Allosteric Mechanisms in Recombinant Human Hexokinase Type I Lu Shen Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Allosteric Mechanisms in Recombinant Human Hexokinase Type I Lu Shen Iowa State University Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Allosteric Mechanisms in Recombinant Human Hexokinase Type I Lu Shen Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Shen, Lu, "Allosteric Mechanisms in Recombinant Human Hexokinase Type I" (2012). Graduate Theses and Dissertations. 12455. https://lib.dr.iastate.edu/etd/12455 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Allosteric mechanisms in recombinant human hexokinase type I by Lu Shen A dissertation submitted to the graduate faculty In partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Richard B. Honzatko, Major Professor Scott W. Nelson Mark S. Hargrove Michael Shorgen-Knaak Mei Hong Iowa State University Ames, Iowa 2012 Copyright @ Lu Shen, 2012. All rights reserved. ii Table of Contents Abbreviations v Abstract vi Chapter I. General Introduction & Literature Review Evolution of Hexokinase I Family 1 General Kinetics Properties of Mammalian Hexokinases 2 Tissue Distribution of Mammalian Hexokinases 3 Physiological functions of hexokinase type I 3 X-ray Crystallography Structure of HKI 4 Glc-6-P Inhibition Mechanism Puzzle of HKI 6 Table 8 Figure 9 Thesis Organization 12 References 13 Chapter II. Inhibitor Sites of Unequal Affinity Linked by Binding Synergism in Mutant Forms of Recombinant Human Hexokinase Type-I Abstract 17 Introduction 18 Materials and Methods 20 Results 25 Discussion 30 Table 35 Figure 42 References 52 iii Chapter III. Determination of Site Affinity Constants for Product Inhibition Wild -type and Mutant forms of Recombinant Human Hexokinase Type I Abstract 56 Introduction 56 Materials and Methods 59 Results 62 Discussion 65 Table 71 Figure 79 References 85 Chapter IV. Glucose as a Modulator of Inhibition in Recombinant Human Hexokinase Type I Abstract 89 Introduction 90 Materials and Methods 93 Results 96 Discussion 101 Table 107 Figure 111 References 117 Chapter V. Tracking Allosteric Pathways in Human Hexokinase Type I by Directed Mutation Abstract 121 Introduction 121 Materials and Methods 124 iv Results 127 Discussion 130 Table 133 Figure 137 References 146 Chapter VI. General Conclusions 150 Acknowledgements 152 v Abbreviations HKI: hexokinase I Glc-6-P: glucose 6-phosphate Glc: glucose Pi: phosphate 1,5-anhydroGlc-6-P: 1,5-anhydroglucitol 6-phosphate 2-deoxy Glc-6-P: 2-deoxy glucose-6-phosphate Man-6-P: mannose 6-phosphate Glc-1,6-P2: glucose 1,6-bisphosphate TNP-ADP: 2’-(or-3’)-O-(2,4,6-trinitrophenyl)-adenosine 5’-diphosphate To indicate amino acids in protein sequences or names of the mutant enzymes, one letter or three letters abbreviation was used. vi Abstract Hexokinase I (HKI) is the pacemaker of glycolysis in brain and red bold cells, being subject to potent feedback inhibition by its product glucose 6-phosphate (Glc-6-P) and the relief of that inhibition by inorganic phosphate (Pi) and glucose (Glc). Presented here is a comprehensive model of inhibition and relief of inhibition for recombinant human HKI derived from crystal structures, molecular dynamics simulations, kinetics and directed mutations. Ligand interactions at each half of HKI are comparable in crystal structures, but in simulations, 2-deoxyglucose 6-phosphate (2-deoxyGlc-6-P) and mannose 6-phosphate (Man- 6-P) lose hydrogen bonds at the C-terminal half, consistent with early stages of ligand dissociation. 1,5-Anhydroglucose 6-phosphate (1,5-anhydroGlc-6-P), adopts an alternative binding mode, and stabilizes a slightly open C-terminal half. The kinetics of D413N and/or D861N enzymes (D413 and D861 interact with the 1-OH group of Glc-6-P) are consistent only with synergistic binding of two molecules of 1,5-anhydro-Glc-6-P to sites with unequal constants of dissociation. The crystal structure and simulation of HKI with glucose 1,6- bisphosphate (Glc-1,6-P2) implicate Lys418 (N-terminal half) and Lys866 (C-terminal half) in stabilizing inhibited conformations of HKI, a finding support by directed mutations. Pi displaces 1,5-anhydroglucitol 6-phosphate from the N-terminal half, but not from the C- terminal half. Glucose (Glc) up to concentration of 1 mM interacts synergistically with 1,5- anhydroGlc-6-P, but at higher concentrations becomes an antagonist of inhibition. A site- affinity model quantitatively accounts for these observed phenomena in wild-type and mutant forms of HKI. For wild-type HKI, inhibitor binds to sites of unequal affinity, coupled by negative coorperativity, with the site of highest affinity at the N-terminal half. Pi-displaces inhibitor from the N-terminal half, but does not prevent inhibition at the C-terminal half. Potent inhibition requires