Differentially Expressed Genes of the Shrimp Marsupenaeus Japonicus In

Total Page:16

File Type:pdf, Size:1020Kb

Differentially Expressed Genes of the Shrimp Marsupenaeus Japonicus In Fish and Shellfish Immunology 92 (2019) 348–355 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Differentially expressed genes of the shrimp Marsupenaeus japonicus in response to infection by white spot syndrome virus or Vibrio alginolyticus T ∗ Qingri Jin, Fei Zhu Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China ARTICLE INFO ABSTRACT Keywords: This is the first study to use a next-generation high-throughput DNA sequencing technique, the Illumina Differentially expressed genes Hiseq2000 method, to analyze the transcriptome from hemocytes of Marsupenaeus japonicus. A total of Marsupeneaus japonicus 80,929,652 Illumina reads, including 79,525,942 high quality reads were obtained in this study. From these, WSSV 40,231 unigenes with a mean length of 1557 bp were assembled using Trinity de novo software and 28,746 Vibrio alginolyticus cDNA were matched in the NCBI database. Then we compared the transcriptome changes after white spot syndrome virus (WSSV) or Vibrio alginolyticus infection. A total of 19,872 putative proteins were classified functionally into 25 molecular families in the cluster of orthologous groups. KEGG pathway analysis identified that the metabolic pathway possessed more unigenes (1358 unigenes), followed by biosynthesis of secondary metabolites, Huntington's disease and RNA transport. Important immune functions like apoptosis, phagocytosis, and lysosomes were in response to WSSV and V. alginolyticus early infection. Only 26 transcripts were sig- nificantly up-regulated or down-regulated after WSSV infection showed compared with V. alginolyticus. Crustin- like protein, endonuclease-reverse transcriptase, putative nuclease HARBI1-like, diphthamide biosynthesis protein 7 and hormone receptor 3 were involved in the immune response to WSSV or V. alginolyticus infection. These transcriptome datasets accelerate our understanding of the innate immune mechanisms in M. japonicus and other crustaceans. 1. Introduction discovered many immune-related genes responding to WSSV infection in crustaceans [9,10]. The kuruma shrimp (Marsupenaeus japonicus) is an economically Transcriptome analysis is widely used to identify novel and differ- important commercial farmed species of the Penaeidae family of dec- entially expressed genes in shrimp [11–14]. However, the hemocyte apod crustaceans in Southeast Asia. White spot syndrome virus (WSSV), transcriptome information for the shrimp response to WSSV and bac- an enveloped virus with a large double-stranded genome (∼300 kb) terial challenge is still limited, so we constructed and sequenced a [1,2], is a viral pathogen responsible for huge economic losses in the cDNA library from WSSV-challenged hemocytes in M. japonicus. The shrimp culture industry [3–5]. Vibriosis has also been implicated as the objective of this work was to identify and annotate more immune-re- cause of major mortality in juvenile penaeid shrimp [6]. Vibrio algino- lated genes in shrimp hemocytes and also provide information to elu- lyticus is an important bacterial pathogen in the shrimp farming in- cidate the mechanisms of innate immune response to WSSV and V. al- dustry. WSSV and V. alginolyticus often cause high production losses of ginolyticus challenge in crustaceans. In this study, we obtained 40,231 farmed shrimp in Southeast Asia. unigenes; most of these were novel for M. japonicus. In addition, many Crustaceans lack an adaptive immune system and rely totally on the genes were found to be related to the innate immune system in other innate immune system to resist pathogen invasion. The innate immune species, such as pattern recognition receptors, antimicrobial peptides, reaction comprises cellular reactions such as phagocytosis, nodule for- proteases and protease inhibitors, signal transduction proteins, apop- mation and encapsulation performed by hemocytes. Hemocytes are tosis-related proteins, and antioxidant proteins. crucial for the immune system in crustaceans as they are the main production site for immune recognition molecules and initiate the hu- moral reaction like phagocytosis [7,8]. Previous studies have ∗ Corresponding author. E-mail addresses: [email protected], [email