The Mathematics of Lars Valerian Ahlfors Frederick Gehring; Irwin Kra; Steven G

Total Page:16

File Type:pdf, Size:1020Kb

The Mathematics of Lars Valerian Ahlfors Frederick Gehring; Irwin Kra; Steven G The Mathematics of Lars Valerian Ahlfors Frederick Gehring; Irwin Kra; Steven G. Krantz, Editor; and Robert Osserman Lars Valerian Ahlfors died October 11, 1996, and function theory to bring to bear in studying the a memorial article appears elsewhere in this issue. geometry of the surface. The most notable suc- This feature article contains three essays about dif- cesses of this approach have been in the study of ferent aspects of his mathematics. Ahlfors’s con- minimal surfaces, as exemplified in the contribu- tributions were so substantial and so diverse that tions to that subject made by some of the leading it would not be possible to do all of them justice in function theorists of the nineteenth century: Rie- an article of this scope (the reference [36] serves as mann, Weierstrass, and Schwarz. a detailed map of Ahlfors’s contributions to the In the other direction, given a Riemann surface, subject). These essays give the flavor of some of the one can consider those metrics on the surface that ideas that Ahlfors studied. induce the given conformal structure. By the Koebe —Steven G. Krantz, Editor uniformization theorem, such metrics always exist. In fact, for “classical Riemann surfaces” of the sort originally considered by Riemann, which are Conformal branched covering surfaces of the plane, there is the natural euclidean metric obtained by pulling back the standard metric on the plane under the Geometry projection map. One can also consider the Rie- Robert Osserman mann surface to lie over the Riemann sphere model of the extended complex plane and to lift the There are two directions in which one can pursue spherical metric to the surface. Both of those met- the relations between Riemann surfaces and Rie- rics prove very useful for obtaining information mannian manifolds. First, if a two-dimensional about the complex structure of the surface. Riemannian manifold is given, then not only lengths For simply connected Riemann surfaces the but also angles are well defined, so that it inher- Koebe uniformization theorem tells us that they its a conformal structure. Furthermore, there al- are all conformally equivalent to the sphere, the ways exist local isothermal coordinates, which are plane, or the unit disk. Since the first case is dis- local conformal maps from the plane into the sur- tinguished from the other two by the topological face. (That was proved by Gauss for real analytic property of compactness, the interesting question surfaces and early in the twentieth century for the concerning complex structure is deciding in the general case by Korn and Lichtenstein.) The set of noncompact case whether a given surface is con- all such local maps forms a complex structure for formally the plane or the disk, which became the manifold, which can then be thought of as a known as the parabolic and hyperbolic cases, re- Riemann surface. One then has all of complex spectively. In 1932 Andreas Speiser formulated the “problem of type”, which was to find criteria Steven G. Krantz is professor of mathematics at Wash- that could be applied to various classes of Riemann ington University in St. Louis. His e-mail address is surfaces to decide whether a given one was para- [email protected]. bolic or hyperbolic. That problem and variants of Robert Osserman is professor of mathematics emeritus at it became a central focus of Ahlfors’s work for sev- Stanford University and special projects director at MSRI. eral decades. He started by obtaining conditions FEBRUARY 1998 NOTICES OF THE AMS 233 for a branched prising: that Nevanlinna could develop his entire surface to be of theory without the geometric picture to go with it parabolic type in or that Ahlfors could condense the whole theory terms of the into fourteen pages. number of Not satisfied that he had yet got to the heart of branch points Nevanlinna theory from a geometric point of view, within a given Ahlfors went on to present two further versions distance of a of the theory. The first, also from 1935, was one fixed point on of his masterpieces: the theory of covering surfaces. the surface, first The guiding intuition of the paper is this: If a mero- using the euclid- morphic function is given, then the fundamental ean metric and quantities studied in Nevanlinna theory, such as later realizing the counting function, determined by the number that a much bet- of points inside a disk of given radius where the ter result could function assumes a given value, and the Nevanlinna be obtained characteristic function, measuring the growth of from the spher- the function, can be reinterpreted as properties of ical metric. But the