Non Trailable Switch Machine for Railroad Switches Or the Like

Total Page:16

File Type:pdf, Size:1020Kb

Non Trailable Switch Machine for Railroad Switches Or the Like (19) TZZ Z¥_T (11) EP 2 620 347 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: (2006.01) (2006.01) 31.07.2013 Bulletin 2013/31 B61L 27/00 B61L 5/10 (21) Application number: 12152344.3 (22) Date of filing: 24.01.2012 (84) Designated Contracting States: • Bittoni, Stefano AL AT BE BG CH CY CZ DE DK EE ES FI FR GB I-40139 Bologna (IT) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • Fournel, Frederic PL PT RO RS SE SI SK SM TR I-40050 Argelato (BO) (IT) Designated Extension States: BA ME (74) Representative: Karaghiosoff, Giorgio Alessandro (71) Applicant: ALSTOM FERROVIARIA S.P.A. Studio Karaghiosoff e Frizzi S.r.l. 12038 Savigliano (CN) (IT) Via F. Baracca 1R 4° piano 17100 Savona (IT) (72) Inventors: • Guglielmo, Davide I-40131 Bologna (IT) (54) Non trailable switch machine for railroad switches or the like (57) A non trailable switch machine for railroad between "dangerous trailing forces" with potential dam- switches or the like, which switch machine comprises a age to the turnout or its components (superstructure and trailing detecting sensor (11) for measuring at least one switch system), and "non dangerous trailing forces". This physical parameter describing the force exerted by an classification permits to optimize expenses related to cor- action on the switch machine and/or on the points (P1, rective maintenance after trailing events. P2) and or on a movable crossing point and means (24, A "non dangerous trailing" is detected trough a loss 25, 31, 32, 41, 42) for reversibly or irreversibly preventing of detection of the turnout, but the customer operators the operation of the switch machine depending on the are able to recover detection of the turnout from remote values of the said measured al least one physical param- position without inspecting the turnout. eter. A "dangerous trailing" is detected trough a loss of the switch machine is able to classify the trailing forces detection of the turnout, and the only way to recover de- tection of the turnout is to substitute the damaged parts. EP 2 620 347 A1 Printed by Jouve, 75001 PARIS (FR) 1 EP 2 620 347 A1 2 Description [0005] The means for detecting and signaling the cor- rect execution of the displacement stroke of the points [0001] Non trailable switch machine for railroad switch- and/or of the movable crossing point from one of the two es or the like. conditions, normal condition or reverse condition to the [0002] The invention relates to a non trailable switch 5 other are normally electric switches which are also driven machine for railroad switches or the like, which switch by at least one part of the stroke of the points and/or of machine comprises: the movable crossing point or by the said initial and ter- minal over-stroke and which electric switches opens or a drive unit for displacing the switch blade points close their contact, thereby generating or modifying a and/or the movable crossing point alternatively form 10 control signal indicating the status of the switch machine one to the other of two end positions, one of which relatively to the correct position of the points also con- positions is called normal position and the other of sidering the driving command sent to the switch machine, said two positions is called reverse position, and in i.e. considering if the position of the points and/or of the which positions each of the two switch blade points movable crossing point is consistent with the said driving is thrown or open relative to the closest rail, in alter- 15 command sent to the driving unit of the switch machine. nation with the other point or the movable crossing [0006] Trailing actions carried out on the switch consist point is closed alternatively on one side or the other in the fact that a force is directly exerted on the switch of the crossing cradle; points due to the passage of the train entering the turnout the driving unit being remotely controlled by means from the movable crossing, which train is coming from of driving signals; 20 the wrong direction respect to the position of the switch. lock/unlock means for locking at least one point When a train entering the turnout from the crossing finds and/or the drive unit in the condition corresponding the turnout with the switch blade and the movable cross- to the said normal or reverse position of the switch ing points in the improper position, the wheels of the train and preventing displacement of the said points due act on the switch points and force them from the prede- to any action exerted on the point and, for unlocking 25 fined - improper - position to the proper position they the said points and/or the said drive unit when the should have. In this situation, a non trailable switch ma- driving unit is activated, allowing the displacement chine may be damaged or not depending on the kind of of the points from the normal to the reverse condition trailing action suffered. of the switch or vice versa; [0007] A train may enter only for a short time and for means for detecting and signaling the condition of 30 a certain pathor distance the switchand thetrailing action the switch following each activation of the driving is short in time and/or the wheels of the train enter the unit, i.e. for detecting and signaling the position of switch only for a certain path not completely pushing the the points and/or of the movable crossing point after points and/or of the movable crossing point in the wrong each displacement from a first position correspond- direction and in contrast to the locking