protected] (F. Zhu). https://doi.org/10.1016/j.fsi.2019.06.034 Received 27 March 2019; Received in revised form 11 June 2019; Accepted 13 June 2019 Available online 16 June 2019 1050-4648/ © 2019 Elsevier Ltd. All rights reserved. Q. Jin and F. Zhu Fish and Shellfish Immunology 92 (2019) 348–355 Table 1 mL). In addition, 30 shrimps were each injected with 20 μL PBS as the General information of the transcriptome from health shrimp. control for the challenge experiments. The hemolymph was withdrawn fi Dataset name health shrimp from the ventral sinus located at the rst abdominal segment using an equal volume of modified Alsever's solution anticoagulant [15] and Total raw reads (paired-end) 80929652 subsequently centrifuged for 10 min at 1000×g, 4 °C. Hemocytes was Total clean reads 79525942 collected at various times after infection (12 and 24 h) and immediately Q20% 98.94% N percentage 0% stored in liquid nitrogen for later RNA extraction. GC percentage 44.33% Total unigenes 40231 2.2. RNA isolation and illumina sequencing Total genes 28746 Mean length (bp) 1557.55 N50 (bp) 3208 Total RNAs were isolated from the hemocytes of the infected and Min-Max length (bp) 351–18945 non-infected shrimps at different times after infection using Unizol re- agent (UnionGene, China) and treated with DNase I. The mRNAs were purified from the total RNAs using the PolyATtract mRNA isolation 2. Methods system (Promega, Madison, USA) following the manufacturer's in- structions. The quantity and purity of total RNAs were monitored using 2.1. Shrimp culture for challenge experiments a NanoDrop ND-1000 spectrophotometer (NanoDrop, DE, USA). cDNA libraries were generated using Illumina TruSeq™ RNA Sample Cultures of M. japonicus shrimps, each approximately 10 g and Preparation Kit (Illumia, USA) following manufacturer's instructions 10 cm in length, were maintained in groups of 20 individuals in 80 L and the index codes were added to attribute sequences to each sample. aquariums at 22 °C. Hemolymph from cultured shrimps was subjected Briefly, mRNA was purified from total RNA using poly-T oligo-attached to random PCR detection with WSSV-specific primers to ensure that the magnetic beads. Fragmentation was carried out using divalent cations shrimps were WSSV-free before experimental infection. The WSSV in- under elevated temperature in Illumina proprietary fragmentation oculum was prepared from WSSV-infected shrimps according to Zhu buffer. First strand cDNA was synthesized using random oligonucleo- μ et al. [9]. The WSSV-challenged group received 20 L injections of tides and SuperScript II. Second strand cDNA synthesis was subse- 5 WSSV (GenBank accession no. AF 332093.1, 10 copies/mL). In the quently performed using DNA Polymerase I and RNase H. Remaining μ Vibrio challenge experiment, 30 shrimps were each injected with 20 L overhangs were converted into blunt ends via exonuclease/polymerase 6 of V. alginolyticus (ATCC17749) suspended in PBS solution (10 cells/ activities and enzymes were removed. After adenylation of 3′ ends of Fig. 1. Contig length distribution of M. japonicus transcriptomic ESTs. 349 Q. Jin and F. Zhu Fish and Shellfish Immunology 92 (2019) 348–355 Fig. 2. Cluster of orthologous groups (COG) function classification in the transcriptome of hemocytes in healthy M. japonicus. Fig. 3. Gene ontology classification of the hemocyte transcriptome in healthy M. japonicus. The left y-axis indicates the percentage of a specific category of genes existing in the main category, whereas the right y-axis indicates the number of a specific category of genes existing in the main category. DNA fragments, Illumina PE adapter oligonucleotides were ligated to 2.3. De novo assembly and functional annotation prepare for hybridization. In order to select cDNA fragments of pre- ferentially 300 bp, the library fragments were purified with AMPure XP Raw sequencing reads were quality trimmed, and adaptor sequences system (Beckman Coulter, USA). DNA fragments with ligated adaptor were removed before the assembly. The processed reads were as- molecules on both ends were selectively enriched using Illumina PCR sembled using Trinity software with default parameters [16]. The de- Primer Cocktail in a 10 cycle PCR reaction. Products were purified rived unigene sequences were searched against the NCBI nonredundant (AMPure XP system) and quantified using the Agilent high sensitivity protein sequence database for annotation, with an e-value cutoff of − DNA assay on the Agilent Bioanalyzer 2100 system. 