Oil-Based Parenteral Depot Formulation for Veterinary Peptide Delivery

Total Page:16

File Type:pdf, Size:1020Kb

Oil-Based Parenteral Depot Formulation for Veterinary Peptide Delivery DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR CHEMIE UND PHARMAZIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN Oil-Based Parenteral Depot Formulation for Veterinary Peptide Delivery YORDANKA ZHIVKOVA YORDANOVA aus Shumen, Bulgarien 2018 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Wolfgang Frieß betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, den 16.09.2018 ............................................................................. Yordanka Yordanova Dissertation eingereicht am 11.10.2018 1. Gutachter: Prof. Dr. Wolfgang Frieß 2. Gutachter: Prof. Dr. Gerhard Winter Mündliche Prüfung am 30.10.2018 To my parents and my sister Thank you for always being there for me in the moments when I am most scared to make the next step. Your never ending support has inspired me to carry on moving and never stop dreaming. I feel blessed and proud to have you by my side! За моите родители и за моята сестра, които винаги са били до мен и са ми помагали да направя следващата стъпка, когато най-много ме е било страх. Вашата безкрайна подкрепа ме кара да продължавам напред и да не спирам да мечтая. Щастлива съм че ви имам! CONTENTS PREFACE ............................................................................................................................................... XI 1 GNRH [6-D-PHE] ACETATE OIL DEPOT SUSPENSION ............................................................. 3 1.1 INTRODUCTION ................................................................................................................... 3 1.2 THE ESTROUS CYCLE IN PIGS .......................................................................................... 4 1.3 CURRENT SYNCHRONIZATION TREATMENTS ............................................................ 5 1.3.1 Estrus synchronization..................................................................................................... 5 1.3.2 Stimulation of follicular development ............................................................................. 6 1.3.3 Induction of ovulation ..................................................................................................... 6 1.4 GENERAL FORMULATION REQUIREMENTS FROM A VETERINARY PERSPECTIVE ................................................................................................................................... 6 1.5 RESEARCH FOCUS, FORMULATION DEVELOPMENT REQUIREMENTS AND STUDIES ............................................................................................................................................ 8 1.5.1 Selection and Composition of the Oily Vehicle .............................................................. 9 1.5.2 Incorporated GnRH [6-D-Phe] acetate and Micronization Process .............................. 10 1.5.3 Sustained Release .......................................................................................................... 10 1.5.4 Selection of a Suitable In Vitro Release Model ............................................................ 11 1.6 AIMS ..................................................................................................................................... 11 1.7 REFERENCES ...................................................................................................................... 13 1.8 FIGURES AND TABLES ..................................................................................................... 18 2 PURE OIL MIXTURES AS A DELIVERY VEHICLE FOR GNRH [6-D-PHE] ACETATE .......... 21 2.1 INTRODUCTION ................................................................................................................. 21 2.2 RESULTS AND DISCUSSION............................................................................................ 23 2.2.1 Oil mixtures for extended release of GnRH [6-D-Phe] ................................................. 23 2.2.2 Oil Spreading at the Injection Site ................................................................................. 24 2.2.3 GnRH [6-D-Phe] Micronization and Particles Characterization ................................... 24 2.2.4 Suspension-and Cryogenic-Milled GnRH [6-D-Phe] .................................................... 26 2.2.5 GnRH [6-D-Phe] Oil Depot Suspension ....................................................................... 27 2.2.6 Rheology ....................................................................................................................... 27 2.2.7 Injection Force Determination ....................................................................................... 28 2.2.8 In vitro Release Model Selection and Studies ............................................................... 29 2.2.9 In vivo 1st Preclinical Study........................................................................................... 29 2.3 CONCLUSION ..................................................................................................................... 31 2.4 MATERIALS AND METHODS .......................................................................................... 32 2.5 REFERENCES AND ACKNOWLEDGMENTS ................................................................. 35 vii 2.6 SUPPLEMENTARY DATA ................................................................................................. 37 2.7 FIGURES AND TABLES ..................................................................................................... 41 3 GNRH [6-D-PHE] ACETATE OIL DEPOT SUSPENSION STABILITY ....................................... 