two molecules of bound glucose to HKI, and the binding of Glc to the active site seems primarily responsible for creating a state of HKI susceptible to potent inhibition. The mapping of mutations that affect allosteric mechanism in HKI clearly define the N-terminal inhibitor pocket and the flexible subdomain as key components of allostery in HKI. 1 Chapter I. General Introducation & Literature Review Hexokinase (ATP: D-hexose 6-phosphotransferase, EC2.7.1.1) catalyzes the initial and crucial step of glycolysis, the phosphorylation of 6-hydroxyl group of glucose (Glc) using [ATP-Mg]2– as the phosphoryl donor[1-3]. Glucose + [ATP•Mg]2– Glc-6-P2– + [ADP•Mg]1– + H+ The focus of work here is human hexokinase Type I (HKI), and as the name implies, HKI can phosphorylate several six-carbon sugars (mannose, 2-deoxy glucose, and 2,5-anhydro- glucitol, for example); however, only Glc binds to HKI with high affinity. As early as 1954, Crane demonstrated the importance of the 2-hydroxyl group in the binding of 6- phosphorylated hexoses to an inhibitory site of HKI, whereas the 2-hydroxyl group was not important for substrate binding[4]. Only the 4-hydroxyl group is important for both hexose and hexose-6-phosphate binding[4]. Later studies showed that a doubly charged anionic group at the 6-position is necessary for effective inhibition[4-6]. A 5-thio group increases the binding affinities, both for the hexose and hexose-6-phosphate[6]. ATP is the best substrate for HKI (highest kcat, lowest Km). The Km values for other triphosphate nucleosides, such as ITP, GTP, CTP and UTP do not differ significantly from that of ATP, while the kcat values are significantly lower[7]. Evolution of Hexokinase Family Four isozymes of hexokinase have been identified in mammalian tissues[8](Table I). The type I, II and III hexokinase isozymes, all with molecular weights of approximately 100 kDa, share 70% sequence identity[9]. N- and C- halves of isozymes I–III show extensive internal sequence similarity (~50% sequence identity) and structure similarity[9]. Hexokinase Type IV, commonly named glucokinase, is similar to yeast hexokinase isoforms A and B, having a molecular weight of 50 kDa, and exhibiting significant sequence similarity to both halves of isozymes I–III[9]. Presumably, all members in the hexokinase family derived from a common ancestor, a 30 kDa glucomannokinase-like enzyme which utilized poly(P) as substrate in primordial age before the appearance of ATP (Figure 1)[10]. One branch of the evolutionary 2 pathway led to poly(P)/ATP utilizing hexokinase, whereas the other led to a 50 kDa ATP- specific hexokinase such as yeast hexokinase and hexokinase IV[10]. Whether the 50 kDa ATP-specific hexokinase, however, evolved independently from the 30 kDa glucomannokinase-like enzyme or from the poly(P)/ATP utilizing hexokinase is unclear. During evolution, the ATP-specific hexokinase acquired a new property of regulation, feedback inhibition by product, just like the isoforms in starfish and other marine organisms[9-10]. The 100 kDa hexokinase architecture appeared then through gene duplication and fusion[11-14]. The N-domain lost catalytic properties in becoming mammalian hexokinase types I and III[10]. The 100 kDa Glc-6-P insensitive hexokinase might have evolved directly from the 50 kDa Glc-6-P insensitive enzyme, or from the 50/100 kDa Glc-6-P sensitive enzyme, thereafter losing product inhibition. Some researchers suggest that the gene duplication and fusion occurred prior to the diversification of the hexokinase family, and that glucokinase evolved from the 100 kDa isozyme by losing its N-terminal regulatory domain[15]. General Kinetics Properties of Mammalian Hexokinases Besides sequence and structural similarities, isozymes I-III also share several properties, such as Km for glucose is in the sub-millimolar range and product inhibition is at physiologically relevant concentrations (micromolar level)[9]; however, they differ significantly in catalytic and regulatory properties. Both halves of hexokinase II possess catalytic activity[16], whereas the N-halves of hexokinase I and III are devoid of activity[9, 17-18]. Given the fact that both hexokinase I and II have special binding sites for Glc, Glc-6-P, Pi and ATP in both N- and C- domains, it is believed that during evolution, the N-terminal domain of hexokinase I lost its [9] activity and evolved into a regulatory domain . Inorganic phosphate (Pi) potently inhibits hexokinase II and III, and at high concentrations (millimolar) is an inhibitor of hexokinase I. At relatively low concentrations (100 µM), however, Pi antagonizes the inhibition of hexokinase I by Glc-6-P[9]. Among all four isozymes, only Hexokinase III is substrate- inhibited by glucose at physiologically relevant concentrations (1 mM)[19-20].