Riemann surface of the image of the function, perhaps his viewed as a covering surface of the Riemann sphere. main insight The counting function, for example, just tells how was that one many points in the part of the image surface given could give a nec- by the image of the disk lie over the given point essary and suf- on the sphere. The exhaustion of the plane by Lars Valerian Ahlfors ficient condition disks of increasing radii is replaced by an ex- by looking at the haustion of the image surface. Ahlfors succeeds in totality of all showing that by using a combination of metric conformal metrics on the surface. and topological arguments (the metric being that The problem of type may be viewed as a spe- of the sphere and its lift to the covering surface), cial case of the general problem of finding con- one can not only recover basically all of standard formal invariants. There one has some class of Nevanlinna theory but that—quite astonishingly— topologically defined objects, such as a simply or the essential parts of the theory all extend to a far double-connected domain or a simply connected wider class of functions than the very rigid spe- domain with boundary and four distinguished cial case of meromorphic functions, namely, to points on the boundary, and one seeks to define functions that Ahlfors calls “quasiconformal”; in quantities that determine when two topologically this theory the smoothness requirements may be equivalent configurations are conformally equiv- almost entirely dropped, and, asymptotically, im- alent. One example is the “extremal length” of a ages of small circles—rather than having to be cir- family of curves in a domain, which is defined by cles—can be arbitrary ellipses as long as the ratio a minimax expression in terms of all conformal of the radii remains uniformly bounded. metrics on the domain and is thereby automatically Of his three geometric versions of Nevanlinna a conformal invariant. Ahlfors and Beurling, first theory, Ahlfors has described the one on covering independently and then jointly, developed the idea surfaces as a “much more radical departure from into a very useful tool that has since found many Nevanlinna’s own methods” and as “the most orig- further applications. inal of the three papers,” which is certainly the case. From the first, Ahlfors viewed classical results (According to Carathéodory that paper was singled like Picard’s theorem and Bloch’s theorem as spe- out in the decision of the selection committee to cial cases of the problem of type, in which condi- award the Fields Medal to Ahlfors.) Nevertheless, tions such as the projection of a Riemann surface the last of the three, published two years later in omitting a certain number of points would imply 1937, was destined to be probably at least as in- that the surface was hyperbolic and hence could fluential. Here the goal was to apply the methods not be the image of a function defined in the whole of differential geometry to the study of covering plane. He felt that Nevanlinna theory should also surfaces. The paper is basically a symphony on the be fit into that framework. Finally, in 1935 he pro- theme of Gauss-Bonnet. The explicit relation be- duced one of his most important papers, in which tween topology and total curvature of a surface, he used the idea of specially constructed confor- now called the “Gauss-Bonnet theorem”, had not mal metrics (or “mass distributions” in the termi- been around all that long at the time, perhaps first nology of that paper) to give his own geometric ver- appearing in Blaschke’s 1921 Vorlesungen über sion of Nevanlinna theory. When he received his Differentialgeometrie [15]. Fields Medal the following year, Carathéodory re- It occurred to Ahlfors that if one hoped to de- marked that it was hard to say which was more sur- velop a higher-dimensional version of Nevanlinna 234 NOTICES OF THE AMS VOLUME 45, NUMBER 2 theory, it might be useful to have a higher-di- thereby get mensional Gauss-Bonnet formula, a fact that he the size of mentioned to André Weil in 1939, as Weil recounts the largest in his collected works. (A letter from Weil says, “I circular disk learnt from Ahlfors, in 1939, all the little I ever in the image, knew about Gauss-Bonnet (in dimension 2).”) When which is just Weil spent the year 1941–42 at Haverford, where the circum- Allendoerfer was teaching, he heard of Allen- scribed circle doerfer’s proof of the higher-dimensional Gauss- of one of the Bonnet theorem; and remembering Ahlfors’s sug- equilateral gestion, he worked with Allendoerfer on their joint triangles paper, proving the generalized Gauss-Bonnet the- whose ver- orem for a general class of manifolds that need not tices are the be embedded. That in turn led to Chern’s famous branch intrinsic proof of the general Gauss-Bonnet theo- points of the rem.