45 3.1 INTRODUCTION ................................................................................................................. 45 3.2 RESULTS AND DISCUSSION............................................................................................ 46 3.2.1 Content Uniformity ....................................................................................................... 46 3.2.2 Particle Size Distribution and Characterization ............................................................. 47 3.2.3 Rheology ....................................................................................................................... 48 3.2.4 Injection Force Determination ....................................................................................... 50 3.2.5 Oil Vehicle Oxidation.................................................................................................... 51 3.3 CONCLUSION ..................................................................................................................... 51 3.4 MATERIALS AND METHODS .......................................................................................... 53 3.5 REFERENCES AND ACKNOWLEDGMENTS ................................................................. 56 3.6 SUPPLEMENTARY DATA ................................................................................................. 58 3.7 FIGURES AND TABLES ..................................................................................................... 60 4 GNRH [6-D-PHE] ACETATE OIL DEPOT SUSPENSION: THE EFFECT OF ADDITIVES ON THE RELEASE CHARACTERISTICS ................................................................................................. 63 4.1 INTRODUCTION ................................................................................................................. 63 4.2 RESULTS AND DISCUSSION............................................................................................ 65 4.2.1 Preliminary Study of Gelling Agent, Wetting Agent and Resuspendibility enhancer .. 65 4.2.2 GnRH [6-D-Phe]-Additives Oil Depot Suspension ....................................................... 66 4.2.3 Rheology ....................................................................................................................... 68 4.2.4 Injection Force Determination ....................................................................................... 71 4.2.5 Particle Size Distribution and Characterization ............................................................. 71 4.2.6 Oil-Water Interface ........................................................................................................ 73 4.2.7 Self-Emulsifying Character ........................................................................................... 74 4.2.8 In vitro Release Studies ................................................................................................. 76 4.2.9 In vivo 2nd Preclinical Study ........................................................................................ 78 4.3 CONCLUSION ..................................................................................................................... 80 4.4 MATERIALS AND METHODS .......................................................................................... 81 4.5 REFERENCES AND ACKNOWLEDGMENTS ................................................................. 84 4.6 SUPPLEMENTARY DATA ................................................................................................. 86 4.7 FIGURES AND TABLES ..................................................................................................... 91 5 GNRH [6-D-PHE] ACETATE OIL DEPOT SUSPENSION: THE EFFECT OF POLYMERS ON THE RELEASE CHARACTERISTICS ................................................................................................
Recommended publications
  • Bovine Somatotropin in Milk
    Utah State University DigitalCommons@USU Archived Food and Health Publications Archived USU Extension Publications 1999 Bovine Somatotropin in Milk Charlotte P. Brennand PhD Utah State University Extension Clell V. Bagley DVM Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/extension_histfood Part of the Animal Sciences Commons, Food Processing Commons, and the Nutrition Commons Warning: The information in this series may be obsolete. It is presented here for historical purposes only. For the most up to date information please visit The Utah State University Cooperative Extension Office Recommended Citation Brennand, Charlotte P. PhD and Bagley, Clell V. DVM, "Bovine Somatotropin in Milk" (1999). Archived Food and Health Publications. Paper 32. https://digitalcommons.usu.edu/extension_histfood/32 This Factsheet is brought to you for free and open access by the Archived USU Extension Publications at DigitalCommons@USU. It has been accepted for inclusion in Archived Food and Health Publications by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EL 250.6 UTAH STATE UNIVERSITY COOPERATIVE EXTENSION FOOD SAFETY FACT 8UEET m1888 FOOD SAFTBY SBRIBS by Charlotte P. Brennand, PhD Clell V. Bagley, DVM Extension Food Safety Specialist Extension Veterinarian Bovine Somatotropin in Milk What is Bovine Sources of BST/BGH Biotechnology Somatotropin? production of BST Early research efforts used crude extracts from bovine pituitary Bovine Somatotropin (BST), The genes responsible for pro­ glands. Although the treated cows also called bovine growth hormone duction of BST in cattle were iden­ increased their milk production, the (BGH), is a hormone produced by tified in bovine tissue cells; they amount of available BST was too the cow's pituitary gland.
