Offline Handwritten Gurmukhi Word Recognition Using Deep Neural

Total Page:16

File Type:pdf, Size:1020Kb

Offline Handwritten Gurmukhi Word Recognition Using Deep Neural International Journal of Pure and Applied Mathematics Volume 119 No. 12 2018, 14749-14767 ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu Special Issue ijpam.eu Offline Handwritten Gurmukhi Word Recognition Using Deep Neural Networks 1Neeraj Kumar and 2Sheifali Gupta 1Dept of Electronics & Communication Engineering, Chitkara University, Himachal Pradesh, India. [email protected] 2Dept of Electrical & Electronics Engineering, Chitkara University, Punjab, India. [email protected] Abstract In spite of the advances achieved in pattern recognition technology, Handwritten Gurmukhi Word Recognition (HGWR) is still a challenging problem due to the presence of many similar characters and excessive cursiveness in Gurmukhi handwriting. Even the finest presented recognizers don’t give reasonable performance for realistic applications. Also due to variations in handwriting styles and speed of writing it is very hard to recognize the handwritten Gurmukhi characters. A majority of the work has already been reported on the online handwritten scripts like English, Bangla etc. Now research is being shifted towards the recognition of offline handwritten scripts. In order to recognize the handwritten Gurmukhi word, we present a novel method based on deep neural networks which has recently shown exceptional performance in various pattern recognition and machine learning applications, but has not been endeavored for HGWR. We present Handwritten Gurumukhi Word recognition method based on LBP features, Directional Features & Geometric features. A total of 117 features have been extracted which will be utilized to recognize the individual character for further word recognition. Also to map the recognized Gurmukhi text with Devanagari a suitable mapping technique has also been implemented. The proposed system effectively segments the words into individual characters and then recognizes the individual character, concatenates them and maps the 14749 International Journal of Pure and Applied Mathematics Special Issue Gurmukhi text into Devanagari text using suitable unicodes. Keywords: Word Recognition, LBP features, Directional features, Regional features, Deep neural networks, Mapping. 14750 International Journal of Pure and Applied Mathematics Special Issue 1. Introduction Computers have an excessive influence on everyone in these days and process almost all the important works of our lives electronically. Keeping in mind the use of computers these days, there is a requirement of developing proficient, uncomplicated and speedy methods for the transfer of data between humans and computers. Document Analysis and Recognition (DAR) systems play a main role in transfer of data between humans and computers. Character Recognition system is an essential part of a document analysis and recognition system. Character Recognition systems have been developed to recognize printed texts and handwritten texts [1]. Printed character recognition system deals with the recognition of printed characters whereas handwritten character recognition system (HCRS) deals with the recognition of handwritten characters. Handwritten character recognition system (HCRS) can be categorized into two streams namely, online HCRS and offline HCRS. In online stream, user writes on an electronic surface by the aid of a unique pen and during the writing process, data is captured in terms of (x, y) coordinates. Offline HCRS converts offline handwritten text into such a form which can be easily understood by the machines. It involves the processing of documents containing scanned images of a text written by a user, usually on a plain paper [2]. In this kind of systems, characters are digitized to obtain 2 dimensional images. Developing a realistic HCRS which is capable of retaining lofty recognition accuracy is still a very challenging task. Moreover, recognition accuracy depends upon the input text quality. A number of devices, including personal digital assistant and tablet PCs are available these days that can be used for data capturing. In these systems, characters are captured as a sequence of strokes. Features are then extracted from these strokes and strokes are recognized with the help of these features. Generally, a post-processing module helps in forming the characters from the stroke(s). India is a multilingual country. Multiple scripts are used among billions of people, mainly based on their geographic location. Based on the literature studied so far, it is found that the majority of the work is being done on individual character recognition in different languages like English, Bangla, Devanagari, Gujrati etc. Now researchers are shifting towards the recognition of Gurmukhi script. Gurmukhi script is one most widely used script especially in the north part of the country. So there is a need to develop a recognition system for Gurmukhi script that will reduce the complexity of the work done in Government offices, public banks where majority of the work is done in Gurmukhi script. Research in this script is currently limited to single character recognition only. So there is a huge scope in the Gurmukhi script for researchers to take the work forward from character level to the Word level. In this article an attempt has been made to recognize the Gurmukhi words using combined feature extraction and deep neural networks. 