Recommended publications
  • Math, Physics, and Calabi–Yau Manifolds
    Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901).
    [Show full text]
  • Kepler's Laws, Newton's Laws, and the Search for New Planets
    Integre Technical Publishing Co., Inc. American Mathematical Monthly 108:9 July 12, 2001 2:22 p.m. osserman.tex page 813 Kepler’s Laws, Newton’s Laws, and the Search for New Planets Robert Osserman Introduction. One of the high points of elementary calculus is the derivation of Ke- pler’s empirically deduced laws of planetary motion from Newton’s Law of Gravity and his second law of motion. However, the standard treatment of the subject in calcu- lus books is flawed for at least three reasons that I think are important. First, Newton’s Laws are used to derive a differential equation for the displacement vector from the Sun to a planet; say the Earth. Then it is shown that the displacement vector lies in a plane, and if the base point is translated to the origin, the endpoint traces out an ellipse. This is said to confirm Kepler’s first law, that the planets orbit the sun in an elliptical path, with the sun at one focus. However, the alert student may notice that the identical argument for the displacement vector in the opposite direction would show that the Sun orbits the Earth in an ellipse, which, it turns out, is very close to a circle with the Earth at the center. That would seem to provide aid and comfort to the Church’s rejection of Galileo’s claim that his heliocentric view had more validity than their geocentric one. Second, by placing the sun at the origin, the impression is given that either the sun is fixed, or else, that one may choose coordinates attached to a moving body, inertial or not.
    [Show full text]
  • Stable Minimal Hypersurfaces in Four-Dimensions
    STABLE MINIMAL HYPERSURFACES IN R4 OTIS CHODOSH AND CHAO LI Abstract. We prove that a complete, two-sided, stable minimal immersed hyper- surface in R4 is flat. 1. Introduction A complete, two-sided, immersed minimal hypersurface M n → Rn+1 is stable if 2 2 2 |AM | f ≤ |∇f| (1) ZM ZM ∞ for any f ∈ C0 (M). We prove here the following result. Theorem 1. A complete, connected, two-sided, stable minimal immersion M 3 → R4 is a flat R3 ⊂ R4. This resolves a well-known conjecture of Schoen (cf. [14, Conjecture 2.12]). The corresponding result for M 2 → R3 was proven by Fischer-Colbrie–Schoen, do Carmo– Peng, and Pogorelov [21, 18, 36] in 1979. Theorem 1 (and higher dimensional analogues) has been established under natural cubic volume growth assumptions by Schoen– Simon–Yau [37] (see also [45, 40]). Furthermore, in the special case that M n ⊂ Rn+1 is a minimal graph (implying (1) and volume growth bounds) flatness of M is known as the Bernstein problem, see [22, 17, 3, 45, 6]. Several authors have studied Theorem 1 under some extra hypothesis, see e.g., [41, 8, 5, 44, 11, 32, 30, 35, 48]. We also note here some recent papers [7, 19] concerning stability in related contexts. It is well-known (cf. [50, Lecture 3]) that a result along the lines of Theorem 1 yields curvature estimates for minimal hypersurfaces in R4. Theorem 2. There exists C < ∞ such that if M 3 → R4 is a two-sided, stable minimal arXiv:2108.11462v2 [math.DG] 2 Sep 2021 immersion, then |AM (p)|dM (p,∂M) ≤ C.