Recommended publications
  • Allosteric Regulation in Drug Design
    Mini Review Curr Trends Biomedical Eng & Biosci Volume 4 Issue 1 - May 2017 Copyright © All rights are reserved by Ashfaq Ur Rehman DOI: 10.19080/CTBEB.2017.04.5555630 Allosteric regulation in drug design Ashfaq Ur Rehman1,2*, Shah Saud3, Nasir Ahmad4, Abdul Wadood2 and R Hamid5 1State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, China 2Department of Biochemistry, Abdul Wali Khan University Mardan, Pakistan 3Laboratory of Analytical Biochemistry and Bio separation, Shanghai Jiao Tong University, China 4Department of Chemistry, Islama College University Peshawar, Pakistan 5Department of Bioinformatics, Muhammad Ali Jinnah University Islamabad, Pakistan Submission: May 02, 2017; Published: May 23, 2017 *Corresponding author: Ashfaq Ur Rehman, State Key Laboratory of Microbial Metabolism, Department of Bioinformatics and Biostatistics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China, Tel: ; Fax: 86-21-34204348; Email: Abstract mechanism, which are initiated through attachment of ligand or inhibitors with the protein or enzymes other than active (orthosteric) sites. ThisProtein mini review and enzymes involved play mechanism, significant types roles and in importancebiological processes of allosteric of all regulations living organisms; in drug theirdesign functions process. are regulated through allosteric Keywords: Allosteric, Activator: Drug design Introduction and ultimately cause disease. While various biological processes expressed the control at different points in life time of protein function is pivotal. As all the cell processes are under carful For the survival of all organisms the significance of protein included regulation of gene expression, translation into protein control and if not properly controls this leads to the abnormality through control of activity and at last degradation of protein [1].
    [Show full text]
  • Enzyme Regulation What Factors Influence Enzymatic Activity?