14751 International Journal of Pure and Applied Mathematics Special Issue 2. Gurmukhi Script Normally, each Indian script is having several scrupulous set of laws for the amalgamation of consonants, vowels and modifiers. Gurmukhi script is widely used in North part of the India. Gurmukhi script is used for inscribing the Punjabi language. It is derived from the old Punjabi word “Gurumukhi”, which means “from the mouth of the Guru”. Gurmukhi script has basic 35 characters, 10 vowels and modifiers, 6 additional modified consonants. There is no conception of upper or lowercase characters in Gurmukhi script. The writing style of the Gurmukhi script is from left to right and top to bottom. The basic 35 characters of Gurmukhi script are shown in Fig 1: Fig.1 Consonants in Gurmukhi Script 3. Literature Review R. Sharma et al [1] projected two stages for the character recognition. In the first phase unidentified strokes are recognized and in the second stage the author has evaluated the characters with the help of strokes that are found in the first stage. Using the elastic matching a maximum recognition rate of 90.08% is achieved. N. Kumar et al [3] presented a technique for effective character recognition system based on deep neural networks. The authors extracted three kind of features namely LBP features, directional features and geometric features in order to correctly recognize the text. U. Garain et al [4] proposed a technique which works on fuzzy analysis and authors developed an algorithm to segment touching characters. M. Kumar et al [5] projected a scheme to recognize Gurmukhi characters which is based on transition & diagonal features extraction 14752 International Journal of Pure and Applied Mathematics Special Issue and the classifier used in the work is k-NN. To determine the k-nearest neighbors, the authors calculated the Euclidian distance b/w test point and reference point. Rajiv Kumar et al [6] showed how segmentation can be done in character recognition of Gurmukhi script. According to R.K Sharma et al [7] that with the help of various features like diagonal, directional & zoning & K- NN, Bayesian classifiers the handwriting of writers can be compared. Narang et al [8] projected an approach based on parts or technique suitable for scene images. The author has taken the corner points which are served as parts and these parts are found to make a part based model. N. Kumar et al [9] has discussed a number of feature extraction techniques & classifiers like power arc fitting, parabola arc fitting, diagonal feature extraction, transition feature extraction, k-NN and SVM. M. Kumar et al [10] projected a technique to recognize isolated characters using horizontally & vertically peak extent features, centroid features &diagonal features. A. Dixit et al [11] proposed a feature extraction & classification approach named as the wavelet transform. The proposed technique achieves an accuracy of 70%. N. Arica et al [12] proposed a method for offline cursive handwriting recognition. Firstly, authors found various parameters like baselines, slant angle, stroke width and height. After that, character segmentation paths were found by merging both gray scale and binary information. M. Kumar et al [13] proposed two schemes for feature extraction namely, power and parabola curve fitting & the classifier used in the work is k-NN & SVM. M. Kumar et al [14] presents a novel technique for efficient feature extraction. The authors extracted various features, namely, peak‑ extent features, shadow features and centroid features. They also proposed a novel feature set by using horizontal peak extent features and the vertical peak extent features. A. Aggarwal [16] proposed a feature extraction technique namely gradient based feature extraction for recognition of Gurmukhi characters. The proposed system achieves an accuracy of 97.38%. N. Kumar et al [17] proposed a technique for effective character recognition system based on deep neural networks. The authors also compared the results of proposed technique with various classifiers like SVM & K-NN. 4. Research Methodology The research methodology for word recognition has been divided into
Recommended publications
  • Nondecimal Positional Systems
    M03_LONG0847_05_AIE_C03.qxd 9/17/07 10:38 AM Page 162 Not for Sale 162 CHAPTER 3 Numeration and Computation 3.2 Nondecimal Positional Systems In the preceding section, we discussed several numeration systems, including the decimal system in common use today. As already mentioned, the decimal system is a positional system based on 10. This is probably so because we have ten fingers and historically, as now, people often counted on their fingers. In the Did You Know box at the end of this section, we will give applications of positional systems that are based on whole numbers other than 10. One very useful application of bases other than ten is as a way to deepen our understanding of number systems, arithmetic in general, and our own decimal system. Although bases other than ten were in the K–5 curriculum in the past, they are not present currently. However, nondecimal positional systems are studied in the “math methods” course that is a part of an elementary education degree and may return to elementary school in the future. We will discuss addition and subtraction in base five in the next section and multiplication in base six in the following one. Base Five Notation For our purposes, perhaps the quickest route to understanding base five notation is to reconsider the abacus of Figure 3.1. This time, however, we allow only 5 beads to be moved forward on each wire. As before, we start with the wire to the students’ right (our left) and move 1 bead forward each time as we count 1, 2, 3, and so on.