1×10 10. For Gene Ontology (GO) annotation, InterproScan was used for obtaining GO terms (http://nar.oxfordjournals.org/content/43/D1/ 350 Q. Jin and F. Zhu Fish and Shellfish Immunology 92 (2019) 348–355 Fig. 4. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway classification of hemocytes transcriptome in healthy M. japonicus. Table 2 Candidate genes involved in the immune response of M. japonicus at 12 h after challenged with WSSV or VA. Gene ID Fold change Homologous function Species WSSV VA comp16935_c0 2.97 23.41 crustin-like protein Litopenaeus vannamei comp6853_c0 2.5 0 conserved hypothetical protein Tribolium castaneum comp150797_c0
Recommended publications
  • Identification of Two Major Virion Protein Genes of White Spot Syndrome Virus of Shrimp
    Virology 266, 227–236 (2000) doi:10.1006/viro.1999.0088, available online at http://www.idealibrary.com on View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Identification of Two Major Virion Protein Genes of White Spot Syndrome Virus of Shrimp Marie¨lle C. W. van Hulten, Marcel Westenberg, Stephen D. Goodall, and Just M. Vlak1 Laboratory of Virology, Wageningen Agricultural University, Binnenhaven 11, 6709 PD Wageningen, The Netherlands Received August 25, 1999; returned to author for revision October 28, 1999; accepted November 8, 1999 White Spot Syndrome Virus (WSSV) is an invertebrate virus, causing considerable mortality in shrimp. Two structural proteins of WSSV were identified. WSSV virions are enveloped nucleocapsids with a bacilliform morphology with an approximate size of 275 ϫ 120 nm, and a tail-like extension at one end. The double-stranded viral DNA has an approximate size 290 kb. WSSV virions, isolated from infected shrimps, contained four major proteins: 28 kDa (VP28), 26 kDa (VP26), 24 kDa (VP24), and 19 kDa (VP19) in size, respectively. VP26 and VP24 were found associated with nucleocapsids; the others were associated with the envelope. N-terminal amino acid sequences of nucleocapsid protein VP26 and the envelope protein VP28 were obtained by protein sequencing and used to identify the respective genes (vp26 and vp28) in the WSSV genome. To confirm that the open reading frames of WSSV vp26 (612) and vp28 (612) are coding for the putative major virion proteins, they were expressed in insect cells using baculovirus vectors and analyzed by Western analysis.
    [Show full text]
  • A Transcriptome Study on Macrobrachium Nipponense Hepatopancreas Experimentally Challenged with White Spot Syndrome Virus (WSSV)
    RESEARCH ARTICLE A transcriptome study on Macrobrachium nipponense hepatopancreas experimentally challenged with white spot syndrome virus (WSSV) Caiyuan Zhao1, Hongtuo Fu1,2*, Shengming Sun2, Hui Qiao2, Wenyi Zhang2, Shubo Jin2, Sufei Jiang2, Yiwei Xiong2, Yongsheng Gong2 a1111111111 1 Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China, 2 Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research a1111111111 Center, Chinese Academy of Fishery Sciences, Wuxi, PR China a1111111111 a1111111111 * [email protected] a1111111111 Abstract White spot syndrome virus (WSSV) is one of the most devastating pathogens of cultured OPEN ACCESS shrimp, responsible for massive loss of its commercial products worldwide. The oriental Citation: Zhao C, Fu H, Sun S, Qiao H, Zhang W, river prawn Macrobrachium nipponense is an economically important species that is widely Jin S, et al. (2018) A transcriptome study on Macrobrachium nipponense hepatopancreas farmed in China and adult prawns can be infected by WSSV. However, the molecular mech- experimentally challenged with white spot anisms of the host pathogen interaction remain unknown. There is an urgent need to learn syndrome virus (WSSV). PLoS ONE 13(7): the host pathogen interaction between M. nipponense and WSSV which will be able to offer e0200222. https://doi.org/10.1371/journal. a solution in controlling the spread of WSSV. Next Generation Sequencing (NGS) was used pone.0200222 in this study to determin the transcriptome differences by the comparison of control and Editor: Yun Zheng, Kunming University of Science WSSV-challenged moribund samples, control and WSSV-challenged survived samples of and Technology, CHINA hepatopancreas in M.