forces of the point ing to the normal or reverse condition of the switch 35 and/or of the movable crossing point due to the locking to the second position corresponding to the reverse mechanism. In this situation the switch has been trailed or normal condition of the switch. but the event was not able to cause a damage of the operating units of the switch. Trailing events are normally [0003] Switch machines of the above kind are known signaled since the detecting and signaling means of the and examples of such switch machines are disclosed in 40 correct position of the points and/or of the movable cross- the following documents of the same applicant: EP ing point will reveal a temporary change in position of the 1594732 or EP 1024988, EP1024987, EP1219521 and points and/or of the movable crossing point and thus of 712772. The said documents show that for a switch ma- the status of the switch which is defined as loss of de- chine it is possible to provide various kinds of driving units tection. When such a temporary trailing event occurs using also different kinds of driving power. One kind is 45 which is accompanied by the said temporary loss of de- provided with an electric motor which rotational motion tection of the position of the blades or of the crossing is transformed in a linear motion which is transmitted to point, the normal operative condition can be retrieved by theblades by meansof a driving rod.Other kinds of switch activating the switch for executing two consecutive machines are driven by means of hydraulic actuators strokes passing from the current normal or reverse con- which actuating rod is mechanically linked directly or by 50 dition to the other condition and back to the starting nor- means of a further driving rod to the points of the switch. mal or reverse condition. After this operation the relation [0004] The locking/unlocking means can also be of dif- between point stroke and/or stroke of the crossing point, ferent kind and these means are driven by an over stroke correct position of the points and/or of the movable cross- of the driving unit and particularly of the driving rod pro- ing point and detection signals of the operative condition vided at the beginning of the driving phase for unlocking 55 of the switch is reestablished and the switch is again per- the points before beginning their displacement and at the fectly operative if the switch machine is still functional in end of the driving phase, after the points has reached correctly displacing the points and/or the movable cross- their end position, for locking the points in this position. ing point in response to a driving command. 2 3 EP 2 620 347 A1 4 [0008] Temporary loss of detection may also be and/or the drive unit in the condition corresponding caused by trailing actions which exerts a high stress on to the said normal or reverse position of the switch the operative units of the switch machine, and which have and preventing displacement of the said points due a high probability of damaging the said operative units. to any action exerted on the point and, for unlocking If the damages do not prevent the switch machine from 5 the said points and/or the said drive unit when the displacing the points and/or the movable crossing point driving unit is activated, allowing the displacement bringing the said points or the said movable crossing of the points from the normal to the reverse condition point till to the correct end positions, a detection of the of the switch or vice versa; switch may be reestablished according to the above de- means for detecting and signaling the condition of scribed procedure and no information will be available 10 the switch following each activation of the driving on the potentially damaged condition of the switch ma- unit, i.e.
Recommended publications
  • Proactive Maintenance of Railway Switches
    Proactive Maintenance of Railway Switches Csaba Hegedűs, Paolo Ciancarini, Attila Frankó, Aleš Kancilija, István Moldován, Gregor Papa, Špela Poklukar, Mario Riccardi, Alberto Sillitti and Pal Varga Abstract—Railway switches operate in harsh environmental conditions; still, their reliability requirements are high due to safety A. State of the Art for Railway Infrastructure Maintenance and economic factors. Once deployed, their maintenance depends Current state-of-the-art maintenance operations within the on the data collected on their status, and the decisions on due railway infrastructure are based on the concept of “preventive” or corrective actions. The more regular this data collection and “on-condition” maintenance. However, they only consist of decision cycle is, the better confidence their operator has on periodical check-ups and substitutions of parts when a failure is effective and proper service. Proactive maintenance, in general, detected. These tasks are carried out at given periodical intervals targets exactly this: rather than scheduling maintenance actions designed to mitigate risk with a considerable safety margin based on operating hours or servicing volume, actions should be involving having to send maintenance staff to the asset site on a taken when it is really needed. This requires the effective regular basis, exposing them to the usual safety risks of a running combination of data collection, analysis, presentation and decision railway [11]. making processes. Moreover, most modern railways have very low level of The MANTIS project proposes a reference architecture for capability installed as part of the signalling system. For switches, proactive maintenance, supported by the concept of cyber-physical this usually only comprises of the detection lines which verify systems.