    12/3/13 Enzyme Regulation What Factors Influence Enzymatic Activity? Principle means of regulating enzyme activity • Reversible, non-covalent (allosteric and simple- MM) – typically small molecules • Reversible, covalent • Protein-Protein interactions • Zymogen activation • Protein expression and degradation • Availability (both of enzyme and substrate) Reversible Noncovalent: Reversible Noncovalent Allosteric Simple activation and inhibition by small molecules – Action at "another site" substrate, natural regulators of enzymes Enzymes situated at key steps in metabolic pathways are modulated by allosteric effectors MM kinetics Km, Vmax – competitive, non These effectors are usually produced elsewhere in competitive… the pathway Effectors may be feed-forward activators or Substrate inhibition or activation feedback inhibitors Kinetics are sigmoid ("S-shaped") The availability of substrates and cofactors usually determines how fast the reaction goes As product accumulates, the apparent rate of the enzymatic reaction will decrease General Features of Allosteric Regulation Allosteric activation/inhibition In most metabolic pathways there is at least 1 key enzyme Usually these pacemaker enzymes are in the first committed step in the pathway. Many times regulated by both feed forward and feedback mechanisms A B C D E Sigmoid v versus [S] plot. The dotted line represents the hyperbolic plot characteristic of normal Michaelis=Menten kinetics. 1 12/3/13 Allosteric activation/inhibition Reversible Covalent In most metabolic pathways there is at
    [Show full text]
  • ALLOSTERIC REGULATION of PROTHROMBIN ACTIVATION by FACTOR Va
    ALLOSTERIC REGULATION OF PROTHROMBIN ACTIVATION BY FACTOR Va MAHESHEEMA ALI Bachelor of Science in Botany, Microbiology, Chemistry Osmania University, India April 2000 Master of Science in Organic Chemistry Osmania University, India April 2002 Submitted in partial fulfillment of requirements for the degree DOCTOR OF PHILOSOPHY IN CLINICAL AND BIOANALYTICALCHEMISTRY at the CLEVELAND STATE UNIVERITY May 2016 We hereby approve this dissertation for Mahesheema Ali Candidate for the Doctor of Philosophy in Clinical-Bioanalytical Chemistry Degree for the Department of Chemistry and the CLEVELAND STATE UNIVERSITY College of Graduate Studies ________________________________________ Dissertation Chairperson, Dr. Michael Kalafatis Department of CHEMISTRY ______________________ Date ________________________________________ Dissertation Committee Member, Dr. Edward F. Plow Department of MOLECULAR CARDIOLOGY Cleveland Clinic Foundation ______________________ Date ________________________________________ Dr. Anton A. Komar Department of BIOLOGY ______________________ Date ________________________________________ Dr. David J. Anderson Department of CHEMISTRY ______________________ Date ________________________________________ Dr. Crystal M. Weyman Department of BIOLOGY ______________________ Date Date of Defense: April 22nd, 2016 DEDICATION I dedicate this thesis to my loving family. My beloved husband, Mir Ali, has shown unwavering support and encouragement during past five years of my doctoral journey. I am grateful for his love and continuous support, which gave me the strength and courage to pursue my dream and to make it come true. I would like to give special thanks to my wonderful children--Maaz, Maryum, and Idris--for their support and patience throughout. I would like to thank my parents, Mrs. Kaneez Fathima and Mr.Yousuf Ali for all that I have become today, for the constant support in my academic career and personal life.
    [Show full text]
  • Glucokinase Regulatory Protein As the Allosteric Switch for Glucokinase
    Molecular basis for the role of glucokinase regulatory protein as the allosteric switch for glucokinase Jung Min Choia,1, Moon-Hyeong Seoa,1, Hyun-Ho Kyeonga, Eunkyung Kima,2, and Hak-Sung Kima,b,3 aDepartment of Biological Sciences and bGraduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea Edited* by Stephen J. Benkovic, Pennsylvania State University, University Park, PA, and approved May 6, 2013 (received for review January 9, 2013) Glucokinase (GK) is a monomeric allosteric enzyme and plays between GK and GKRP and a modulation through the effectors a pivotal role in blood glucose homeostasis. GK is regulated by GK (17, 18). Despite the intensive studies on GK and GKRP, the regulatory protein (GKRP), and indirectly by allosteric effectors of molecular basis for the allosteric regulation mechanism of GK by GKRP. Despite the critical roles of GK and GKRP, the molecular basis GKRP remains poorly understood because of the lack of struc- for the allosteric regulation mechanism of GK by GKRP remains tural information of the GK/GKRP complex. unclear. We determined the crystal structure of Xenopus GK and Here, to demonstrate the molecular mechanism for the allo- GKRP complex in the presence of fructose-6-phosphate at 2.9 Å. steric regulation of GK by GKRP and effectors, we determined GKRP binds to a super-open conformation of GK mainly through the crystal structure of a Xenopus laevis GK and GKRP complex hydrophobic interaction, inhibiting the GK activity by locking a small in the presence of F6P. Structural analysis of the complex and domain of GK.