    [Show full text]
  • ON the INDEX of MINIMAL SURFACES with FREE BOUNDARY in a HALF-SPACE 3 a Unit Vector on ℓ [MR91]
    ON THE INDEX OF MINIMAL SURFACES WITH FREE BOUNDARY IN A HALF-SPACE SHULI CHEN Abstract. We study the Morse index of minimal surfaces with free boundary in a half-space. We improve previous estimates relating the Neumann index to the Dirichlet index and use this to answer a question of Ambrozio, Buzano, Carlotto, and Sharp concerning the non-existence of index two embedded minimal surfaces with free boundary in a half-space. We also give a simplified proof of a result of Chodosh and Maximo concerning lower bounds for the index of the Costa deformation family. 1. Introduction Given an orientable Riemannian 3-manifold M 3, a minimal surface is a critical point of the area functional. For minimal surfaces in R3, the maximum principle implies that they must be non-compact. Hence, minimal surfaces in R3 are naturally studied under some weaker finiteness assumption, such as finite total curvature or finite Morse index. We use the word bubble to denote a complete, connected, properly embedded minimal surface of finite total curvature in R3. As shown by Fischer-Colbrie [FC85] and Gulliver–Lawson [GL86, Gul86], a complete oriented minimal surface in R3 has finite index if and only if it has finite total curvature. In particular, bubbles have finite Morse index. Bubbles of low index are classified: the plane is the only bubble of index 0 [FCS80, dCP79, Pog81], the catenoid is the only bubble of index 1 [LR89], and there is no bubble of index 2 or 3 [CM16, CM18]. Similarly, given an orientable Riemannian 3-manifold M 3 with boundary ∂M, a free boundary minimal surface is a critical point of the area functional among all submanifolds with boundaries in ∂M.
    [Show full text]
  • Differential Geometry Proceedings of Symposia in Pure Mathematics
    http://dx.doi.org/10.1090/pspum/027.1 DIFFERENTIAL GEOMETRY PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS VOLUME XXVII, PART 1 DIFFERENTIAL GEOMETRY AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1975 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT STANFORD UNIVERSITY STANFORD, CALIFORNIA JULY 30-AUGUST 17, 1973 EDITED BY S. S. CHERN and R. OSSERMAN Prepared by the American Mathematical Society with the partial support of National Science Foundation Grant GP-37243 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics, Stanford University, UE 1973. Differential geometry. (Proceedings of symposia in pure mathematics; v. 27, pt. 1-2) "Final versions of talks given at the AMS Summer Research Institute on Differential Geometry." Includes bibliographies and indexes. 1. Geometry, Differential-Congresses. I. Chern, Shiing-Shen, 1911- II. Osserman, Robert. III. American Mathematical Society. IV. Series. QA641.S88 1973 516'.36 75-6593 ISBN0-8218-0247-X(v. 1) Copyright © 1975 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without the permission of the publishers. CONTENTS Preface ix Riemannian Geometry Deformations localement triviales des varietes Riemanniennes 3 By L. BERARD BERGERY, J. P. BOURGUIGNON AND J. LAFONTAINE Some constructions related to H. Hopf's conjecture on product manifolds ... 33 By JEAN PIERRE BOURGUIGNON Connections, holonomy and path space homology 39 By KUO-TSAI CHEN Spin fibrations over manifolds and generalised twistors 53 By A. CRUMEYROLLE Local convex deformations of Ricci and sectional curvature on compact manifolds 69 By PAUL EWING EHRLICH Transgressions, Chern-Simons invariants and the classical groups 72 By JAMES L.