    [Show full text]
  • (202) 514-2007 Tdd (202) 514-1888
    FOR IMMEDIATE RELEASE AT THURSDAY, OCTOBER 14, 1999 (202) 514-2007 WWW.USDOJ.GOV TDD (202) 514-1888 JUSTICE DEPARTMENT REQUIRES DIVESTITURE IN HARSCO CORPORATION’S ACQUISITION OF RAILROAD MAINTENANCE ASSETS Harsco to Divest Pandrol’s Switch and Crossing, and Transit Grinder Assets WASHINGTON, D.C. -- The Department of Justice today announced that it would require Harsco Corporation to sell machinery and services used in railroad maintenance to resolve competitive concerns over Harsco’s $89 million acquisition certain of assets of Pandrol Jackson Inc. and Pandrol Jackson Limited. The Department said the deal, as originally proposed, would have been anticompetitive, resulting in higher prices and lower quality for these products and services. The Department's antitrust lawsuit and proposed consent decree were filed today in federal court in Washington, D.C. The consent decree, if approved by the Court, would resolve the suit. According to the complaint, the proposed merger would have substantially lessened competition, since Harsco and Pandrol are the only two manufacturers of switch and crossing and transit grinding equipment and the only two providers of railroad switch and crossing grinding services in North America. Switch and crossing grinders and transit grinders are machines designed to restore the tracks of railroads and transit systems to their original shapes and are used to repair deformations caused by the rubbing of train wheels on rails used in railroad track switches, railroad track crossings, and transit systems. “Without this divestiture, railroads and transit systems would have had only one choice for this type of railroad maintenance equipment and services,” said Joel I.
    [Show full text]
  • Station Sign 64” 2 14 Bennet
    Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 1 14 West Hollis – Station sign 64” 2 14 Bennett Hall – Station sign 69” Arnold Wilder 3 14 Fitchburg “Wood” Station sign 56” Arnold Wilder 4 14 Woburn “Wood” Station sign 30” Charles Smith 5 14 Danville Junction – Station Sign 96” Anonymous 6 14 West Fitchburg – Station sign 92” Arnold Wilder 7 14 West Hollis – Station sign 72” Arnold Wilder 8 14 Scheghticoke – Station sign 76” Arnold Wilder 9 14 Hubbardston – Station sign 76” Arnold Wilder 10 14 Winchester “Wood” Station sign 68” 11 14 Wedgmere “Wood” Station Sign 56” 12 14 Salem – Station sign 48” 13 14 Whately – Station sign 52”x 11” 14 14 Mt Tom – Station sign 42”x 10 ½” 15 14 Middlesex “Wood” Station sign 54” Carl Byron 16 15 Railway Express Agency - sign 72” 17 15 B&MRR Passenger Waiting Room - sign 32”x 11” 18 15 B&M Outing - sign 23”x 14” 19 15 Yard Limit – sign 16”x 14” 20 15 Notice no Deliveries “Wood” – sign 18”x 24” 21 15 Private Crossing “Plastic” – sign 18”x 6” 22 15 Free Parking “Wood” – sign 24 ½”x 8” 23 15 Railroad Crossing – Sign 36”x 36” 24 15 2 Tracks sign “White /w Black lettering (2 each) 27”x 18” 25 15 Railroad Crossbuck /w reflectors (2 each) 26 14 Lowell Station – sign reproduction Property of the Boston & Maine Railroad Historical Society Boston & Maine Railroad Historical Society Inc. Hardware Collection Tag No. File No: Inventory: Size: Donor: 27 15 Hand Held Stop – sign Donald S.