    [Show full text]
  • Fully Automated Dried Blood Spot Sample Preparation Enables the Detection of Lower Molecular Mass Peptide and Non-Peptide Doping Agents by Means of LC-HRMS
    Analytical and Bioanalytical Chemistry (2020) 412:3765–3777 https://doi.org/10.1007/s00216-020-02634-4 RESEARCH PAPER Fully automated dried blood spot sample preparation enables the detection of lower molecular mass peptide and non-peptide doping agents by means of LC-HRMS Tobias Lange1 & Andreas Thomas1 & Katja Walpurgis1 & Mario Thevis1,2 Received: 10 December 2019 /Revised: 26 March 2020 /Accepted: 31 March 2020 # The Author(s) 2020 Abstract The added value of dried blood spot (DBS) samples complementing the information obtained from commonly routine doping control matrices is continuously increasing in sports drug testing. In this project, a robotic-assisted non-destructive hematocrit measurement from dried blood spots by near-infrared spectroscopy followed by a fully automated sample preparation including strong cation exchange solid-phase extraction and evaporation enabled the detection of 46 lower molecular mass (< 2 kDa) peptide and non-peptide drugs and drug candidates by means of LC-HRMS. The target analytes included, amongst others, agonists of the gonadotropin-releasing hormone receptor, the ghrelin receptor, the human growth hormone receptor, and the antidiuretic hormone receptor. Furthermore, several glycine derivatives of growth hormone–releasing peptides (GHRPs), argu- ably designed to undermine current anti-doping testing approaches, were implemented to the presented detection method. The initial testing assay was validated according to the World Anti-Doping Agency guidelines with estimated LODs between 0.5 and 20 ng/mL. As a proof of concept, authentic post-administration specimens containing GHRP-2 and GHRP-6 were successfully analyzed. Furthermore, DBS obtained from a sampling device operating with microneedles for blood collection from the upper arm were analyzed and the matrix was cross-validated for selected parameters.
    [Show full text]
  • Bovine Somatotropin (Bst) – Possible Increased Use of Antibiotics to Treat Mastitis in Cows, October 30, 2013
    Bovine Somatotropin (bST) – Possible Increased Use of Antibiotics to Treat Mastitis in Cows, October 30, 2013 Suzanne J. Sechen, Ph.D. Leader, Ruminant Drugs Team Division of Production Drugs Office of New Animal Drug Evaluation Center for Veterinary Medicine, Food and Drug Administration Rockville, MD, U.S.A. The following report was submitted by FDA’s Center for Veterinary Medicine for consideration in the re-evaluation of bovine somatotropin at the seventy-eighth meeting on residues of veterinary drugs by the Joint FAO/WHO Expert Committee (JECFA) on Food Additives, held November 5-14, 2013 BACKGROUND The United States Food and Drug Administration (FDA) approved a formulation of recombinant bovine growth hormone (bST) in 1993, sometribove zinc, for administration to lactating dairy cows to increase milk production. The FDA concluded that use of the drug increased the risk of clinical mastitis in treated cows, and that it may also increase milk somatic cell count1. Approved labeling for the product communicates these risks. These conclusions were reconfirmed in 2003 when the FDA approved a supplemental application for this bST product following reanalysis by the sponsor of the original data and new, post- approval monitoring program (PAMP) data using more accurate mixed-model analyses, not available at the time of the original approval2. At the time of the original approval, FDA concluded that the increase in clinical mastitis in sometribove-treated cows was not a public health concern in terms of antibiotic residues in milk being increased above tolerance due to therapeutic treatment of mastitis1. When examined on a per unit milk basis, the increase in the incidence of clinical mastitis due to sometribove (approximately 0.1 case per cow per year) was about 4 to 9 times less than the effects due to other sources of variation, such as season, parity, stage of lactation, and herd-to-herd variation.
