I discuss how advances in technology and the proliferation of metadata-producing devices, such as phones, have produced rich metadata trails. Many details of our lives can be gleaned by examining those trails, which often yield information more easily than do the actual content of our communications. Case 1:13-cv-03994-WHP Document 27 Filed 08/26/13 Page 2 of 35 Superimposing our metadata trails onto the trails of everyone within our social group and those of everyone within our contacts’ social groups, paints a picture that can be startlingly detailed. -
Cold Boot Attacks on Encryption Keys
Lest We Remember: Cold Boot Attacks on Encryption Keys † ‡ J. Alex Halderman∗, Seth D. Schoen , Nadia Heninger∗, William Clarkson∗, William Paul , Joseph A. Calandrino∗, Ariel J. Feldman∗, Jacob Appelbaum, and Edward W. Felten∗ † ‡ ∗ Princeton University Electronic Frontier Foundation Wind River Systems jhalderm, nadiah, wclarkso, jcalandr, ajfeldma, felten @cs.princeton.edu { } [email protected], [email protected], [email protected] Abstract memory. They pose a particular threat to laptop users who rely on disk encryption products, since an adversary who Contrary to popular assumption, DRAMs used in most steals a laptop while an encrypted disk is mounted could modern computers retain their contents for several sec- employ our attacks to access the contents, even if the com- onds after power is lost, even at room temperature and puter is screen-locked or suspended. We demonstrate this even if removed from a motherboard. Although DRAMs risk by defeating several popular disk encryption systems, become less reliable when they are not refreshed, they including BitLocker, TrueCrypt, and FileVault, and we are not immediately erased, and their contents persist expect many similar products are also vulnerable. sufficiently for malicious (or forensic) acquisition of us- able full-system memory images. We show that this phe- While our principal focus is disk encryption, any sen- nomenon limits the ability of an operating system to pro- sitive data present in memory when an attacker gains tect cryptographic key material from an attacker with physical access to the system could be subject to attack. physical access. We use cold reboots to mount successful Many other security systems are probably vulnerable. -
IT Security Guidelines for Transport Layer Security (TLS)
IT Security Guidelines for Transport Layer Security (TLS) National Cyber Security Centre The National Cyber Security Centre (NCSC), in collaboration with The following organizations and individuals have provided the business community, government bodies and academics, is valuable contributions: working to increase the ability of Dutch society to defend itself in - Autoriteit Persoonsgegevens the digital domain. - Belastingdienst - Centric The NCSC supports the central government and organisations in - Dienst Publiek en Communicatie the critical infrastructure sectors by providing them with expertise - Forum Standaardisatie and advice, incident response and with actions to strengthen crisis - IBD management. In addition, the NCSC provides information and - KPN advice to citizens, the government and the business community - NLnet Labs relating to awareness and prevention. The NCSC thus constitutes - Northwave the central reporting and information point for IT threats and - Platform Internetstandaarden security incidents. - RDW - SURFnet These IT Security Guidelines for Transport Layer Security were frst - de Volksbank published by the NCSC in 2014. This update (v2.1) was published in - Z-CERT 2021. See the appendix Changes to these guidelines for more details. - Daniel Kahn Gillmor, ACLU This publication was produced in collaboration with the following - Tanja Lange, Eindhoven University of Technology partners: - Kenny Paterson, ETH Zurich - the national communication security agency (NBV), part of the - Rich Salz, Akamai Technologies general -
Forward Secrecy of SPAKE2
Forward Secrecy of SPAKE2 Jos´eBecerra, Dimiter Ostrev, and Marjan Skrobotˇ University of Luxembourg Interdisciplinary Centre for Security, Reliability and Trust 6, Avenue de la Fonte, L-4364, Esch-sur-Alzette, Luxembourg fjose.becerra, dimiter.ostrev, [email protected] Abstract. Currently, the Simple Password-Based Encrypted Key Ex- change (SPAKE2) protocol of Abdalla and Pointcheval (CT-RSA 2005) is being considered by the IETF for standardization and integration in TLS 1.3. Although it has been proven secure in the Find-then-Guess model of Bellare, Pointcheval and Rogaway (EUROCRYPT 2000), whether it satisfies some notion of forward secrecy remains an open question. In this work, we prove that the SPAKE2 protocol satisfies the so-called weak forward secrecy introduced by Krawczyk (CRYPTO 2005). Further- more, we demonstrate that the incorporation of key-confirmation codes in SPAKE2 results in a protocol that provably satisfies the stronger no- tion of perfect forward secrecy. As forward secrecy is an explicit require- ment for cipher suites supported in the TLS handshake, we believe this work could fill the gap in the literature and facilitate the adoption of SPAKE2 in the recently approved TLS 1.3. Keywords: Provable Security, Password Authenticated Key Exchange, For- ward Secrecy, Common Reference String. 1 Introduction 1.1 SPAKE2 Protocol Password Authenticated Key Exchange (PAKE) protocols allow two users, who only share a password, to agree on a high-entropy session key over a hostile network. The goal is to use the established session key to build a secure channel between the involved parties. The nature of passwords makes PAKEs vulnerable to on-line dictionary attacks, where an adversary tries to impersonate a user by guessing his password, engaging in a protocol execution and verifying if its guess was correct.