    [Show full text]
  • 13054-Duodecimal.Pdf
    Universal Multiple-Octet Coded Character Set International Organization for Standardization Organisation Internationale de Normalisation Международная организация по стандартизации Doc Type: Working Group Document Title: Proposal to encode Duodecimal Digit Forms in the UCS Author: Karl Pentzlin Status: Individual Contribution Action: For consideration by JTC1/SC2/WG2 and UTC Date: 2013-03-30 1. Introduction The duodecimal system (also called dozenal) is a positional numbering system using 12 as its base, similar to the well-known decimal (base 10) and hexadecimal (base 16) systems. Thus, it needs 12 digits, instead of ten digits like the decimal system. It is used by teachers to explain the decimal system by comparing it to an alternative, by hobbyists (see e.g. fig. 1), and by propagators who claim it being superior to the decimal system (mostly because thirds can be expressed by a finite number of digits in a "duodecimal point" presentation). • Besides mathematical and hobbyist publications, the duodecimal system has appeared as subject in the press (see e.g. [Bellos 2012] in the English newspaper "The Guardian" from 2012-12-12, where the lack of types to represent these digits correctly is explicitly stated). Such examples emphasize the need of the encoding of the digit forms proposed here. While it is common practice to represent the extra six digits needed for the hexadecimal system by the uppercase Latin capital letters A,B.C,D,E,F, there is no such established convention regarding the duodecimal system. Some proponents use the Latin letters T and E as the first letters of the English names of "ten" and "eleven" (which obviously is directly perceivable only for English speakers).
    [Show full text]
  • Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
    Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system.
    [Show full text]
  • A Ternary Arithmetic and Logic
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number.
    [Show full text]
  • Chapter 6 MISCELLANEOUS NUMBER BASES. the QUINARY
    The Number Concept: Its Origin and Development By Levi Leonard Conant Ph. D. Chapter 6 MISCELLANEOUS NUMBER BASES. THE QUINARY SYSTEM. The origin of the quinary mode of counting has been discussed with some fulness in a preceding chapter, and upon that question but little more need be said. It is the first of the natural systems. When the savage has finished his count of the fingers of a single hand, he has reached this natural number base. At this point he ceases to use simple numbers, and begins the process of compounding. By some one of the numerous methods illustrated in earlier chapters, he passes from 5 to 10, using here the fingers of his second hand. He now has two fives; and, just as we say “twenty,” i.e. two tens, he says “two hands,” “the second hand finished,” “all the fingers,” “the fingers of both hands,” “all the fingers come to an end,” or, much more rarely, “one man.” That is, he is, in one of the many ways at his command, saying “two fives.” At 15 he has “three hands” or “one foot”; and at 20 he pauses with “four hands,” “hands and feet,” “both feet,” “all the fingers of hands and feet,” “hands and feet finished,” or, more probably, “one man.” All these modes of expression are strictly natural, and all have been found in the number scales which were, and in many cases still are, in daily use among the uncivilized races of mankind. In its structure the quinary is the simplest, the most primitive, of the natural systems.
    [Show full text]
  • I – Mathematics in Design – SMTA1103
    SCHOOL OF SCIENCE AND HUMANITIES DEPARTMENT OF MATHEMATICS UNIT – I – Mathematics in Design – SMTA1103 UNIT1- MATHEMATICS IN DESIGN Golden Ratio The ratio of two parts of a line such that the longer part divided by the smaller part is also equal to the whole length divided by the longer part. Results: i) The ratio of the circumference of a circle to its diameter is π . ii) The ratio of the width of a rectangular picture frame to its height is not necessarily equal to he golden ratio, though some artists and architects believe a frame made using the golden ratio makes the most pleasing and beautiful shape.iii) The ratio of two successive numbers of the Fibonacci sequence give an approximate value of the golden ratio,the bigger the pair of Fibonacci Numbers, the closer the approximation. Example1: The Golden Ratio = 1.61803398874989484820... = 1.618 correct to 3 decimal places. If x n are terms of the Fibonacci sequence, then what is the least value of n for which ( x n +1 / x n = 1.618 correct to 3 decimal places. Example2: A rectangle divided into a square and a smaller rectangle. If (x + y) /y = x / y ,find the value of golden ratio. Example3: The Golden Ratio = 1.61803398874989484820... = 1.6180 correct to 4 decimal places. If xn are terms of the Fibonacci sequence, then what is the least value of n for which (x n +1) / x n = 1.618 0 correct to 4 decimal places. Example4: Obtain golden ratio in a line segment. Proportion Proportion is an equation which defines that the two given ratios are equivalent to each other.
