Chapter 3 Notes CHEM 1331
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Thermodynamics of Ion Exchange
Chapter 1 Thermodynamics of Ion Exchange Ayben Kilislioğlu Additional information is available at the end of the chapter http://dx.doi.org/10.5772/53558 1. Introduction 1.1. Ion exchange equilibria During an ion exchange process, ions are essentially stepped from the solvent phase to the solid surface. As the binding of an ion takes place at the solid surface, the rotational and translational freedom of the solute are reduced. Therefore, the entropy change (ΔS) during ion exchange is negative. For ion exchange to be convenient, Gibbs free energy change (ΔG) must be negative, which in turn requires the enthalpy change to be negative because ΔG = ΔH - TΔS. Both enthalpic (ΔHo) and entropic (ΔSo) changes help decide the overall selectivity of the ion-exchange process [Marcus Y., SenGupta A. K. 2004]. Thermodynamics have great efficiency on the impulsion of ion exchange. It also sets the equilibrium distribution of ions between the solution and the solid. A discussion about the role of thermodynamics relevant to both of these phenomena was done by researchers [Araujo R., 2004]. As the basic rule of ion exchange, one type of a free mobile ion of a solution become fixed on the solid surface by releasing a different kind of an ion from the solid surface. It is a reversible process which means that there is no permanent change on the solid surface by the process. Ion exchange has many applications in different fields like enviromental, medical, technological,.. etc. To evaluate the properties and efficiency of the ion exchange one must determine the equilibrium conditions. -
2 Amount and Concentration: Making and Diluting Solutions 2 Amount and Concentration; Making and Diluting Solutions
Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions.........................................................1 2A Rationale.............................................................................................................................1 2B Distinguishing between amount and concentration, g and %w/v..........................................1 2C Distinguishing between amount and concentration, moles and molar...................................2 2D Practice converting g/L to M and vice versa........................................................................3 2E Diluting Solutions ...............................................................................................................5 2F Practice calculating dilutions ...............................................................................................6 Summary of learning objectives................................................................................................7 2A Rationale Biological and biochemical investigations rely completely upon being able to detect the concentration of a variety of substances. For example, in diabetics it is important to know the concentration of glucose in the blood and you may also need to be able to calculate how much insulin would need to be dissolved in a certain volume of saline so as to give the right amount in a 1ml injection volume. It is also vitally -
Determination of the Molar Mass of an Unknown Solid by Freezing Point Depression
Determination of the Molar Mass of an Unknown Solid by Freezing Point Depression GOAL AND OVERVIEW In the first part of the lab, a series of solutions will be made in order to determine the freezing point depression constant, Kf, for cyclohexane. The freezing points of these solutions, which will contain known amounts of p-dichlorobenzene dissolved in cyclohexane, will be measured. In the second part of the lab, the freezing point of a cyclohexane solution will be prepared that contains a known mass of an unknown organic solid. The measured freezing point change will be used to calculate the molar mass of the unknown solid. Objectives and Science Skills • Understand and explain colligative properties of solutions, including freezing point depression. • Measure the freezing point of a pure solvent and of a solution in that solvent containing an unknown solute. • Calculate the molar mass of the unknown solute and determine its probable identity from a set of choices. • Quantify the expected freezing point change in a solution of known molality. • Quantitatively and qualitatively compare experimental results with theoretical values. • Identify and discuss factors or effects that may contribute to the uncertainties in values determined from experimental data. SUGGESTED REVIEW AND EXTERNAL READING • Reference information on thermodynamics; data analysis; relevant textbook information BACKGROUND If a liquid is at a higher temperature than its surroundings, the liquid's temperature will fall as it gives up heat to the surroundings. When the liquid's temperature reaches its freezing point, the liquid's temperature will not fall as it continues to give up heat to the surroundings. -
Chemistry: Empirical & Molecular Formulas