    [Show full text]
  • Mathematics of the Gateway Arch Page 220
    ISSN 0002-9920 Notices of the American Mathematical Society ABCD springer.com Highlights in Springer’s eBook of the American Mathematical Society Collection February 2010 Volume 57, Number 2 An Invitation to Cauchy-Riemann NEW 4TH NEW NEW EDITION and Sub-Riemannian Geometries 2010. XIX, 294 p. 25 illus. 4th ed. 2010. VIII, 274 p. 250 2010. XII, 475 p. 79 illus., 76 in 2010. XII, 376 p. 8 illus. (Copernicus) Dustjacket illus., 6 in color. Hardcover color. (Undergraduate Texts in (Problem Books in Mathematics) page 208 ISBN 978-1-84882-538-3 ISBN 978-3-642-00855-9 Mathematics) Hardcover Hardcover $27.50 $49.95 ISBN 978-1-4419-1620-4 ISBN 978-0-387-87861-4 $69.95 $69.95 Mathematics of the Gateway Arch page 220 Model Theory and Complex Geometry 2ND page 230 JOURNAL JOURNAL EDITION NEW 2nd ed. 1993. Corr. 3rd printing 2010. XVIII, 326 p. 49 illus. ISSN 1139-1138 (print version) ISSN 0019-5588 (print version) St. Paul Meeting 2010. XVI, 528 p. (Springer Series (Universitext) Softcover ISSN 1988-2807 (electronic Journal No. 13226 in Computational Mathematics, ISBN 978-0-387-09638-4 version) page 315 Volume 8) Softcover $59.95 Journal No. 13163 ISBN 978-3-642-05163-0 Volume 57, Number 2, Pages 201–328, February 2010 $79.95 Albuquerque Meeting page 318 For access check with your librarian Easy Ways to Order for the Americas Write: Springer Order Department, PO Box 2485, Secaucus, NJ 07096-2485, USA Call: (toll free) 1-800-SPRINGER Fax: 1-201-348-4505 Email: [email protected] or for outside the Americas Write: Springer Customer Service Center GmbH, Haberstrasse 7, 69126 Heidelberg, Germany Call: +49 (0) 6221-345-4301 Fax : +49 (0) 6221-345-4229 Email: [email protected] Prices are subject to change without notice.
    [Show full text]
  • Chern Flyer 1-3-12.Pub
    TAKING THE LONG VIEW The Life of Shiing-shen Chern A film by George Csicsery “He created a branch of mathematics which now unites all the major branches of mathematics with rich structure— which is still developing today.” —C. N. Yang Shiing-shen Che rn (1911–2004) Taking the Long View examines the life of a remarkable mathematician whose classical Chinese philosophical ideas helped him build bridges between China and the West. Shiing-shen Chern (1911-2004) is one of the fathers of modern differential geometry. His work at the Institute for Advanced Study and in China during and after World War II led to his teaching at the University of Chicago in 1949. Next came Berkeley, where he created a world-renowned center of geometry, and in 1981 cofounded the Mathematical Sciences Research Institute. During the 1980s he brought talented Chinese scholars to the United States and Europe. By 1986, with Chinese government support, he established a math institute at Nankai University in Tianjin. Today it is called the Chern Institute of Mathematics. Taking the Long View was produced by the Mathematical Sciences Research Institute with support from Simons Foundation. Directed by George Csicsery. With the participation of (in order of appearance) C.N. Yang, Hung-Hsi Wu, Bertram Kostant, James H. Simons, Shiing-shen Chern, Calvin Moore, Phillip Griffiths, Robert L. Bryant, May Chu, Yiming Long, Molin Ge, Udo Simon, Karin Reich, Wentsun Wu, Robert Osserman, Isadore M. Singer, Chuu-Lian Terng, Alan Weinstein, Guoding Hu, Paul Chern, Rob Kirby, Weiping Zhang, Robert Uomini, Friedrich Hirzebruch, Zixin Hou, Gang Tian, Lei Fu, Deling Hu and others.