    [Show full text]
  • The Counting System of the Incas in General, There Is a Lack of Material on the History of Numbers from the Pre-Columbian Americas
    History of Numbers 1b. I can determine the number represented on an Inca counting board, and a quipu cord. The Counting System of the Incas In general, there is a lack of material on the history of numbers from the pre-Columbian Americas. Most of the information available concentrates on the eastern hemisphere, with Europe as the focus. Why? First, there has been a false assumption that indigenous peoples in the Americas lacked any specialized mathematics. Second, it seems at least some of their ancient mathematics has been intentionally kept secret. And Einally, when Europeans invaded and colonized the Americas, much of that evidence was most likely destroyed. In the 1960's, two researchers attempted to discover what mathematical knowledge was known by the Incas and how they used the Peruvian quipu, a counting system using cords and knots, in their mathematics. These researchers have come to certain beliefs about the quipu that are summarized below: Counting Boards It seems the Incas did not have a complicated system of computation. Whereas other peoples in the region, such as the Mayans, were doing computations related to their rituals and calendars, the Incas seem to have been more concerned with the task of record-keeping. To do this, they used what are called “quipu”(or khipu) to record quantities of items. However, they Eirst often needed to do computations whose results would be recorded on a quipu. To do these computations, they sometimes used a counting board or Yupana (from the Quechua word "yupay": count) made from a slab of wood or stone.
    [Show full text]
  • Decimal Notation in the United States
    Decimal Notation in the United States In the United States, we use the decimal or period (“.”) to represent the difference between whole numbers and partial numbers. We use the comma (“,”) to separate groups of three places on the whole numbers side. This might be different from the way you currently write numbers. For example, the number 1 million: Some non-U.S. Counties: 1.000.000,00 U.S.: 1,000,000.00 It is also very important to know the names for the digit places in decimal notation. Here are the names in English for the United States: Thousandths Trillions Hundred Billions Ten Billions Billions Hundred Millions Ten Millions Millions Hundred Thousands Ten Thousands Thousands Hundreds Tens Ones Tenths Hundredths Thousandths Ten Hundred Thousandths Millionths 1 , 2 3 4 , 5 6 7 , 8 9 0 , 1 2 3 . 4 5 6 7 8 9 Other than the “ones” place, the places to the right of the decimal are almost the same as the places to the left of the decimal, but with an additional “th” added at the end. How to Say Common Math Terms in U.S. English Numbers: Big Numbers: In the U.S. we separate big numbers into groups of three of the following types: Ones, Thousands, Millions, Billions, … For example: 1,234,567 has three groups Millions: 1 Thousands: 234 Ones: 567 We say each group as a separate number, followed by the group type. So, we would say: “One million, two hundred and thirty-four thousand, five hundred and sixty-seven” Decimals: When there is a decimal, we say it a few different ways: 0.4 can be expressed as “four tenths,” “zero point four,” or just
    [Show full text]
  • 'Decimal' Package (Version 1·1)
    The `decimal' package (version 1·1) A. Syropoulos ∗ and R. W. D. Nickalls y June 1, 2011 Abstract In traditional English typography the decimal point is printed as a raised dot. The decimal package provides this functionality by making the full point, or period ( . ) active in maths mode, and implementing the \cdot character instead. In addition, the command \. is redefined in such a way that that it produces a full point in math mode, but retains its usual functionality in text mode. 1 Introduction The decimal point (decimal separator) is variously implemented as a comma (European), a full point (North American), or as a raised full point (English). While the comma and full point have always been supported in electronic typesetting, the English raised decimal point has been somewhat overlooked|until now. For a nice history of the decimal fraction see the chapter on The invention of decimal fractions and of logarithms in Scott1 (1960). 2 Typography In Great Britain until about 1970 or so the decimal separator was typically imple- mented as a raised dot (middle dot). For example, when currency decimalisation was introduced in the UK in 1971, the recommended way of writing currency was with a raised dot, as in $ 21·34. However, since then there has been a gradual decline in the use of the raised point most probably owing to the fact that this glyph was not generally available on electronic typewriters or computer wordprocessors. While the raised dot does make occasional appearances in British newspapers, it is, unfortunately, seldom seen nowadays even in British scientific journals.