Chemistry: Empirical & Molecular Formulas Name______________________ 1) What is the empirical formula for C15H30O5H5? 2) A compound has an empirical formula of C2H4O3N. Its molar mass is 359 g. What is the molecular formula? 3) A compound contains 12.7 g iron & 7.29 g oxygen. Its molar mass is 87.85 g. What is its empirical formula? What is its molecular formula? 4) A compound contains 65.6% carbon, 9.45% hydrogen & 25.0% oxygen. Its molar mass is 1922.85 g. What is its empirical formula? What is its molecular formula? 5) A compound contains 92.2% carbon & 7.75% hydrogen. It has a molar mass of 118 g. What is its empirical formula? What is its molecular formula? 6) A compound has an empirical formula of C2H5O3N. Its molar mass is 454 g. What is its molecular formula? 7) What is the empirical formula for C20H32O4N4? 8) A compound contains 69.6% carbon, 9.76% hydrogen & 20.6% oxygen. Its molar mass is 465.72 g. What is its empirical formula? What is its molecular formula? 9) A compound contains 42.044 g carbon & 7.956 g hydrogen. Its molar mass is 114.26 g. What is its empirical formula? What is its molecular formula? 10) A compound contains 30.79 g copper & 19.31 g oxygen. Its molar mass is 207 g. What is its empirical formula? What is its molecular formula? 11) A compound contains 40.9% carbon, 4.58% hydrogen & 54.5% oxygen. Its molar mass is 176.1 g. What is its empirical formula? What is its molecular formula? 12) A compound has an empirical formula of CH2O & a gram molecular mass of 180.16 g. -
About SI Units
Units SI units: International system of units (French: “SI” means “Système Internationale”) The seven SI base units are: Mass: kg Defined by the prototype “standard kilogram” located in Paris. The standard kilogram is made of Pt metal. Length: m Originally defined by the prototype “standard meter” located in Paris. Then defined as 1,650,763.73 wavelengths of the orange-red radiation of Krypton86 under certain specified conditions. (Official definition: The distance traveled by light in vacuum during a time interval of 1 / 299 792 458 of a second) Time: s The second is defined as the duration of a certain number of oscillations of radiation coming from Cs atoms. (Official definition: The second is the duration of 9,192,631,770 periods of the radiation of the hyperfine- level transition of the ground state of the Cs133 atom) Current: A Defined as the current that causes a certain force between two parallel wires. (Official definition: The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2 × 10-7 Newton per meter of length. Temperature: K One percent of the temperature difference between boiling point and freezing point of water. (Official definition: The Kelvin, unit of thermodynamic temperature, is the fraction 1 / 273.16 of the thermodynamic temperature of the triple point of water. Amount of substance: mol The amount of a substance that contains Avogadro’s number NAvo = 6.0221 × 1023 of atoms or molecules. -
Energy and the Hydrogen Economy
Energy and the Hydrogen Economy Ulf Bossel Fuel Cell Consultant Morgenacherstrasse 2F CH-5452 Oberrohrdorf / Switzerland +41-56-496-7292 and Baldur Eliasson ABB Switzerland Ltd. Corporate Research CH-5405 Baden-Dättwil / Switzerland Abstract Between production and use any commercial product is subject to the following processes: packaging, transportation, storage and transfer. The same is true for hydrogen in a “Hydrogen Economy”. Hydrogen has to be packaged by compression or liquefaction, it has to be transported by surface vehicles or pipelines, it has to be stored and transferred. Generated by electrolysis or chemistry, the fuel gas has to go through theses market procedures before it can be used by the customer, even if it is produced locally at filling stations. As there are no environmental or energetic advantages in producing hydrogen from natural gas or other hydrocarbons, we do not consider this option, although hydrogen can be chemically synthesized at relative low cost. In the past, hydrogen production and hydrogen use have been addressed by many, assuming that hydrogen gas is just another gaseous energy carrier and that it can be handled much like natural gas in today’s energy economy. With this study we present an analysis of the energy required to operate a pure hydrogen economy. High-grade electricity from renewable or nuclear sources is needed not only to generate hydrogen, but also for all other essential steps of a hydrogen economy. But because of the molecular structure of hydrogen, a hydrogen infrastructure is much more energy-intensive than a natural gas economy. In this study, the energy consumed by each stage is related to the energy content (higher heating value HHV) of the delivered hydrogen itself. -
WS 4.2: Empirical Formula Problems
Name: Answer Key Period: ______ Date: __________ Chem B odds for HW and evens for review WS 4.2: Empirical Formula Problems Directions: Determine the empirical formula for the following substances. If a molecular formula cannot be reduced, write “cannot be reduced in the box for empirical formula” Molecular Formula Empirical Formula Molecular Formula Empirical Formula 1) C6H6 CH 2) C10H18 C5H9 3) C8H18 C4H9 4) C7H15O2 Not reducible 5) WO2 Not reducible 6) N2H4 NH2 7) C2H6O2 CH3O 8) P3F6 PF2 9) X39Y13 X3Y 10) IF5 Not reducible 11) C4H10 C2H5 12) N2O5 Not reducible 13) C6H12O6 CH2O 14) N2O4 NO2 15) P2F4 PF2 16) SF6 Not reducible 17) SO3 Not reducible 18) N2Cl4 NCl2 19) N2Br4 NBr2 20) P2O5 Not reducible Directions: Solve the following problems. You may need to use a separate sheet of paper. 1) What is the empirical formula for a compound which 3) Barry Um has a sample of a compound which weighs 200 contains 0.0134 g of iron, 0.00769 g of sulfur and 0.0115 g of grams and contains only carbon, hydrogen, oxygen and oxygen? nitrogen. By analysis, he finds that it contains 97.56 grams of carbon, 4.878 g of hydrogen, 52.03 g of oxygen and 45.53 g of nitrogen. Find its empirical formula. 3 FeSO C5H3N2O2 2) A compound is found to contain 53.7 % iron and 46.27 % sulfur. Find its empirical formula. 4) What is the empirical formula for a compound which contains 80.3% zinc and the rest is oxygen? Fe2S3 ZnO 5) Rubbing alcohol was found to contain 60.0 % carbon, 13.4 9) Give the name and empirical formula of a compound % hydrogen, and the remaining mass was due to oxygen. -