    [Show full text]
  • Emissary Mathematical Sciences Research Institute
    Spring 2012 Emissary Mathematical Sciences Research Institute www.msri.org Randomness, Change, and All That A word from Director Robert Bryant statistical mechanics conformal invariance The spring semester here at MSRI has been a remarkably active one. Our jumbo scientific program, Random Spatial Processes, has attracted an enthusiastic group evolution equation of mathematicians who keep the building humming with activities, both in their (five!) mixing times scheduled workshops and their weekly seminars. dimer model In February, we had the pleasure of hosting the Hot Topics Workshop, “Thin Groups and Super-strong Approximation”, which brought together experts in the recent developments random sampling in “thin groups” (i.e., discrete subgroups of semisimple Lie groups that are Zariski dense lattice models and yet have infinite covolume). These subgroups, delicately balanced between being “big” and “small”, have turned out to have surprising connections with dynamics on random clusters Teichmüller space, the Bourgain–Gamburd–Sarnak sieve, arithmetic combinatorics, and Schramm–Loewner the geometry of monodromy groups and covering. It was an exciting workshop, and the talks and notes (now online) have proved to be quite popular on our website. critical exponent Also in February, MSRI hosted the playwrights of PlayGround for a discussion of how Markov chains mathematicians think about randomness and physical processes. Our research members percolation James Propp and Dana Randall, together with two of our postdoctoral fellows, Adrien Kassel and Jérémie Bettinelli, described how they think about their work and what fascinates scaling limits them about it, and the playwrights responded with a lively and stimulating set of questions. The Ising model playwrights each then had 9 days to write a 10-minute play around the theme “Patterns of Chaos”.
    [Show full text]
  • The Shape of Inner Space Provides a Vibrant Tour Through the Strange and Wondrous Possibility SPACE INNER
    SCIENCE/MATHEMATICS SHING-TUNG $30.00 US / $36.00 CAN Praise for YAU & and the STEVE NADIS STRING THEORY THE SHAPE OF tring theory—meant to reconcile the INNER SPACE incompatibility of our two most successful GEOMETRY of the UNIVERSE’S theories of physics, general relativity and “The Shape of Inner Space provides a vibrant tour through the strange and wondrous possibility INNER SPACE THE quantum mechanics—holds that the particles that the three spatial dimensions we see may not be the only ones that exist. Told by one of the Sand forces of nature are the result of the vibrations of tiny masters of the subject, the book gives an in-depth account of one of the most exciting HIDDEN DIMENSIONS “strings,” and that we live in a universe of ten dimensions, and controversial developments in modern theoretical physics.” —BRIAN GREENE, Professor of © Susan Towne Gilbert © Susan Towne four of which we can experience, and six that are curled up Mathematics & Physics, Columbia University, SHAPE in elaborate, twisted shapes called Calabi-Yau manifolds. Shing-Tung Yau author of The Fabric of the Cosmos and The Elegant Universe has been a professor of mathematics at Harvard since These spaces are so minuscule we’ll probably never see 1987 and is the current department chair. Yau is the winner “Einstein’s vision of physical laws emerging from the shape of space has been expanded by the higher them directly; nevertheless, the geometry of this secret dimensions of string theory. This vision has transformed not only modern physics, but also modern of the Fields Medal, the National Medal of Science, the realm may hold the key to the most important physical mathematics.
    [Show full text]
  • Lars Ahlfors Entered the University of Helsinki, Where His Teachers Were Two Internationally Known Math- Ematicians, Ernst Lindelöf and Rolf Nevanlinna
    NATIONAL ACADEMY OF SCIENCES LARS VALERIAN AHLFORS 1907–1996 A Biographical Memoir by FREDERICK GEHRING Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 87 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. LARS VALERIAN AHLFORS April 18, 1907–October 11, 1996 BY FREDERICK GEHRING PERSONAL AND PROFESSIONAL HISTORY ARS AHLFORS WAS BORN in Helsinki, Finland, on April 18, L 1907. His father, Axel Ahlfors, was a professor of mechanical engineering at the Institute of Technology in Helsinki. His mother, Sievä Helander, died at Lars’s birth. As a newborn Lars was sent to the Åland Islands to be taken care of by two aunts. He returned to his father’s home in Helsinki by the age of three. At the time of Lars’s early childhood, Finland was under Russian sovereignty but with a certain degree of autonomy, and civil servants, including professors, were able to enjoy a fairly high standard of living. Unfortunately, all this changed radically during World War I, the Russian Revolution, and the Finnish civil war that followed. There was very little food in 1918, and Lars’s father was briefly imprisoned by the Red Guard. For historical reasons the inhabitants of Finland are divided into those who have Finnish or Swedish as their mother tongue. The Ahlfors family was Swedish speaking, so Lars attended a private school where all classes were taught in Swedish. He commented that the teaching of math- ematics was mediocre, but credited the school with helping 3 4 BIOGRAPHICAL MEMOIRS him become almost fluent in Finnish, German, and English, and less so in French.