    [Show full text]
  • The Sumerians , the Sexagesimal System and the Babylonian Legacy
    THE SUMERIANS , THE SEXAGESIMAL SYSTEM AND THE BABYLONIAN LEGACY TO ASTRONOMY by Paul Coffre The Sexagesimal System The Sumerians who lived in Mesopotamia (nowadays Iraq) 5000 years ago, developed a sexagesimal ComputaDon system. The sexagesimal system is a base 60 ComputaDon system. Why? Why not base 10 (deCimal), base 2 (Computers), base 12 (EgypDans), base 20 (Mayans)? The sexagesimal system is sDll in use today aLer 5000 years: CloCks, Coordinates of maps, Trigonometry… Why was the number 60 so valued in Mesopotamia? 60 is Countable on the fingers of both hands, 60 is a highly Composite number, 60 has an astronomiCal signifiCanCe. Strange enough that 60 is the first number between two prime numbers (59 and 61) For more details go to: hTps://en.wikipedia.org/wiki/Sexagesimal If this finger-CounDng method was the reason for the Mesopotamian sexagesimal system, why was its sub-base 10 instead of 12? It is inConsistent that the CounDng system is 12 × 5 = 60, while the deCimal notaDon system is 10 × 6 = 60. Note that Egypt uses this duodeCimal finger-CounDng method (base 12). The AnCient EgypDans had a deCimal system and did not acCept a sexagesimal system. They did not need to Count to 60, but they divided day and night into 12 hours each and they needed only to Count 12. Therefore we Can safely assume that this finger-CounDng method was originally developed to Count 12 and later Convert- ed to Count 60 and that Sumerians developed the sexagesimal notaDon independent of this CounDng method and then was passed on the Babylonians.
    [Show full text]
  • 2Decimal and Sexagesimal System
    I.E.S. “Andrés de Vandelvira” - Sección Europea Mathematics 2 Decimal and sexagesimal system Keywords Regular numbers repeating decimals period irrational number rounding number line sexagesimal system 1 Decimal numbers Remember that to express numbers that are not whole numbers we use decimal numbers as 75.324 in which every digit has a value which is divided by ten when we move to the right. So 7 is seventy units 5 is five units 3 is three tenths of a unit 2 two hundredths of the unit 4 is four thousandths of a unit And we continue like that if there are more digits. This is the decimal system that is commonly use nowadays except, sometimes, for time and angles. We read these numbers naming the whole part then “point” and then the decimals digits one by one Example The number 75.324 is read as seventy five, point, three, two, four When the numbers express money or length can be read on a different way, for example 5.24€ is read as five point twenty four euros or five euros and twenty five cents or the number 5.36 m can be read as five point thirty six metres. 2 Types of decimal numbers As a result of some operations we can get different types of decimal numbers: Regular numbers: Are decimal numbers with a limited quantity of decimal digits and from them all could be zeros. 2-1 I.E.S. “Andrés de Vandelvira” - Sección Europea Mathematics 14 Example = 8.2 we find an exact division 5 Repeating decimals: There is a group of digits that are repeated forever.
    [Show full text]
  • Conversions Between Percents, Decimals, and Fractions
    Click on the links below to jump directly to the relevant section Conversions between percents, decimals and fractions Operations with percents Percentage of a number Percent change Conversions between percents, decimals, and fractions Given the frequency that percents occur, it is very important that you understand what a percent is and are able to use percents in performing calculations. This unit will help you learn the skills you need in order to work with percents. Percent means "per one hundred" Symbol for percent is % For example, suppose there are 100 students enrolled in a lecture class. If only 63 attend the lecture, then 63 per 100 students showed up. This means 63% of the students attended the lecture. If we take a closer look at this, we can see that the fraction of the students that attended the lecture is 63/100, and this fraction can be expressed as 0.63. • _63% is the same as 63/100 • _63% is the same as 0.63 This example shows how decimals, fractions, and percents are closely related and can be used to represent the same information. Converting between Percents and Decimals Convert from percent to decimal: To change a percent to a decimal we divide by 100. This is the same as moving the decimal point two places to the left. For example, 15% is equivalent to the decimal 0.15. Notice that dividing by 100 moves the decimal point two places to the left. Example What decimal is equivalent to 117%? NOTE: Since 117% is greater than 100%, the decimal will be greater than one.
    [Show full text]