    [Show full text]
  • The Use of an Intravaginal Triptorelin Gel to Induce Ovulation in the Mare
    THE USE OF AN INTRAVAGINAL TRIPTORELIN GEL TO INDUCE OVULATION IN THE MARE by CHELSEA D. SINCLAIR B.S., Clemson University, 2013 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Animal Sciences and Industry College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Approved by: Major Professor Dr. Joann M. Kouba Copyright CHELSEA D. SINCLAIR 2016 Abstract The objective of these studies was to investigate the efficacy of an intravaginal triptorelin acetate (TA) gel as an ovulation-inducing agent in mares. In Exp 1, 24 mares were stratified by parity and age and randomly assigned to 3 treatment groups receiving either: 5 mL TA gel (500 μg TA; TA5), 10 mL TA gel (1,000 μg TA; TA10), or 5 mL vehicle gel only (CON). Following the appearance of a follicle ≥ 25 mm, blood samples were obtained every 24 h until treatment administration for measurement of luteinizing hormone (LH) concentrations. Once a follicle ≥ 35 mm in diameter was detected, treatment was administered intravaginally. Following treatment, blood samples were collected and ovaries were scanned via transrectal ultrasonography every 12 h until 48 h post-ovulation. Both TA5 and TA10 tended (P = 0.08) to experience a brief surge in LH by 12 h post-treatment. Regarding LH concentrations, there was a significant (P < 0.005) treatment by time interaction. The interval from treatment to ovulation was not different (P > 0.05) between groups, nor was there a difference (P > 0.05) in the percentage of mares ovulating within 48 h of treatment administration.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,235,712 B1 Stevenson Et Al
    US006235.712B1 (12) United States Patent (10) Patent No.: US 6,235,712 B1 Stevenson et al. (45) Date of Patent: May 22, 2001 (54) NON-AQUEOUS POLARAPROTIC PEPTIDE Helm, et al., “Stability of Gonadorelin and Triptorelin in FORMULATIONS Aqueous Solution”, Pharm. Res., 7/12, pp. 1253-1256 (1990). (75) Inventors: Cynthia L. Stevenson; Steven J. Johnson, et al., “Degradation of the LH-RHAnalog Nafare Prestrelski, both of Mountain View, CA lin Acetate in Aqueous Solution”, Intl. J. Pharm., 31, pp. (US) 125-129 (1986). 73) Assignee:9. ALZA Corporation,p Mountain View, Lupron (leuprolide acetate for Subcutaneous injection), Phy CA (US) sician's Desk Ref, 50th Ed., pp. 2555-2556 (1996). Lupron Depot (leuprolide acetate for depot Suspension), * ) Notice: Subject to anyy disclaimer, the term of this Physician's Desk Ref, 50th Ed., pp. 2556-2562 (1996). patent is extended or adjusted under 35 Lutrepulse (gonadorelin acetate for IV injection), Physi U.S.C. 154(b) by 0 days. cian's Desk Ref, 50th Ed., pp.980–982 (1996). Okada, et al., “New Degradation Product of (21) Appl. No.: 09/514,951 Des-Gly'-NH-LH-RH-Ethylamide (Fertirelin) in Aque (22) Filed: Feb. 28, 2000 ous Solution”, J. Pharm. Sci., 80/2, pp. 167–170 (1991). Okada, et al., “Preparation of Three-Month Depot Injectable Related U.S. Application Data MicroSpheres of Leuprorelin Acetate Using Biodegradable Polymers”, Pharm. Res., 11/8, pp. 1143–1147 (1994). (62) Division of application No. 09/293,839, filed on Apr. 19, 1999, now Pat. No. 6,124,261, which is a continuation of Oyler, et al., “Characterization of the Solution Degradation application No.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Reproductionresearch
    REPRODUCTIONRESEARCH Relationships between FSH patterns and follicular dynamics and the temporal associations among hormones in natural and GnRH-induced gonadotropin surges in heifers J M Haughian, O J Ginther1,KKot1 and M C Wiltbank Department of Dairy Science, 1675 Observatory Drive and 1Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA Correspondence should be addressed to M C Wiltbank; Email: [email protected] Abstract Preovulatory LH and FSH surges and the subsequent periovulatory FSH surge were studied in heifers treated with a single injection of GnRH (100 mg, n 5 6) or saline (n 5 7). Blood samples were collected every hour from 6 h before treatment until 12 h after the largest follicle reached $8.5 mm (expected beginning of follicular deviation). The GnRH-induced preovulatory LH and FSH surges were higher at the peak and shorter in duration than in controls, but the area under the curve was not different between groups. The profiles of the preovulatory LH and FSH surges were similar within each treatment group, suggesting that the two surges involved a common GnRH-dependent mechanism. Concentrations of FSH in controls at the nadir before the preovulatory surge and at the beginning and end of the periovulatory surge were not significantly different among the three nadirs. A relationship between variability in the periovulatory FSH surge and number of 5.0 mm follicles was shown by lower FSH concentrations during 12–48 h after the beginning of the surge in heifers with more follicles (11.0 6 1.0 follicles (mean6S.E.M.) n 5 7) than in heifers with fewer follicles (5.7 6 0.4, n 5 6).