    [Show full text]
  • Reliability Analysis of Switches and Crossings – a Case Study in Swedish Railway
    International Journal of Railway Research, Vol. 4, No. 1, (2017), 1-12 2361 ISSN: International Journal of - Railway Research 5376 ` Reliability Analysis of Switches and Crossings – A Case Study in Swedish Railway Behzad Ghodrati1*, Alireza Ahmadi2, Diego Galar3 1,2,3Luleå University of Technology, Division of Operation and Maintenance Engineering ARTICL EINFO A B S T R A C T Article history: It is reported that switches and crossings (S&C) are one of the Received : subsystems that cause the most delays on Swedish Railways while accounting for at least 13% of maintenance costs. It is the main reason Accepted: for choosing to base this study on this subsystem. Published: Intelligent data processing allows understanding the real reliability characteristics of the assets to be maintained. The first objective of this Keywords: research is to determine the S&C reliability characteristics based on Reliability field data collection. Because field failure data are typically strongly Availability censored, an especial statistics software package is developed to Weibull model process field failure data, as commercial packages have not been found satisfactory in that respect. The resulting software, named RDAT® Switches (Reliability Data Analysis Tool) has been relied upon for this study. It RDAT is especially adapted for statistical failure data analysis. In the next step the availability of studied switches and crossings is estimated based on the reliability characteristics founded in the first step. 1. Instruction be performed near capacity limits, time between asset renewals should be long enough to balance the Railway is a complex system because it comprises maintenance and acquisition cost, and components a mix of components with different age and status should be replaced by deferred or planned that have to work together in a system.
    [Show full text]
  • Magnetorheological Damping for Spring Frogs
    High-Speed Rail IDEA Program Magnetorheological Damping for Spring Frogs Final Report for High-Speed Rail IDEA Project 46 Prepared by: Leslie E. Olson Texas Transportation Institute Texas A&M University System College Station, TX July 2007 INNOVATIONS DESERVING EXPLORATORY ANALYSIS (IDEA) PROGRAMS MANAGED BY THE TRANSPORTATION RESEARCH BOARD This investigation was performed as part of the High-Speed Rail IDEA program supports innovative methods and technology in support of the Federal Railroad Administration’s (FRA) next-generation high-speed rail technology development program. The High-Speed Rail IDEA program is one of four IDEA programs managed by TRB. The other IDEA programs are listed below. • NCHRP Highway IDEA focuses on advances in the design, construction, safety, and maintenance of highway systems, is part of the National Cooperative Highway Research Program. • Transit IDEA focuses on development and testing of innovative concepts and methods for improving transit practice. The Transit IDEA Program is part of the Transit Cooperative Research Program, a cooperative effort of the Federal Transit Administration (FTA), the Transportation Research Board (TRB) and the Transit Development Corporation, a nonprofit educational and research organization of the American Public Transportation Association. The program is funded by the FTA and is managed by TRB. • Safety IDEA focuses on innovative approaches to improving motor carrier, railroad, and highway safety. The program is supported by the Federal Motor Carrier Safety Administration
    [Show full text]
  • Prairie Line Terminal Section
    PRAIRIE LINE TERMINAL SECTION CATALOG OF CHAR ACTER-DEFINING FEATURES This report commissioned by the University of Washington Tacoma (UWT) and performed under subcontract to THA Architects . Cover image Prairie Line linking down to the waterfront. Photograph courtesy of Jim Frederickson. II UNIVERSITY OF WASHINGTON TACOMA Contributors The authors of this report wish to extend our gratitude to the following entities and individuals who assisted greatly in the preparation, review and editing of this report. The authors of this report extend their deep grati- tude to the volunteers and historians associated with the Northern Pacific Railroad. In particular Jim Freder- ickson, Daniel Cozine and others, provide invaluable insight into the historic operation of the corridor and identifying the various parts of the railway. They shared wonderful images of the corridor that otherwise would have been unavailable. Their collective knowledge and enthusiasm for the subject of railroads is a tremendous regional asset. Members of the University of Washington Architectural Review Commission provided guidance. Personnel from the University of Washington including Milt Tremblay and Lanie Ralph providing overall coor- dination and site access. Reuben McKnight, Tacoma Historic Preservation Officer, Washington State Depart- ment of Archaeology and Historic Preservation, Washington Trust for Historic Preservation, Washington State Historical Society, and the Washington State Library. PRAIRIE LINE | TERMINAL SECTION III IV UNIVERSITY OF WASHINGTON TACOMA Contents Contributors iii Overview 1 Introduction 3 Methodology 5 1.0Catalog 7 1.1 Historical Significance 9 1.2 Chronology 11 1.3 Character-Defining Spaces 21 1.4 Character-Defining Features 25 2.0Stewardship 37 2.1 Decision Making Matrix 41 2.2 Significance Analysis 45 2.3 Treatment Recommendations 53 2.4 Photo Locations 55 3.0Supplemental 69 3.1 Maps 71 3.2 Historic Photographs 75 PRAIRIE LINE | TERMINAL SECTION V 6 UNIVERSITY OF WASHINGTON TACOMA Overview Tacoma waterfront to which the Prairie Line connected.