    [Show full text]
  • A New Bacterial White Spot Syndrome (BWSS) in Cultured Tiger Shrimp Penaeus Monodon and Its Comparison with White Spot Syndrome (WSS) Caused by Virus
    DISEASES OF AQUATIC ORGANISMS Published May 25 Dis Aquat Org A new bacterial white spot syndrome (BWSS) in cultured tiger shrimp Penaeus monodon and its comparison with white spot syndrome (WSS) caused by virus Y. G. Wang*,K. L. Lee, M. Najiah, M. Shariff*,M. D. Hassan Aquatic Animal Health Unit, Faculty of Veterinary Medicine, Universiti Putra Malaysia. 43400 UPM, Serdang, Selangor. Malaysia ABSTRACT: This paper describes a new bacterial white spot syndrome (BWSS)in cultured tiger shrimp Penaeus monodon. The affected shrimp showed white spots similar to those caused by white spot syndrome virus (WSSV), but the shrimp remained active and grew normally without s~gnificantmor- talities. The study revealed no evidence of WSSV infection using electron microscopy, histopathology and nested polymerase chain reaction. Electron microscopy indicated bacteria associated with white spot formation, and with degeneration and discoloration of the cuticle as a result of erosion of the epi- cuticle and underlying cuticular layers. Grossly the white spots in BWSS and WSS look similar but showed different profiles under wet mount microscopy The bacterial white spots were lichen-like, hav- ing perforated centers unlike the melanlzed dots in WSSV-induced white spots. Bacteriological exam- ination showed that the dominant isolate in the lesions was Bacillus subtilis. The occurrence of BWSS may be associated with the regular use of probiotics containing B. subtilis in shrimp ponds. The exter- nally induced white spot lesions were localized at the integumental tissues, i.e., cuticle and epidermis, and connective tissues. Damage to the deeper tissues was limited. The BWS lesions are non-fatal in the absence of other complications and are usually shed through molting.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • Efficacy of Double-Stranded RNA Against White Spot Syndrome Virus
    Journal of King Saud University – Science (2014) xxx, xxx–xxx King Saud University Journal of King Saud University – Science www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Efficacy of double-stranded RNA against white spot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp Litopenaeus vannamei Ce´sar M. Escobedo-Bonilla a,*, Sergio Vega-Pen˜ a b, Claudio Humberto Mejı´a-Ruiz c a Centro Interdisciplinario de Investigacio´n para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-SIN), Blvd. Juan de Dios Batiz Paredes no. 250, Colonia San Joachin, Guasave, Sinaloa 81101, Mexico b Universidad Auto´noma de Baja California Sur (UABCS), Carretera al Sur km 5.5, Colonia Expropiacio´n Petrolera s/n, La Paz, B.C.S. 23080, Mexico c Centro de Investigaciones Biolo´gicas del Noroeste (CIBNOR), Mar Bermejo 195, Colonia Playa Palo de Santa Rita, La Paz, B.C.S. 23096, Mexico Received 8 March 2014; accepted 29 November 2014 KEYWORDS Abstract White spot syndrome virus (WSSV) is a major pathogen in shrimp aquaculture. RNA WSSV; interference (RNAi) is a promising tool against viral infections. Previous works with RNAi showed Aquatic diseases; different antiviral efficacies depending on the silenced gene. This work evaluated the antiviral Non-structural genes; efficacy of double-stranded (ds) RNA against two non-structural (orf89, wsv191) WSSV genes dsRNA; compared to structural (vp26, vp28) genes to inhibit an experimental WSSV infection. Gene orf89 Antiviral therapeutics; encodes a putative regulatory protein and gene white spot virus (wsv)191 encodes a nonspecific Litopenaeus vannamei nuclease; whereas genes vp26 and vp28 encode envelope proteins, respectively.
