(12) Patent Application Publication (10) Pub. No.: US 2006/01992.04 A1 Dix Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2006/01992.04 A1 Dix Et Al US 2006O1992.04A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/01992.04 A1 Dix et al. (43) Pub. Date: Sep. 7, 2006 (54) GENETIC TESTING FOR MALE FACTOR (60) Provisional application No. 60/327.525, filed on Oct. INFERTILITY 5, 2001. (75) Inventors: David Jacob Dix, Raleigh, NC (US); Publication Classification Stephen A. Krawetz, Detroit, MI (US); David Miller, Belmont Grove (GB) (51) Int. Cl. CI2O I/68 (2006.01) Correspondence Address: (52) U.S. Cl. .................................................................. 435/6 BROWDY AND NEIMARK, P.L.L.C. 624 NINTH STREET, NW SUTE 3OO WASHINGTON, DC 20001-5303 (US) (57) ABSTRACT (73) Assignees: G EPA, Washington, DC (US); Wayne RNA in sperm can be used as a diagnostic to distinguish ate University, Detroit, MI (US); Uni- - versity of Leeds, Belmont Grove (GB) betweendiagnostic normal transcripts and affectedis provided individuals. which is A compared list of specific with (21) Appl. No.: 11/357,423 transcripts obtained from the sperm of a subject. Correlation between the two transcripts is used to identify normal sperm (22) Filed: Feb. 21, 2006 or affected sperm. Addition, genetic testing for male infer tility or damage to spermatozoa is accomplished by provid Related U.S. Application Data ing a microarray of DNA probes with a sample of sperma tozoa to determine the mRNA fingerprints of the sample, and (63) Continuation-in-part of application No. 10/264,321, comparing the mRNA fingerprints of the sample with the filed on Oct. 4, 2002, now abandoned. mRNA fingerprints of normal fertile male spermatozoa. Patent Application Publication Sep. 7, 2006 Sheet 1 of 11 US 2006/01992.04 A1 200 204 203t 203 Patent Application Publication Sep. 7, 2006 Sheet 2 of 11 US 2006/01992.04 A1 910'zz/18z'e?ood(d) 'LIdL 9L0'zz/ZGL’,si?saL.(Í) Mae****: Patent Application Publication Sep. 7, 2006 Sheet 3 of 11 US 2006/0199204 A1 A / G. 3 CELLULAR COMPONENT BIOCHEMICAL FUNCTION A. % E integral possiveprotein membrone I DNA-binding protein ID Nucleus Transferase Cytoplasm Inhibitor or Repressor Membrane fraction :::: Receptor (signaling) Plasma membrane RNA-binding protein integral membrane protein Activator Extracellular space Oxidoreductose Soluble fraction Protease (other than proteosomol) Mitochondrion Regulatory subunit Endoplastic reticulum E. Active transporter, secondary ES Cytosol Ribosomol SubUnit Action Cytoskeleton Lysine Peripheralprotein plasmo membrone Cho?nel (possive transprotein) Extracellular & 1somerase E Protein conjugation factor Adhesin/agglutinin O Cytoskeleton GFP binding protein/GFP/ese Nucleolus Cho per ones Extrocellular ?notrix Other S Other Patent Application Publication Sep. 7, 2006 Sheet 4 of 11 US 2006/01992.04 A1 Patent Application Publication Sep. 7, 2006 Sheet 6 of 11 US 2006/01992.04 A1 ·UHO diuojoºldu. ex= Patent Application Publication Sep. 7, 2006 Sheet 7 of 11 US 2006/01992.04 A1 s Patent Application Publication Sep. 7, 2006 Sheet 8 of 11 US 2006/01992.04 A1 Affected (8293Normal transcripts) (7227 transcripts) Fig. 8. The partitioning of transcripts present in the normal individuals data set (left), both datasets (middle) and affected individuals data set (right) above the threshold value. Patent Application Publication Sep. 7, 2006 Sheet 9 of 11 US 2006/01992.04 A1 g Ngue - Affected Normal 'Fig. 9. Analysis of RNA transcripts present in sperm from thirteen normal and eight affected samples. The heat map shows that the levels of transcripts present in normal and affected individuals that can be distinguished. Six strikingly different regions from the Affymetrix analysis are shown that can be used to classify and diagnose individuals. Patent Application Publication Sep. 7, 2006 Sheet 10 of 11 US 2006/01992.04 A1 Fig. 10. Clustering of sperm RNA samples based on Illumina BeadChip array transcript data. Sperm transcripts from normal individuals are clearly distinguished from affected individuals. Patent Application Publication Sep. 7, 2006 Sheet 11 of 11 US 2006/0199204 A1 Fig.11. Clustering of the 661 transcripts consistently detected across all three array platforms, using data from Affymetrix arrays. Left panel, an example of Cluster 3.0 and TreeView consistently clustering normal individuals separate from affected individuals. Right panel, a segment of the corresponding 661 transcript heat map generated visually demonstrating the diagnostic capacity of the arrays. US 2006/01992.04 A1 Sep. 7, 2006 GENETIC TESTING FOR MALE FACTOR 0007 With the exception of obvious defects such as INFERTILITY aZoospermia, globoZoospermia, and immotile ciliary Syn drome, the extreme heterogeneity of normal fertile human CROSS-REFERENCE TO RELATED semen suggests that most idiopathic male factor infertility is APPLICATIONS not a result of monogenic disorders. Moreover, all known 0001. The present invention is a continuation-in-part of monogenic disorders that affect the testes affect other tissues application Ser. No. 10/264,321, filed Oct. 5, 2002, which to an equal or greater extent. Accordingly, it is reasonable to application claims priority from provisional application Ser. assume that the majority of idiopathic male factor infertility No. 60/327,525, filed Oct. 5, 2001, the entire contents of that has testes-restricted phenotypes is not monogenic, but both of which are hereby incorporated by reference. oligo- or poly-genic in origin. 