    [Show full text]
  • Post-Translational Modifications of the Energy Guardian AMP-Activated
    International Journal of Molecular Sciences Review Post-Translational Modifications of the Energy Guardian AMP-Activated Protein Kinase Ashley J. Ovens 1,2 , John W. Scott 2,3,4 , Christopher G. Langendorf 3, Bruce E. Kemp 2,3, Jonathan S. Oakhill 1,2 and William J. Smiles 1,* 1 Metabolic Signalling Laboratory, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; [email protected] (A.J.O.); [email protected] (J.S.O.) 2 Mary MacKillop Institute for Health Research, Australian Catholic University, Fitzroy, VIC 3000, Australia; [email protected] (J.W.S.); [email protected] (B.E.K.) 3 Protein Chemistry & Metabolism, St Vincent’s Institute of Medical Research, School of Medicine, University of Melbourne, Fitzroy, VIC 3065, Australia; [email protected] 4 The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia * Correspondence: [email protected] Abstract: Physical exercise elicits physiological metabolic perturbations such as energetic and ox- idative stress; however, a diverse range of cellular processes are stimulated in response to combat these challenges and maintain cellular energy homeostasis. AMP-activated protein kinase (AMPK) is a highly conserved enzyme that acts as a metabolic fuel sensor and is central to this adaptive response to exercise. The complexity of AMPK’s role in modulating a range of cellular signalling cascades is well documented, yet aside from its well-characterised regulation by activation loop phosphorylation, AMPK is further subject to a multitude of additional regulatory stimuli. There- fore, in this review we comprehensively outline current knowledge around the post-translational Citation: Ovens, A.J; Scott, J.W; modifications of AMPK, including novel phosphorylation sites, as well as underappreciated roles for Langendorf, C.G; Kemp, B.E; Oakhill, ubiquitination, sumoylation, acetylation, methylation and oxidation.
    [Show full text]
  • Allosteric Regulation of Proteins a Historical Perspective on the Development of Concepts and Techniques
    GENERAL ARTICLE Allosteric Regulation of Proteins A Historical Perspective on the Development of Concepts and Techniques Kabir H Biswas Allostery is a mechanism by which the activity of a large num- ber of proteins is regulated. It is manifested as a change in the activity, either ligand binding or catalysis of one site of a protein due to a ligand binding to another distinct site of the protein. The allosteric effect is transduced by a change in the structural properties of the protein. It has been tradition- ally understood using either the concerted MWC (Monod, Wyman and Changeux) model, or the sequential KNF (Kosh- Kabir H Biswas is currently a land, Nemethy and Filmer) model of structural changes. How- Senior Research Fellow at the Mechanobiology Institute, ever, allostery is fundamentally a thermodynamic process and National University of requires an alteration in the enthalpy or entropy associated Singapore. His interest lies in with the process. studying how proteins are regulated by chemical or physical factors and is Introduction currently studying the organization of protein The regulation of essential biological processes such as metabo- complexes on the cell membrane. lism, growth and reproduction is a hallmark of living systems. Cells – the fundamental units of life, employ a variety of mech- anisms to achieve an exquisite control over these processes, and regulation of the activity of proteins is one of the means to fine- tune cellular processes. One of the ways of controlling the activ- ity of proteins is to alter the absolute levels of the protein in a cell. This is achieved either by altering the levels of the mRNA coding for the protein, or by altering the stability of the protein in the cellular environment.
    [Show full text]
  • Identification of New Allosteric Sites and Modulators of Ache Through Computational and Experimental Tools
    Journal of Enzyme Inhibition and Medicinal Chemistry ISSN: 1475-6366 (Print) 1475-6374 (Online) Journal homepage: http://www.tandfonline.com/loi/ienz20 Identification of new allosteric sites and modulators of AChE through computational and experimental tools Carlos Roca, Carlos Requena, Víctor Sebastián-Pérez, Sony Malhotra, Chris Radoux, Concepción Pérez, Ana Martinez, Juan Antonio Páez, Tom L. Blundell & Nuria E. Campillo To cite this article: Carlos Roca, Carlos Requena, Víctor Sebastián-Pérez, Sony Malhotra, Chris Radoux, Concepción Pérez, Ana Martinez, Juan Antonio Páez, Tom L. Blundell & Nuria E. Campillo (2018) Identification of new allosteric sites and modulators of AChE through computational and experimental tools, Journal of Enzyme Inhibition and Medicinal Chemistry, 33:1, 1034-1047, DOI: 10.1080/14756366.2018.1476502 To link to this article: https://doi.org/10.1080/14756366.2018.1476502 © 2018 The Author(s). Published by Informa View supplementary material UK Limited, trading as Taylor & Francis Group. Published online: 06 Jun 2018. Submit your article to this journal Article views: 100 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ienz20 JOURNAL OF ENZYME INHIBITION AND MEDICINAL CHEMISTRY 2018, VOL. 33, NO. 1, 1034–1047 https://doi.org/10.1080/14756366.2018.1476502 RESEARCH PAPER Identification of new allosteric sites and modulators of AChE through computational and experimental tools aà aà a b b,c d Carlos
    [Show full text]
  • Whence Cometh the Allosterome?