    [Show full text]
  • Concentrating White Spot Syndrome Virus by Alum for Field Detection Using a Monoclonal Antibody Based Flow-Through Assay Amrita Rani, Sathish R
    Journal of Biological Methods | 2016 | Vol. 3(2) | e39 DOI: 10.14440/jbm.2016.105 ARTICLE Concentrating white spot syndrome virus by alum for field detection using a monoclonal antibody based flow-through assay Amrita Rani, Sathish R. Poojary, Naveen Kumar B. Thammegouda, Abhiman P. Ballyaya, Prakash Patil, Ramesh K. Srini- vasayya, Shankar M. Kalkuli*, Santhosh K. Shivakumaraswamy College of Fisheries, Karnataka Veterinary Animal and Fisheries Sciences University, Mangaluru – 575002, Karnataka, India *Corresponding author: Dr. Shankar K.M., Professor and Dean, College of Fisheries, Karnataka Veterinary Animal and Fisheries Sciences University, Mangalore - 575002, Karnataka, India, Tel.: +91 824 2248936, Fax: +91 824 2248366, Email: [email protected] Competing interests: The authors have declared that no competing interests exist. Received December 5, 2015; Revision received March 11, 2016; Accepted April 29, 2016; Published May 25, 2016 ABSTRACT A simple and easy method of concentrating white spot syndrome virus by employing aluminium sulphate, alum as a flocculant was developed and evaluated for field detection. The concentrated virus was detected by a mono- clonal antibody based flow-through assay, RapiDot and compared its performance with polymerase chain reaction. The semi-purified virus that was flocculated by 15 and 30 ppm alum in a 50 ml cylinder can be detected successfully by both RapiDot and I step PCR. In addition, alum could also flocculate the virus that is detectable by II step PCR and the con- centration of virus was similar to the one observed in water from an infected pond. Furthermore, experimental infection studies validated the successful concentration of virus by alum flocculation followed by rapid detection of virus using monoclonal antibody based RapiDot.
    [Show full text]
  • On the Vaccination of Shrimp Against White Spot Syndrome Virus
    On the vaccination of shrimp against white spot syndrome virus Jeroen Witteveldt Promotoren: Prof. dr. J. M. Vlak Persoonlijk Hoogleraar bij de Leerstoelgroep Virologie Prof. dr. R. W. Goldbach Hoogleraar in de Virologie Co-promotor Dr. ir. M. C. W. van Hulten (Wetenschappelijk medewerker CSIRO, Brisbane, Australia) Promotiecommissie Prof. dr. P. Sorgeloos (Universiteit Gent, België) Prof. dr. J. A. J. Verreth (Wageningen Universiteit) Prof. dr. ir. H. F. J. Savelkoul (Wageningen Universiteit) Dr. ir. J. T. M. Koumans (Intervet International, Boxmeer, Nederland) Dit onderzoek werd uitgevoerd binnnen de onderzoekschool ‘Production Ecology and Resource Conservation’ (PE&RC) On the vaccination of shrimp against white spot syndrome virus Jeroen Witteveldt Proefschrift ter verkrijging van de graad van doctor op het gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M. J. Kropff, in het openbaar te verdedigen op vrijdag 6 januari 2006 des namiddags te vier uur in de Aula Jeroen Witteveldt (2006) On the vaccination of shrimp against white spot syndrome virus Thesis Wageningen University – with references – with summary in Dutch ISBN: 90-8504-331-X Subject headings: WSSV, vaccination, immunology, Nimaviridae, Penaeus monodon CONTENTS Chapter 1 General introduction 1 Chapter 2 Nucleocapsid protein VP15 is the basic DNA binding protein of 17 white spot syndrome virus of shrimp Chapter 3 White spot syndrome virus envelope protein VP28 is involved in the 31 systemic infection of shrimp Chapter 4 Re-assessment of the neutralization
    [Show full text]
  • Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics
    viruses Article Diversity and Evolution of Novel Invertebrate DNA Viruses Revealed by Meta-Transcriptomics Ashleigh F. Porter 1, Mang Shi 1, John-Sebastian Eden 1,2 , Yong-Zhen Zhang 3,4 and Edward C. Holmes 1,3,* 1 Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Life & Environmental Sciences and Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia; [email protected] (A.F.P.); [email protected] (M.S.); [email protected] (J.-S.E.) 2 Centre for Virus Research, Westmead Institute for Medical Research, Westmead, NSW 2145, Australia 3 Shanghai Public Health Clinical Center and School of Public Health, Fudan University, Shanghai 201500, China; [email protected] 4 Department of Zoonosis, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, China * Correspondence: [email protected]; Tel.: +61-2-9351-5591 Received: 17 October 2019; Accepted: 23 November 2019; Published: 25 November 2019 Abstract: DNA viruses comprise a wide array of genome structures and infect diverse host species. To date, most studies of DNA viruses have focused on those with the strongest disease associations. Accordingly, there has been a marked lack of sampling of DNA viruses from invertebrates. Bulk RNA sequencing has resulted in the discovery of a myriad of novel RNA viruses, and herein we used this methodology to identify actively transcribing DNA viruses in meta-transcriptomic libraries of diverse invertebrate species. Our analysis revealed high levels of phylogenetic diversity in DNA viruses, including 13 species from the Parvoviridae, Circoviridae, and Genomoviridae families of single-stranded DNA virus families, and six double-stranded DNA virus species from the Nudiviridae, Polyomaviridae, and Herpesviridae, for which few invertebrate viruses have been identified to date.