    [Show full text]
  • Txdot Railroad Crossing Design Guidelines
    THIS PAGE INTENTIONALLY LEFT BLANK Railroad Crossing Design Guidelines Table of Contents TABLE OF CONTENTS A. INTRODUCTION ......................................................................................................A-1 B. ACTIVE DEVICE CONFIGURATIONS................................................................B-1 C. RAILROAD CROSSINGS ADJACENT TO TRAFFIC SIGNALS.....................C-1 D. RAILROAD CROSSING CLOSURES AND CONSOLIDATIONS....................D-1 TxDOT TOC-1 2016 THIS PAGE INTENTIONALLY LEFT BLANK Railroad Crossing Design Guidelines Introduction A - INTRODUCTION The following design guidelines are intended to assist project designers with roadway design at railroad crossings and supplement the TxDOT Railroad Crossing Detail Standards Sheets (RCD) which contain standards for device placement distances, gate lengths, and crossing panel sizes. These guidelines are not standards, and are intended as examples for various rail-highway configurations. A diagnostic inspection team will determine the ultimate design for each railroad crossing project. The ultimate design shall be compliant with the Texas Manual on Uniform Traffic Control Devices (TMUTCD) and American Railway Engineering and Maintenance-of-Way Association (AREMA) standards. The guidelines are broken down into 3 main categories: ♦ Design of Active Device Configurations ♦ Design of Railroad Crossings Adjacent to Traffic Signals ♦ Design of Railroad Crossing Closures and Consolidations Guidelines are subject to change. TxDOT A-1 2016 THIS PAGE INTENTIONALLY LEFT BLANK Railroad Crossing Design Guidelines Active Device Configurations B - ACTIVE DEVICE CONFIGURATIONS LEGEND Cantilever Gate Assembly I-13 (9”x15”) Mast Flasher R15-1 48"X9" ACTIVE DEVICES NOTES R15-2P 1. EMERGENCY NOTIFICATION (I-13), one sign installed 27"X18" with active device on each approach to the crossing. 2. Gate distance above ground when lowered measured from bottom of gate to top of mast foundation.
    [Show full text]
  • 417 Part 228—Hours of Service of Railroad
    Federal Railroad Administration, DOT § 228.3 Willful Section Violation violation (a) Failure to institute a training program as required ............................................................ 5,000 7,500 (b) Failure to provide training within required time frame ...................................................... 2,500 5,000 (c) Failure of program and/or training materials to include required information ................... 2,500 5,000 227.121 Recordkeeping: (a) General Requirements: (1) Failure to make record available as required ..................................................... 2,500 5,000 (3) Failure to transfer or retain records as required ................................................ 2,000 4,000 (b)–(f) Records: (1) Failure to maintain record or failure to maintain record with required informa- tion ........................................................................................................................ 2,000 4,000 (2) Failure to retain records for required time period ............................................... 2,000 4,000 1 A penalty may be assessed against an individual only for a willful violation. The Administrator reserves the right to assess a penalty of up to $100,000 for any violation where circumstances warrant. See 49 CFR part 209, appendix A. [71 FR 63123, Oct. 27, 2006, as amended at 73 FR 79703, Dec. 30, 2008] PART 228—HOURS OF SERVICE OF AUTHORITY: 49 U.S.C. 20103, 20107, 21101– 21109; Sec. 108, Div. A, Public Law 110–432, 122 RAILROAD EMPLOYEES Stat. 4860–4866; 49 U.S.C. 21301, 21303, 21304, 21311; 28 U.S.C. 2461, note; 49 CFR 1.49; and 49 Subpart A—General U.S.C. 103. Sec. SOURCE: 37 FR 12234, June 21, 1972, unless 228.1 Scope. otherwise noted. 228.3 Application. 228.5 Definitions. Subpart A—General Subpart B—Records and Reporting § 228.1 Scope.
