(12) Patent Application Publication (10) Pub. No.: US 2006/01992.04 A1 Dix Et Al
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis. -
KPNA1 Antibody Cat
KPNA1 Antibody Cat. No.: 5981 Western blot analysis of KPNA1 in Hela cell lysate with KPNA1 antibody at 1μg/mL. Immunocytochemistry of KPNA1 in HeLa cells with KPNA1 antibody at 2.5 μg/mL. Immunofluorescence of KPNA1 in K562 cells with KPNA1 antibody at 20 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) KPNA1 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human KPNA1. IMMUNOGEN: The immunogen is located within amino acids 30 - 80 of KPNA1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 30, 2021 1 https://www.prosci-inc.com/kpna1-antibody-5981.html KPNA1 antibody can be used for detection of KPNA1 by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunocytochemistry in human samples and Immunofluorescence in human samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate 2) Cat. No. 17-001 - HeLa Cell Slide 3) Cat. No. 17-004 - K-562 Cell Slide Properties PURIFICATION: KPNA1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: KPNA1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL KPNA1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year. -
Toxicogenomics Article
Toxicogenomics Article Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers Matthew S. Forrest,1 Qing Lan,2 Alan E. Hubbard,1 Luoping Zhang,1 Roel Vermeulen,2 Xin Zhao,1 Guilan Li,3 Yen-Ying Wu,1 Min Shen,2 Songnian Yin,3 Stephen J. Chanock,2 Nathaniel Rothman,2 and Martyn T. Smith1 1School of Public Health, University of California, Berkeley, California, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA; 3National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China were then ranked and selected for further exam- Benzene is an industrial chemical and component of gasoline that is an established cause of ination using several forms of statistical analysis. leukemia. To better understand the risk benzene poses, we examined the effect of benzene expo- We also specifically examined the expression sure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe- of all cytokine genes on the array under the factory workers with well-characterized occupational exposures using microarrays and real-time a priori hypothesis that these key genes polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a involved in immune function are likely to be comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six altered by benzene exposure (Aoyama 1986). exposed–control pairs was performed. A combination of robust multiarray analysis and ordering We then attempted to confirm the array find- of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error ings for the leading differentially expressed rate, was used to identify differentially expressed genes in a global analysis. -
Oocyte Aneuploidy—More Tools to Tackle an Old Problem
COMMENTARY Oocyte aneuploidy—more tools to tackle an old problem COMMENTARY Chris Lodgea and Mary Herberta,1 Meiosis generates a single-copy genome during two centromeric cohesin enables sister centromeres to successive rounds of cell division after a single round biorient on the meiosis II spindle (2, 5). Upon cleavage of DNA replication. Failure to transmit exactly one of centromeric cohesin, dyads are converted to single copy of each chromosome during fertilization gives chromatids, which segregate equationally to opposite rise to aneuploid embryos resulting in infertility and poles of the meiosis II spindle. Protection of a centro- congenital abnormalities such as Down’s syndrome. meric cohesin by Shugoshin proteins (SGOL2 in mam- Aneuploidy attributable to meiotic errors is over- mals) until the onset of anaphase II is essential for whelming due to chromosome segregation errors dur- orderly segregation of chromatids (7, 8). In oocytes, ing female meiosis, and the incidence of these both meiotic divisions are highly asymmetrical, giving increases dramatically as women get older (1, 2). Be- rise to two small nonviable polar bodies (Fig. 1). cause the oocyte is the only viable product of female Consistent with previous studies (9), Tyc et al. (3) meiosis, our understanding of predisposing events in found that only a tiny fraction (<1%) of meiotic errors human oocytes relies largely on inferences from ge- are of paternal origin. Compared with males, the es- netic studies in cases of trisomy and on analysis of tablishment and maintenance of bivalent chromo- oocytes obtained from in vitro fertilization clinics. somes are compromised in female meiosis. In females, Progress toward understanding the underlying mech- there is a greater risk of homologs failing to form cross- anisms has been hampered by a paucity of informa- overs, or of forming them in precarious positions that are tion on the outcome of both meiotic divisions. -
Nuclear Import Protein KPNA7 and Its Cargos Acta Universitatis Tamperensis 2346
ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos ELISA Acta Universitatis Tamperensis 2346 ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology AUT 2346 AUT ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology ACADEMIC DISSERTATION To be presented, with the permission of the Faculty Council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F114 of the Arvo building, Arvo Ylpön katu 34, Tampere, on 9 February 2018, at 12 o’clock. UNIVERSITY OF TAMPERE ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology Acta Universitatis Tamperensis 2346 Tampere University Press Tampere 2018 ACADEMIC DISSERTATION University of Tampere, Faculty of Medicine and Life Sciences Finland Supervised by Reviewed by Professor Anne Kallioniemi Docent Pia Vahteristo University of Tampere University of Helsinki Finland Finland Docent Maria Vartiainen University of Helsinki Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2018 Tampere University Press and the author Cover design by Mikko Reinikka Acta Universitatis Tamperensis 2346 Acta Electronica Universitatis Tamperensis 1851 ISBN 978-952-03-0641-0 (print) ISBN 978-952-03-0642-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://tampub.uta.fi Suomen Yliopistopaino Oy – Juvenes Print Tampere 2018 441 729 Painotuote CONTENTS List of original communications ................................................................................................ -
Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer
REPORTS mean difference for all rubric score elements was ing becomes a more commonly supported facet 18. C. L. Townsend, E. Heit, Mem. Cognit. 39, 204 (2011). rejected. Univariate statistical tests of the observed of STEM graduate education then students’ in- 19. D. F. Feldon, M. Maher, B. Timmerman, Science 329, 282 (2010). mean differences between the teaching-and- structional training and experiences would alle- 20. B. Timmerman et al., Assess. Eval. High. Educ. 36,509 research and research-only conditions indicated viate persistent concerns that current programs (2011). significant results for the rubric score elements underprepare future STEM faculty to perform 21. No outcome differences were detected as a function of “testability of hypotheses” [mean difference = their teaching responsibilities (28, 29). the type of teaching experience (TA or GK-12) within the P sample population participating in both research and 0.272, = 0.006; CI = (.106, 0.526)] with the null teaching. hypothesis rejected in 99.3% of generated data References and Notes 22. Materials and methods are available as supporting samples (Fig. 1) and “research/experimental de- 1. W. A. Anderson et al., Science 331, 152 (2011). material on Science Online. ” P 2. J. A. Bianchini, D. J. Whitney, T. D. Breton, B. A. Hilton-Brown, 23. R. L. Johnson, J. Penny, B. Gordon, Appl. Meas. Educ. 13, sign [mean difference = 0.317, = 0.002; CI = Sci. Educ. 86, 42 (2001). (.106, 0.522)] with the null hypothesis rejected in 121 (2000). 3. C. E. Brawner, R. M. Felder, R. Allen, R. Brent, 24. R. J. A. Little, J. -
A Gene Expression Resource Generated by Genome-Wide Lacz
© 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 1467-1478 doi:10.1242/dmm.021238 RESOURCE ARTICLE A gene expression resource generated by genome-wide lacZ profiling in the mouse Elizabeth Tuck1,**, Jeanne Estabel1,*,**, Anika Oellrich1, Anna Karin Maguire1, Hibret A. Adissu2, Luke Souter1, Emma Siragher1, Charlotte Lillistone1, Angela L. Green1, Hannah Wardle-Jones1, Damian M. Carragher1,‡, Natasha A. Karp1, Damian Smedley1, Niels C. Adams1,§, Sanger Institute Mouse Genetics Project1,‡‡, James N. Bussell1, David J. Adams1, Ramiro Ramırez-Soliś 1, Karen P. Steel1,¶, Antonella Galli1 and Jacqueline K. White1,§§ ABSTRACT composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Knowledge of the expression profile of a gene is a critical piece of Furthermore, there were 1207 observations of expression of a information required to build an understanding of the normal and particular gene in an anatomical structure where Bgee had no essential functions of that gene and any role it may play in the data, indicating a large amount of novelty in our data set. development or progression of disease. High-throughput, large- Examples of expression data corroborating and extending scale efforts are on-going internationally to characterise reporter- genotype-phenotype associations and supporting disease gene tagged knockout mouse lines. As part of that effort, we report an candidacy are presented to demonstrate the potential of this open access adult mouse expression resource, in which the powerful resource. expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter KEY WORDS: Gene expression, lacZ reporter, Mouse, Resource gene. -
Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4) -
DCAF1 Ubiquitin E3 Ligase Directs Protein Phosphatase 2A Degradation to Control Oocyte Meiotic Maturation
ARTICLE Received 28 Jan 2015 | Accepted 7 Jul 2015 | Published 18 Aug 2015 DOI: 10.1038/ncomms9017 OPEN CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation Chao Yu1, Shu-Yan Ji1,*, Qian-Qian Sha1,*, Qing-Yuan Sun2 & Heng-Yu Fan1 Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility. 1 Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China. 2 State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.-Y.F. (email: [email protected]). -
770.Full-Text.Pdf
Published OnlineFirst January 14, 2019; DOI: 10.1158/1055-9965.EPI-18-0936 Research Article Cancer Epidemiology, Biomarkers Serum Metabolic Profiling Identified a Distinct & Prevention Metabolic Signature in Bladder Cancer Smokers: A Key Metabolic Enzyme Associated with Patient Survival Chandra Sekhar Amara1, Chandrashekar R. Ambati2, Venkatrao Vantaku1, Danthasinghe Waduge Badrajee Piyarathna1, Sri Ramya Donepudi2, Shiva Shankar Ravi1, James M. Arnold3, Vasanta Putluri2, Gurkamal Chatta4, Khurshid A. Guru5, Hoda Badr6, Martha K. Terris7, Roni J. Bollag7, Arun Sreekumar1,3, Andrea B. Apolo8, and Nagireddy Putluri1 Abstract Background: The current system to predict the outcome of nylalanine, proline, serine, valine, isoleucine, glycine, and smokers with bladder cancer is insufficient due to complex asparagine) and taurine were observed in bladder cancer genomic and transcriptomic heterogeneities. This study aims smokers. Integration of differential metabolomic gene signa- to identify serum metabolite-associated genes related to sur- ture and transcriptomics data from TCGA cohort revealed an vival in this population. intersection of 17 genes that showed significant correlation Methods: We performed LC/MS-based targeted metabo- with patient survival in bladder cancer smokers. Importantly, lomic analysis for >300 metabolites in serum obtained catechol-O-methyltransferase, iodotyrosine deiodinase, and from two independent cohorts of bladder cancer never tubulin tyrosine ligase showed a significant association with smokers, smokers, healthy smokers, and healthy never patient survival in publicly available bladder cancer smoker smokers. A subset of differential metabolites was validated datasets and did not have any clinical association in never using Biocrates absoluteIDQ p180 Kit. Genes associated smokers. with differential metabolites were integrated with a publicly Conclusions: Serum metabolic profiling of bladder cancer available cohort of The Cancer Genome Atlas (TCGA) to smokers revealed dysregulated amino acid metabolism. -
Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37 -
Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.