Δtb = M × Kb, Δtf = M × Kf
8.1HW Colligative Properties.doc Colligative Properties of Solvents Use the Equations given in your notes to solve the Colligative Property Questions. ΔTb = m × Kb, ΔTf = m × Kf Freezing Boiling K K Solvent Formula Point f b Point (°C) (°C/m) (°C/m) (°C) Water H2O 0.000 100.000 1.858 0.521 Acetic acid HC2H3O2 16.60 118.5 3.59 3.08 Benzene C6H6 5.455 80.2 5.065 2.61 Camphor C10H16O 179.5 ... 40 ... Carbon disulfide CS2 ... 46.3 ... 2.40 Cyclohexane C6H12 6.55 80.74 20.0 2.79 Ethanol C2H5OH ... 78.3 ... 1.07 1. Which solvent’s freezing point is depressed the most by the addition of a solute? This is determined by the Freezing Point Depression constant, Kf. The substance with the highest value for Kf will be affected the most. This would be Camphor with a constant of 40. 2. Which solvent’s freezing point is depressed the least by the addition of a solute? By the same logic as above, the substance with the lowest value for Kf will be affected the least. This is water. Certainly the case could be made that Carbon disulfide and Ethanol are affected the least as they do not have a constant. 3. Which solvent’s boiling point is elevated the least by the addition of a solute? Water 4. Which solvent’s boiling point is elevated the most by the addition of a solute? Acetic Acid 5. How does Kf relate to Kb? Kf > Kb (fill in the blank) The freezing point constant is always greater. -
Guide for the Use of the International System of Units (SI)
Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S. -
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions. -
2.1.3 Amount of Substance the Mole Is the Key Concept for Chemical Calculations
2.1.3 Amount of substance The mole is the key concept for chemical calculations DEFINITION: The mole is the amount of substance in grams that has the same number of particles as there are atoms in 12 grams of carbon-12. DEFINITION: Relative atomic mass is the average mass of one atom compared to one twelfth of the mass of one atom of carbon-12 DEFINITION: Molar Mass is the mass in grams of 1 mole of a substance and is given the unit of g mol-1 Molar Mass for a compound can be calculated by adding up the mass numbers(from the periodic table) of each element in the compound eg CaCO3 = 40.1 + 12.0 +16.0 x3 = 100.1 molar gas volume (gas volume per mole, units dm3 mol–1) . This is the volume of 1 mole of a gas at a given temperature and pressure. All gases have this same volume. At room pressure (1atm) and room temperature 25oC the molar gas volume is 24 dm3 mol–1 Avogadro's Constant There are 6.02 x 1023 atoms in 12 grams of carbon-12. Therefore explained in simpler terms 'One mole of any specified entity contains 6.02 x 1023 of that entity': 1 mole of copper atoms will contain 6.02 x 1023 atoms Avogadro's Constant can be 1 mole of carbon dioxide molecules will contain 6.02 x 1023 molecules used for atoms, molecules and 1 mole of sodium ions will contain 6.02 x 1023 ions ions For pure solids, liquids and gases Example 1: What is the amount, in mol, in 35.0g of CuSO4? amount = mass amount = mass/Mr Mr = 35/ (63.5 + 32 +16 x4) Unit of Mass: grams = 0.219 mol Unit of amount : mol Many questions will involve changes of units 1000 mg =1g 1000 g =1kg 1000kg = 1 tonne Significant Figures Give your answers to the same number of significant figures as the Example 2: What is the amount, in mol, in 75.0mg of number of significant figures for the CaSO4.2H2O? data you given in a question. -
Empirical and Molecular Formula Notes • the Empirical Formula of A
Empirical and Molecular Formula Notes The empirical formula of a compound shows the ratio of elements present in a compound The molecular formula of a compound shows how many atoms of each element are present in a molecule of a compound. o Example: the compound butene has a molecular formula of C4H8. The empirical formula of butene is CH2 because there is a 1:2 ratio of carbon atoms to hydrogen atoms. Finding the molecular formula when given the empirical formula The molecular formula is just a multiple of the empirical formula. Take a look at butene: o CH2 x n = C4H8 so n=4. What is the molar mass of butene? . If the empirical formula of a compound is CH2, then you can find the molar mass of the empirical formula: 12.0+ 2(1.0) = 14.0 g/mol . 14.0 g/mol x 4 = 56 g/mol What if I have a compound with an empirical formula of CH2 that has a molar mass of 84 g/mol. What is the molecular formula of this compound? o 14.0 g/mol x n = 84 g/mol so n = 6 o CH2 x 6 = C6H12 Try a few: 1. What is the empirical formula of C8H10? C6H12O6? 2. What is the molecular formula of a molecule that has an empirical formula of NO2 and a molar mass of 92 g/mol? 3. Consider a molecule that has an empirical formula of SO3 and a molecular formula of S3O9. What is the molar mass of the molecule? Calculating empirical formula from percent composition Answer this question: What is the empirical formula of a compound that contains 25.53% Mg and 74.47% Cl? Steps: 1.