    [Show full text]
  • Rail Tie Plates Spikes & Related Equipment
    Boston & Maine Railroad Historical Society Incorporated File 10 Rails, Ties, Spikes & Related Equipment Hardware Collection Maintenance of Way Foreman Job • Repair or adjust track switches, using wrenches and replacement parts. • Cut rails to specified lengths, using rail saws. • Operate track-wrench machines to tighten or loosen bolts at joints that hold ends of rail together. • Lubricate machines, change oil, or fill hydraulic reservoirs to specified levels. • Clean or make minor repairs to machines or equipment. • Drill holes through rails, tie plates, or fishplates for insertion of bolts or spikes, using power drills. • Raise rails, using hydraulic jacks, to allow for the removal and replacement. • Clean tracks or clear ice or snow from tracks or switch boxes. • Operate single – or multiple-head spike pullers to pull old spikes from ties. • Engage mechanisms that lay tracks or rails to specified gauges. • Grind ends of new or worn rails to attain smooth points, using portable grinders. • Patrol assigned track sections so that damaged or broken track can be located and reported. • Operating single or multiple-head spike driving machines to drive spikes into ties and secure rails. • Dress and reshape worn ordamaged railroad switch points or frogs, using portable power grinders. Maintenance of Way Foreman Job continues: • Ajust controls of machines that spread, shape, raise, level, or align track, according to specifications. • Observe leveling indicator arms to verify levelness and alignment of tracks. • Drive graders, tamping machines, brooms, or ballast spreading machines to redistribute gravel or ballast between rails. • Drive vehicles that automatically move and lay tracks or rails over sections of track to be constructed, repaired, or maintained.
    [Show full text]
  • US272839.Pdf
    (No Model.) 5 Sheets-Sheet 2. J, K, KNIGHT & W. H. BAKER, ELECTRIC INTERLOCKING RAILWAY SIGNAL AND SWITCH SYSTEM, No. 272,839. Patented Feb. 20, 1883, NVENT ORS: J.K.KNIGHT N. Peters. Photo-Lithographer, washing ct, D. C. (No Model.) 5. Sheets-Sheet 3. J. K. KNIGHT & W. H. BAKER, ELECTRIC INTERLOCKING RAILWAY SIGNAL AND SWITCH SYSTEM, No. 272,839, Patented Feb. 20, 1883, ???YATTEST, ??????? S kyyyuSSSSSSNVENTORS: (No Model.) 5 Sheets-Sheet, 4. J. K. KNIGHT & W. H. BAKER, ELECTRIC INTERLOCKING RAILWAY SIGNAL AND SWITCH SYSTEM No. 272,839, Patented Feb. 20, 1883. ? ????J LS hS S S S LL SIE LL LS RIIELL SL LLS S S LAF SLL LLS --------- s: ENETI I I ITT ?{ --- ? - - - - - - ??- 5- -? Ti—? ? ? ? ? ?– ? . ?? ?---------------- = =t| ??????? A AS ASAAAS S S S qSqqSq SSqSS S S A qqq SS SS qSLYSYL L L LS GSLLLYLL SAAA AZu SLA AuL SSSY SLLL L S - ???ü E III-916 SS SS---S_IN_II_NHLL_LL SS SS SS SS SSSS ...O.O. TSHijn:TT-BRITIEsfelt NIIT - FT T?R? ?TT?. - ????I N. ?}?? DP----- N - - - ) ^y T - 1 #4%:25-2, , 4. PETERS, Photo-Lithographer, Washington, D. C. (No Model.) 5 Sheets-Sheet 5. J. K. KNIGHT & W. H. BAKER, ELECTRIC INTERLOCKING RAILWAY SIGNAL AND SWITCH SYSTEM No. 272,839. Patented eb, 20, 1883. Imf ?ì ??? AZT NVENT FS KNIGHWHÉŠAKE (17 ?r() ?? UNITED STATES PATENT OFFICE. JOHN K. KNIGHT, OF NEW YORK, AND WILLIAM. H. BAKER, OF BROOKLYN, . N. Y.; SAID KNIGHT ASSIGNOR TO SAID BAKER. ELECTRIC INTERLOCKNG RALWAY SIGNAL AND SWITCH SYSTEM, SPECIFICATION forming part of Letters Patent No. 272,839, dated February 20, 1888.