    [Show full text]
  • Host-Virus Interactions in the Pacific White Shrimp, Litopenaeus Vannamei Duan Sriyotee Loy Iowa State University
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2014 Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei Duan Sriyotee Loy Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Virology Commons Recommended Citation Loy, Duan Sriyotee, "Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei" (2014). Graduate Theses and Dissertations. 13777. https://lib.dr.iastate.edu/etd/13777 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Host-virus interactions in the Pacific white shrimp, Litopenaeus vannamei by Duan Sriyotee Loy A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Veterinary Microbiology Program of Study Committee: Lyric Bartholomay, Co-Major Professor Bradley Blitvich, Co-Major Professor D.L. Hank Harris Cathy Miller Michael Kimber Iowa State University Ames, Iowa 2014 Copyright © Duan Sriyotee Loy, 2014. All rights reserved. ii TABLE OF CONTENTS CHAPTER 1: GENERAL INTRODUCTION...…………………………………………...1 Introduction…………………………………………………………………………………………1 Dissertation Organization…………………………………………………………………………3
    [Show full text]
  • Parentage Determination of Kuruma Shrimp Penaeus (Marsupenaeus) Japonicus Using Microsatellite Markers (Bate)
    CORE Metadata, citation and similar papers at core.ac.uk Provided by ResearchOnline at James Cook University Aquaculture 235 (2004) 237–247 www.elsevier.com/locate/aqua-online Parentage determination of Kuruma shrimp Penaeus (Marsupenaeus) japonicus using microsatellite markers (Bate) Dean R. Jerrya,*, Nigel P. Prestonb, Peter J. Crocosb, Sandy Keysb, Jennifer R.S. Meadowsc, Yutao Lic a CSIRO Livestock Industries, FD McMaster Laboratory-Chiswick, Armidale, NSW 2350, Australia b CSIRO Marine Research, Cleveland, QLD 4163, Australia c CSIRO Livestock Industries, Gehrmann Laboratories, University of Queensland, St. Lucia, QLD 4072, Australia Received 9 July 2003; received in revised form 14 January 2004; accepted 16 January 2004 Abstract The application of microsatellite markers for parentage determination is gaining both acceptance and popularity in aquaculture. In this study we used simulations and controlled matings to examine the potential of microsatellite markers in assigning parentage to Kuruma shrimp (Penaeus japonicus) progeny. Simulations based on allele frequency data from a captive population of P. japonicus demonstrated that at least five loci would be required to assign progeny to their correct maternal parent (with 95% confidence) when drawn from a breeding population of 30 dams and 150 putative sires. Based on this information, nauplii from 22 matings where maternal parents were known were typed at six microsatellite loci and subjected to parentage analysis. Assignment success of progeny to their ‘‘true’’ mother was lower than predicted by the simulations, with only 47% of progeny assigned correctly. Null alleles and allelic dropout resulting from poor quality DNA contributed to this disparity. The benefits of DNA parentage analysis as a tool to retain pedigree information in shrimp selective breeding programs are discussed.