    PERSPECTIVE Whence cometh the allosterome? Janet E. Lindsley† and Jared Rutter† Department of Biochemistry, University of Utah, 15 North Medical Drive East, Room 4100, Salt Lake City, UT 84112-5650 Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved June 5, 2006 (received for review May 31, 2006) Regulation of cellular functions can be accomplished by many mechanisms, including transcriptional regulation, alternative splicing, translational regulation, phosphorylation and other posttranslational covalent modifications, degradation, localization, protein– protein interactions, and small-molecule allosteric effectors. Largely because of advances in the techniques of molecular biology in the past few decades, our knowledge of regulation by most of these mechanisms has expanded enormously. Regulation by small- molecule, allosteric interactions is an exception. Many of the best-known allosteric regulators were discovered decades ago, when we knew little about all of these other forms of regulation. Allostery is the most direct, rapid, and efficient regulatory mechanism to sense changes in the concentration of small molecules and alter cellular responses to maintain homeostasis. In this perspective, we present the argument that allosteric regulation is underappreciated in the systems biology world and that many allosteric effectors remain to be discovered. wo of the earliest examples of cules. It can be very rapid, on the order past 4 decades, whereas those describing allosteric regulation are the of the rate of diffusion (Ϸ108 MϪ1⅐sϪ1), allosteric regulation have not (see Fig. control of oxygen binding to and readily reversible. And unlike 1). Although scientists have described hemoglobin by protons (1) and changes in covalent protein modification transcriptomes, proteomes, interactomes, TAMP activation of glycogen phosphory- such as phosphorylation͞dephosphoryla- and kinomes, the ‘‘allosterome’’ is still a lase (2).
    [Show full text]
  • Allosteric Regulation of Mammalian Fructose-1,6-Bisphosphatase Yang Gao Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2013 Allosteric regulation of mammalian fructose-1,6-bisphosphatase Yang Gao Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Biochemistry Commons Recommended Citation Gao, Yang, "Allosteric regulation of mammalian fructose-1,6-bisphosphatase" (2013). Graduate Theses and Dissertations. 13124. https://lib.dr.iastate.edu/etd/13124 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Allosteric regulation of mammalian fructose-1,6-bisphosphatase by Yang Gao A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Biochemistry Program of Study Committee: Richard Honzatko, Major Professor Amy Andreotti Mark Hargrove Scott Nelson Guang Song Iowa State University Ames, Iowa 2013 Copyright © Yang Gao, 2013. All rights reserved. ii TABLE OF CONTENTS Abbreviations v Abstract vi Chapter I. General Introduction 1 Figure 8 Thesis Organization 10 References 11 Chapter II. Mechanism of Displacement of a Catalytically Essential Loop from the Active Site of Mammalian Fructose-1,6-bisphosphatase 16 Abstract 16 Introduction 17 Experimental procedures 18 Results 22 Discussion 27 Table 31 Figure 33 References 42 Chapter III. Water Molecules in the Central Cavity of Mammalian Fructose-1,6- bisphosphatase as a Determinant of the Quaternary State 48 Abstract 48 Introduction 49 Experimental procedures 51 Results 54 Discussion 58 Table 61 iii Figure 65 References 71 Chapter IV.