    [Show full text]
  • On the Fault Detection and Diagnosis of Railway Switch and Crossing Systems: an Overview
    applied sciences Review On the Fault Detection and Diagnosis of Railway Switch and Crossing Systems: An Overview Moussa Hamadache * , Saikat Dutta, Osama Olaby , Ramakrishnan Ambur , Edward Stewart and Roger Dixon School of Engineering, Birmingham Centre for Railway Research and Education (BCRRE), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] (S.D.); [email protected] (O.O.); [email protected] (R.A.); [email protected] (E.S.); [email protected] (R.D.) * Correspondence: [email protected] Received: 24 October 2019; Accepted: 22 November 2019; Published: 27 November 2019 Abstract: Railway switch and crossing (S&C) systems have a very complex structure that requires not only a large number of components (such as rails, check rails, switches, crossings, turnout bearers, slide chair, etc.) but also different types of components and technologies (mechanical devices to operate switches, electrical and/or electronic devices for control, etc.). This complexity of railway S&C systems makes them vulnerable to failures and malfunctions that can ultimately cause delays and even fatal accidents. Thus, it is crucial to develop suitable condition monitoring techniques to deal with fault detection and diagnosis (FDD) in railway S&C systems. The main contribution of this paper is to present a comprehensive review of the existing FDD techniques for railway S&C systems. The aim is to overview the state of the art in rail S&C and in doing so to provide a platform for researchers, railway operators, and experts to research, develop and adopt the best methods for their applications; thereby helping ensure the rapid evolution of monitoring and fault detection in the railway industry at a time of the increased interest in condition based maintenance and the use of high-speed trains on the rail network.
    [Show full text]
  • Numerical and Experimental Characterization of a Railroad Switch Machine
    machines Article Numerical and Experimental Characterization of a Railroad Switch Machine Dario Croccolo, Massimiliano De Agostinis, Stefano Fini * ID , Giorgio Olmi and Francesco Robusto ID Department of Industrial Engineering, University of Bologna, Viale del Risorgimento 2, 40136 Bologna, Italy; [email protected] (D.C.); [email protected] (M.D.A.); [email protected] (G.O.); [email protected] (F.R.) * Correspondence: stefano.fi[email protected]; Tel.: +39-051-2093455 Received: 15 January 2018; Accepted: 12 February 2018; Published: 17 February 2018 Abstract: This contribution deals with the numerical and experimental characterization of the structural behavior of a railroad switch machine. Railroad switch machines must meet a number of safety-related conditions such as, for instance, exhibiting the appropriate resistance against any undesired movements of the points due to the extreme forces exerted by a passing train. This occurrence can produce very high stress on the components, which has to be predicted by designers. In order to assist them in the development of new machines and in defining what the critical components are, FEA models have been built and stresses have been calculated on the internal components of the switch machine. The results have been validated by means of an ad-hoc designed experimental apparatus, now installed at the facilities of the Department of Industrial Engineering of the University of Bologna. This apparatus is particularly novel and original, as no Standards are available that provide recommendations for its design, and no previous studies have dealt with the development of similar rigs. Moreover, it has wide potential applications for lab tests aimed at assessing the safety of railroad switch machines and the fulfilment of the specifications by many railway companies.
    [Show full text]