    [Show full text]
  • Investigation of the Presence of Gnrh and Gnrh-R System in Bovine
    Investigation of the Presence of GnRH and GnRH-R System in Bovine Oocytes, Sperm and Early Embryos and their Functional Role in Reproduction by USWATTELIYANARALALAGE FELICIA RUWANIE PERERA B.V.Sc., University of Peradeniya, Peradeniya, Sri Lanka, 2001 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Animal Science) THE UNIVERSITY OF BRITISH COLUMBIA (VANCOUVER) April 2010 ©Uswatteliyanaralalage Felicia Ruwanie Perera, 2010 ABSTRACT The objectives of this study were to investigate: 1) the effect of GnRH agonist on oocyte maturation, sperm function and fertilization, 2) the presence of GnRH-R in bovine oocytes, sperm and early embryos. To examine the effect of GnRH agonist on sperm function, sperm were incubated in modified Tyrode’s medium with 0, 0.2, 0.4, 0.8 and 1.2 µgmL -1 of buserelin and with1 -1 µgmL P4 for 3 h. Acrosome status in each group was assessed at 0 h and 3 h. For zona- binding assay, in vitro matured oocytes were co-incubated with sperm in different concentrations of buserelin and P 4 for 4 h and the zona-bound sperm in each treatment group was determined. Acrosome reacted percentage were higher in sperm treated with 0.4, 0.8 µgmL -1 buserelin than the control group (p<0.001). The number of zona-bound sperm were higher in 0.8 µgmL -1 buserelin compared to negative control (p<0.01). Effect of buserelin was blocked by antide. To investigate the effect of GnRHa on maturation of bovine oocytes 0.8 µgmL -1 buserelin was added to the in vitro maturation media and maturation rate was obtained after 24 h against control groups with FSH and without FSH.
    [Show full text]
  • Somatotropin Physiology
    S.Afr.J.Anim.Sci.,199 4, 24(1) Somatotropinphysiology - a review J.G.van der Walt Departmentof Physiology,Veterinary Science, University of Pretoria,Onderstepoort, 0110 Republicof SouthAf rica Received4 June 1993;accepted l5 November/,993 The continuing search for improved efficiency has led to the introduction of exogenousgrowth and lactation promo- tants to enhance traditional animal production systems.Various species-limitedsomatotropins have been synthesized by meansof recombinantgene technology,thereby allowing milk productionin dairy cattle,and lcan meat production in pigs, sheep and cattle to be manipulated.Growth hormone occurs in plasma in several forms, which overlap considerably with the structuresof placental lactogen and prolactin. The peptide is stabilized by two disulphidc bridges,and is folded into four a-helix regions.The somatogenicand lactogenicregions have been mapped,and two different binding sites found. Somatotropinis secretedepisodically from the anterior pituitary with a sniking ultradian rhythm in all mammals investigated thus far. The primary control over this release would appear to be neuro- endocrinological,with somatostatinand releasinghormone (GHRH) playing the major roles, with considerablespecics differences.Starvation primes the systemto optimally releasesomatotropin when feedingrecommences. While sexual dimorphism in the releaseof somatotropinhas been clearly demonstratedin the rat, most studiesin other specieshave concentratedon male animals. Although somatotropinexhibis negative feedback on its release,it
    [Show full text]
  • Reproductive Endocrinology of the Dog
    Reproductive endocrinology of the dog Effects of medical and surgical intervention Jeffrey de Gier 2011 Cover: Anjolieke Dertien, Multimedia; photos: Jeffrey de Gier Lay-out: Nicole Nijhuis, Gildeprint Drukkerijen, Enschede Printing: Gildeprint Drukkerijen, Enschede De Gier, J., Reproductive endocrinology of the dog, effects of medical and surgical intervention, PhD thesis, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands Copyright © 2011 J. de Gier, Utrecht, The Netherlands ISBN: 978-90-393-5687-6 Correspondence and requests for reprints: [email protected] Reproductive endocrinology of the dog Effects of medical and surgical intervention Endocrinologie