    [Show full text]
  • Leroy P. Steele Prize for Mathematical Exposition 1
    AMERICAN MATHEMATICAL SOCIETY LEROY P. S TEELE PRIZE FOR MATHEMATICAL EXPOSITION The Leroy P. Steele Prizes were established in 1970 in honor of George David Birk- hoff, William Fogg Osgood, and William Caspar Graustein and are endowed under the terms of a bequest from Leroy P. Steele. Prizes are awarded in up to three cate- gories. The following citation describes the award for Mathematical Exposition. Citation John B. Garnett An important development in harmonic analysis was the discovery, by C. Fefferman and E. Stein, in the early seventies, that the space of functions of bounded mean oscillation (BMO) can be realized as the limit of the Hardy spaces Hp as p tends to infinity. A crucial link in their proof is the use of “Carleson measure”—a quadratic norm condition introduced by Carleson in his famous proof of the “Corona” problem in complex analysis. In his book Bounded analytic functions (Pure and Applied Mathematics, 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981, xvi+467 pp.), Garnett brings together these far-reaching ideas by adopting the techniques of singular integrals of the Calderón-Zygmund school and combining them with techniques in complex analysis. The book, which covers a wide range of beautiful topics in analysis, is extremely well organized and well written, with elegant, detailed proofs. The book has educated a whole generation of mathematicians with backgrounds in complex analysis and function algebras. It has had a great impact on the early careers of many leading analysts and has been widely adopted as a textbook for graduate courses and learning seminars in both the U.S.
    [Show full text]
  • Chern Flyer 2-10-15Rev.Pub
    TAKING THE LONG VIEW The Life of Shiing-shen Chern A film by George Csicsery “He created a branch of mathematics which now unites all the major branches of mathematics with rich structure— which is still developing today.” —C. N. Yang Shiing-shen Che rn (1911–2004) Taking the Long View examines the life of a remarkable mathematician whose classical Chinese philosophical ideas helped him build bridges between China and the West. Shiing-shen Chern (1911-2004) is one of the fathers of modern differential geometry. His work at the Institute for Advanced Study and in China during and after World War II led to his teaching at the University of Chicago in 1949. Next came Berkeley, where he created a world-renowned center of geometry, and in 1981 cofounded the Mathematical Sciences Research Institute. During the 1980s he brought talented Chinese scholars to the United States and Europe. By 1986, with Chinese government support, he established a math institute at Nankai University in Tianjin. Today it is called the Chern Institute of Mathematics. Taking the Long View was produced by the Mathematical Sciences Research Institute with support from Simons Foundation. Directed by George Csicsery. With the participation of (in order of appearance) C.N. Yang, Hung-Hsi Wu, Bertram Kostant, James H. Simons, Shiing-shen Chern, Calvin Moore, Phillip Griffiths, Robert L. Bryant, May Chu, Yiming Long, Molin Ge, Udo Simon, Karin Reich, Wentsun Wu, Robert Osserman, Isadore M. Singer, Chuu-Lian Terng, Alan Weinstein, Guoding Hu, Paul Chern, Rob Kirby, Weiping Zhang, Robert Uomini, Friedrich Hirzebruch, Zixin Hou, Gang Tian, Lei Fu, Deling Hu and others.
    [Show full text]