0008 Two recent developments offer considerable prom FIELD OF THE INVENTION ise towards identifying oligo- and/or poly-genic factors that 0002 The present invention relates to methods, kits, and influence male fertility. First, the discovery of mRNAs in tools for distinguishing between sperm of normal and ejaculate spermatozoa makes it possible to obtain transcrip affected individuals. tional information from male germ cells using non-invasive procedures. It is expected that these mRNAs provide a BACKGROUND OF THE INVENTION window to past events of spermatogenesis, echoing tests for gene expression. Interestingly, data mining and functional 0003 Predicting the fertility of a male is very useful in a assessment suggests that in addition to delivering the hap variety of contexts. For example, the artificial insemination loid male genome, spermatozoa also deliver a critical industry is interested in knowing the likelihood that fertili complement of mRNAs to the oocyte. Secondly, microas zation will occur if a female is artificially inseminated with says make it possible to construct detailed gene expression a particular male's semen. Alternatively, human fertility profiles. clinics are concerned with achieving impregnation, and evaluating the sperm count of a male is one step in this 0009 Most laboratory investigations of semen quality are procedure. Thus, whether in the context of animal breeding, relatively poor indicators of fertility because they are sub the artificial insemination industry, or human fertility clinics, jective and predominantly rely on physiological and mor determination of the fertility of the male is very important. phological criteria. This is exemplified in the recent study that compared the predictive results from over 250 indepen 0004 Ten percent of the male population have abnor dent studies (Gynecol Obstet Invest. 2005:59(2) 86-91). mally low sperm counts, and approximately one in six Only 4 could be could be directly compared as the variation couples experiences difficulty in conceiving a child. Male among the others was too great. The consequences of using factor infertility accounts for 40-50% of the cases in which immature spermatids or other compromised germ cells in assisted reproductive techniques are recommended. The intra-cytoplasmic spermatozoa induction (CISI) procedures great majority (>98%) of infertile men actually produce need careful reappraisal, considering that spermatozoal sperm, but, for some reason, those sperm are often unable to mRNA is required for the production of normal offspring. fertilize an egg. Chromosomal anomalies are associated with approximately one third of non-obstructive male factor 0010 Thus, there is a need for an effective, efficient and infertility affecting some 2% of the infertile male population. accurate method and/or device for determining male fertil Half of these men (15%) present with abnormal karyotypes, ity. More specifically, there is a need for a method for which the other half (12-15%) present with microdeletions determining if a male is fertile using microarrays in analyZ in the Azoospermic Factor (AZF) region of Yq (i.e., DAZY/ ing mRNAS of spermatozoa. RBM). SUMMARY OF THE INVENTION 0005 Couples having difficulty starting a family must 0011. It is an object of the present invention to overcome undergo an extensive battery of tests, including a testicular the aforementioned difficulties of the prior art. biopsy. However, it has not yet been possible to identify which couples will never conceive, so that these couples can 0012. It is another object of the present invention to forgo the lengthy, expensive, and ultimately futile infertility provide a method for detecting if a male is a normal fertile therapy and begin considering other options, such as sperm male using microarrays in analyzing the mRNA of sperma donors. tOZOa. 0006 Testes-specific defects have only been demon 0013. It is a further object of the present invention to strated in men with sub-microscopic microdeletions of the Y provide a kit for detecting normal fertile males using chromosome encompassing one or more genes. It is reason microarrays in analyzing the mRNA of
Recommended publications
  • Screening and Identification of Key Biomarkers in Clear Cell Renal Cell Carcinoma Based on Bioinformatics Analysis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Screening and identification of key biomarkers in clear cell renal cell carcinoma based on bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.21.423889; this version posted December 23, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Clear cell renal cell carcinoma (ccRCC) is one of the most common types of malignancy of the urinary system. The pathogenesis and effective diagnosis of ccRCC have become popular topics for research in the previous decade. In the current study, an integrated bioinformatics analysis was performed to identify core genes associated in ccRCC. An expression dataset (GSE105261) was downloaded from the Gene Expression Omnibus database, and included 26 ccRCC and 9 normal kideny samples. Assessment of the microarray dataset led to the recognition of differentially expressed genes (DEGs), which was subsequently used for pathway and gene ontology (GO) enrichment analysis.