van de voortplanting van de hond Effecten van medicamenteus en chirurgisch ingrijpen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 20 december 2011 des middags te 12.45 uur door Jeffrey de Gier geboren op 14 mei 1973 te ’s-Gravenhage Promotor: Prof.dr. J. Rothuizen Co-promotoren: Dr. H.S. Kooistra Dr. A.C. Schaefers-Okkens Publication of this thesis was made possible by the generous financial support of: AUV Dierenartsencoöperatie Boehringer Ingelheim B.V. Dechra Veterinary Products B.V. J.E. Jurriaanse Stichting Merial B.V. MSD Animal Health Novartis Consumer Health B.V. Royal Canin Nederland B.V. Virbac Nederland B.V. Voor mijn ouders
    [Show full text]
  • The Role of Somatostatin in the Regulation of Gonadotropin Secretion in Sheep
    Graduate Theses, Dissertations, and Problem Reports 2017 The Role of Somatostatin in the Regulation of Gonadotropin Secretion in Sheep Richard B. McCosh Follow this and additional works at: https://researchrepository.wvu.edu/etd Recommended Citation McCosh, Richard B., "The Role of Somatostatin in the Regulation of Gonadotropin Secretion in Sheep" (2017). Graduate Theses, Dissertations, and Problem Reports. 6194. https://researchrepository.wvu.edu/etd/6194 This Dissertation is protected by copyright and/or related rights. It has been brought to you by the The Research Repository @ WVU with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you must obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Dissertation has been accepted for inclusion in WVU Graduate Theses, Dissertations, and Problem Reports collection by an authorized administrator of The Research Repository @ WVU. For more information, please contact [email protected]. The Role of Somatostatin in the Regulation of Gonadotropin Secretion in Sheep Richard B. McCosh Dissertation submitted to the School of Medicine at West Virginia University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical Science Cellular and Integrative Physiology Robert L. Goodman, PhD; Mentor Stanley M. Hileman, PhD; Chair Michael W. Vernon, PhD Steven L. Hardy, PhD Donal C. Skinner, PhD Department of Physiology and Pharmacology Morgantown, West Virginia 2017 Key Words: gonadotropin releasing hormone, luteinizing hormone, somatostatin, kisspeptin, sheep Copyright 2017 Richard B.
    [Show full text]
  • This Thesis Has Been Approved by the Honors Tutorial College and Department of Biological Sciences
    This thesis has been approved by The Honors Tutorial College and Department of Biological Sciences ___________________________________ Dr. Darlene Berryman Professor, School of Applied Health Sciences and Wellness College of Health Sciences and Professions Thesis Adviser __________________________________ Dr. Soichi Tanda Director of Studies, Honors Tutorial College Biological Sciences _________________________________ Jeremy Webster Dean, Honors Tutorial College THE EFFECT OF GROWTH HORMONE ON THE MACROPHAGE CONTENT OF DIFFERENT ADIPOSE TISSUE DEPOTS A Thesis Presented to The Honors Tutorial College Ohio University _____________________________________________ In Partial Fulfillment Of the Requirements for Graduation From the Honors Tutorial College With the Degree of Bachelor of Science in Biological Sciences _____________________________________________ By Rachel D Munn June 2011 1 Table of Contents Acknowledgements…………………………………………………3 Abstract……………………………………………………………...4 Introduction…………………………………………………………6 Adipose Tissue………………………………………………6 Adipose Tissue Depots……………………………………...7 Obesity………………………………………………………11 Inflammation………………………………………………..12 Macrophages………………………………………………..14 Physiological Function……………………………...14 Adipose Tissue Macrophages……………………….15 Growth Hormone……………………………………………18 Function……………………………………………..19 Growth Hormone and Macrophages………………..23 Growth Hormone and Adipose……………………...24 Transgenic Mouse Models…………………………………..26 Significance of Research…………………………………….29 Materials and Methods…………………………………………….30 Results……………………………………………………………….36
    [Show full text]