    [Show full text]
  • The Tissue Distribution of White Spot Syndrome Virus (WSSV)
    Aquaculture Sci. 57(1),91-97(2009) The Tissue Distribution of White Spot Syndrome Virus (WSSV) in Experimentally Infected Kuruma Shrimp (Marsupenaeus Japonicus) as Assessed by Quantitative Real-Time PCR 1 1 1 1 Kanako ASHIKAGA , Tomoya KONO , Kohei SONODA , Yoichi KITAO , 1 1 1, Gunimala CHAKRABORTY , Toshiaki ITAMI and Masahiro SAKAI * Abstract: White spot syndrome virus (WSSV) is a highly lethal, stress dependent virus belonging to the genus Whispovirus and the family Nimaviridae. Among the various crustaceans, shrimp species are the most susceptible to WSSV infection. In the current study, a quantitative real-time PCR method was established in order to quantify the levels of WSSV in various tissues of shrimp that had been experimentally infected using the immersion bioassay. Two different concentrations of viral inoculums (high and low concentration) were used in the infection procedure. Following infection, we detected WSSV in hemolymph and other tissues including the lymphoid organ, heart, stomach and gills. Although the tissue distribution between the groups exposed to either high or low concentrations of WSSV were found to be similar, the final viral load of the tissues correlated to the concentration of WSSV used in the initial exposure. An increased viral load was confirmed in the lymphoid organ, heart, stomach and gills 10 days following infection. In contrast, an increased concentration of WSSV-DNA in hemolymph was confirmed at only 4 days post-infection. Key words: Kuruma Shrimp; WSSV; Tissue Distribution; Real-Time PCR tentatively named as the causative virus of this Introduction outbreak, however it was later re-designated as the penaeid rod-shaped DNA virus (PRDV) Shrimp farming routinely suffers great pro- (Inouye et al.
    [Show full text]
  • Vitamin a Effects and Requirements on the Juvenile Kuruma Prawn Marsupenaeus Japonicus Efectos Y Requerimientos De Vitamina a En
    Hidrobiológica 2009, 19 (3): 217-223 Vitamin A effects and requirements on the juvenile Kuruma Prawn Marsupenaeus japonicus Efectos y requerimientos de vitamina A en los juveniles del camarón Kuruma Marsupenaeus japonicus Luis Héctor Hernandez Hernandez1, Shin-Ichi Teshima2, Manabu Ishikawa2, Shunsuke Koshio2, Francisco Javier Gallardo-Cigarroa3, Orhan Uyan4 and Md. Shah Alam5 1Laboratorio de Producción Acuícola, Facultad de Estudios Superiores Iztacala, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54090, México 2Laboratory of Aquatic Animal Nutrition, Faculty of Fisheries, Kagoshima University, Shimoarata 4-50-20, Kagoshima 890-0056, Japan 3Yamaha Nutreco Aquatech Co. LTD, Suite 702 Abundant’95, Hakataekihigashi 3-12-1, Fukuoka 812-0013, Japan 4Aquaculture Research Group, DSM Nutritional Products France, Animal Nutrition & Health Research, CRNA- BP170, 68305 SAINT-LOUIS Cedex, France 5Center for Marine Science, Aquaculture Program, University of North Carolina at Wilmington, 7205 Wrightsville Ave., Wilmington, NC 28403, USA e mail: [email protected] Hernandez-Hernandez L. H., S. Ichi-Teshima, M. Ishikawa, S. Koshio, F. J. Gallardo-Cigarroa, O. Uyan and M.S. Alam. 2009. Vitamin A effects and requirements on the juvenile Kuruma Prawn Marsupenaeus japonicus. Hidrobiológica 19 (3): 217-223. ABSTRACT A 40-day feeding experiment was conducted to assess the effect and requirements of dietary vitamin A (vitA) of juvenile Kuruma Prawn Marsupenaenus japonicus. Nine semi-purified diets were prepared with supplementations of 0, 3,000, 6,000, 9,000, 12,000, 15,000, 18,000, 21,000 and 24,000 international units of vitA per kg (IU vitA/kg) and fed once a day to triplicate groups of 15 juveniles per tank (initial weight of 0.14 ± 0.001 g, mean ± standard error).
    [Show full text]