    [Show full text]
  • Chem331 Regulation and Metab Intro 2014
    Enzyme Regulation - What Factors Influence Enzymatic Activity? Principle means of regulating enzyme activity • Reversible, non-covalent (allosteric and simple-MM) – typically small molecules • Reversible, covalent • Protein-Protein interactions • Zymogen activation • Protein expression and degradation • Availability (both of enzyme and substrate) Reversible Noncovalent Simple activation and inhibition by small molecules – substrate, natural regulators of enzymes MM kinetics Km, Vmax – competitive, non competitive… Substrate inhibition or activation The availability of substrates and cofactors usually determines how fast the reaction goes As product accumulates, the apparent rate of the enzymatic reaction will decrease Reversible Noncovalent: Allosteric Action at "another site" Enzymes situated at key steps in metabolic pathways are modulated by allosteric effectors These effectors are usually produced elsewhere in the pathway Effectors may be feed-forward activators or feedback inhibitors Kinetics are sigmoid ("S-shaped") Reversible Covalent Examples include: phosphorylation - dephosphorylaton, lipid modification. This method is important because it does not alter the total amount of protein and it is easily reversed depending on cellular needs Covalent modification - Protein kinases Phosphorylation/dephosphorylation Most common method of reversible modification - activation and localization Up one-third of all cellular proteins are phosphorylated (so since there are ~30,000 genes, that would be ~10,000 phosphoproteins/organism, and perhaps
    [Show full text]
  • Regulatory Enzymes Lecture-1
    B.Sc. (H) Biochemistry Ist Year, IInd Sem Enzymes Regulatory Enzymes Lecture-1 Dr. Prabha Arya Assistant Professor Deshbandhu College Control of Enzyme acivity 1. Control of Enzyme availability 2. Control of Enzyme activity Control of enzyme availability: The amount of a given enzyme in a cell depends on both its rate of synthesis and its rate of degradation. Each of these rates is directly controlled by the cell. For example, E. coli grown in the absence of the disaccharide lactose lack the enzymes to metabolize this sugar. Within minutes of their exposure to lactose, however, these bacteria commence synthesizing the enzymes required to utilize this nutrient. Similarly, the various tissues of a higher organism contain different sets of enzymes, although most of its cells contain identical genetic information Control of enzyme activity An enzyme’s catalytic activity may be directly controlled through conformational or structural alterations. The rate of an enzymatically catalyzed reaction is directly proportional to the concentration of its enzyme–substrate complex, which, in turn, varies with the enzyme and substrate concentrations and with the enzyme’s substrate-binding affinity . The catalytic activity of an enzyme can therefore be controlled through the variation of its substrate-binding affinity Types of Regulation to change the enzyme activity In cellular metabolism, groups of enzymes work together in sequential pathways to carry out a given metabolic process, such as the multireaction breakdown of glucose to lactate or the multireaction synthesis of an amino acid from simpler precursors. In such enzyme systems, the reaction product of one enzyme becomes the substrate of the next.
    [Show full text]
  • Arabidopsis and Chlamydomonas Phosphoribulokinase Crystal Structures Complete the Redox Structural Proteome of the Calvin-Benson
    bioRxiv preprint doi: https://doi.org/10.1101/422709; this version posted February 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Classification: Biological Sciences: Plant Biology 2 3 Arabidopsis and Chlamydomonas phosphoribulokinase crystal structures complete the redox 4 structural proteome of the Calvin-Benson cycle 5 6 Short title: Insight into chloroplast PRK structure 7 8 Libero Gurrieria, Alessandra Del Giudiceb, Nicola Demitric, Giuseppe Falinid, Nicolae Viorel Pavelb, 9 Mirko Zaffagninia, Maurizio Polentaruttic, Pierre Crozete, Christophe H. Marchande, Julien Henrie, 10 Paolo Trosta, Stéphane D. Lemairee, Francesca Sparlaa,1, Simona Fermanid,1 11 12 aDepartment of Pharmacy and Biotechnology – FaBiT, University of Bologna, 40126 Bologna, Italy 13 bDepartment of Chemistry, University of Rome ‘Sapienza’, 00185 Rome, Italy 14 cElettra - Sincrotone Trieste, 34149, Basovizza - Trieste, Italy 15 dDepartment of Chemistry ‘G. Ciamician’, University of Bologna, 40126 Bologna, Italy 16 eInstitut de Biologie Physico-Chimique, UMR8226, CNRS, Sorbonne Université, 75005 Paris, 17 France 18 19 20 1To whom correspondence should be addressed: 21 Simona Fermani: 22 Address: Department of Chemistry ‘G. Ciamician,’ University of Bologna, Via Selmi 2 - 23 40126 Bologna, Italy 24 Phone: +39 051 2099475 25 Email address: [email protected] 26 Francesca Sparla: 1 bioRxiv preprint doi: https://doi.org/10.1101/422709; this version posted February 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]