    [Show full text]
  • KPNA1 Antibody Cat
    KPNA1 Antibody Cat. No.: 5981 Western blot analysis of KPNA1 in Hela cell lysate with KPNA1 antibody at 1μg/mL. Immunocytochemistry of KPNA1 in HeLa cells with KPNA1 antibody at 2.5 μg/mL. Immunofluorescence of KPNA1 in K562 cells with KPNA1 antibody at 20 μg/mL. Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse, Rat HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine: (100%) KPNA1 antibody was raised against a 15 amino acid synthetic peptide near the amino terminus of human KPNA1. IMMUNOGEN: The immunogen is located within amino acids 30 - 80 of KPNA1. TESTED APPLICATIONS: ELISA, ICC, IF, WB September 30, 2021 1 https://www.prosci-inc.com/kpna1-antibody-5981.html KPNA1 antibody can be used for detection of KPNA1 by Western blot at 1 μg/mL. Antibody can also be used for immunocytochemistry starting at 2.5 μg/mL. For immunofluorescence start at 20 μg/mL. APPLICATIONS: Antibody validated: Western Blot in human samples; Immunocytochemistry in human samples and Immunofluorescence in human samples. All other applications and species not yet tested. POSITIVE CONTROL: 1) Cat. No. 1201 - HeLa Cell Lysate 2) Cat. No. 17-001 - HeLa Cell Slide 3) Cat. No. 17-004 - K-562 Cell Slide Properties PURIFICATION: KPNA1 Antibody is affinity chromatography purified via peptide column. CLONALITY: Polyclonal ISOTYPE: IgG CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: KPNA1 Antibody is supplied in PBS containing 0.02% sodium azide. CONCENTRATION: 1 mg/mL KPNA1 antibody can be stored at 4˚C for three months and -20˚C, stable for up to one STORAGE CONDITIONS: year.
    [Show full text]
  • Toxicogenomics Article
    Toxicogenomics Article Discovery of Novel Biomarkers by Microarray Analysis of Peripheral Blood Mononuclear Cell Gene Expression in Benzene-Exposed Workers Matthew S. Forrest,1 Qing Lan,2 Alan E. Hubbard,1 Luoping Zhang,1 Roel Vermeulen,2 Xin Zhao,1 Guilan Li,3 Yen-Ying Wu,1 Min Shen,2 Songnian Yin,3 Stephen J. Chanock,2 Nathaniel Rothman,2 and Martyn T. Smith1 1School of Public Health, University of California, Berkeley, California, USA; 2Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA; 3National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China were then ranked and selected for further exam- Benzene is an industrial chemical and component of gasoline that is an established cause of ination using several forms of statistical analysis. leukemia. To better understand the risk benzene poses, we examined the effect of benzene expo- We also specifically examined the expression sure on peripheral blood mononuclear cell (PBMC) gene expression in a population of shoe- of all cytokine genes on the array under the factory workers with well-characterized occupational exposures using microarrays and real-time a priori hypothesis that these key genes polymerase chain reaction (PCR). PBMC RNA was stabilized in the field and analyzed using a involved in immune function are likely to be comprehensive human array, the U133A/B Affymetrix GeneChip set. A matched analysis of six altered by benzene exposure (Aoyama 1986). exposed–control pairs was performed. A combination of robust multiarray analysis and ordering We then attempted to confirm the array find- of genes using paired t-statistics, along with bootstrapping to control for a 5% familywise error ings for the leading differentially expressed rate, was used to identify differentially expressed genes in a global analysis.
    [Show full text]
  • Oocyte Aneuploidy—More Tools to Tackle an Old Problem
    COMMENTARY Oocyte aneuploidy—more tools to tackle an old problem COMMENTARY Chris Lodgea and Mary Herberta,1 Meiosis generates a single-copy genome during two centromeric cohesin enables sister centromeres to successive rounds of cell division after a single round biorient on the meiosis II spindle (2, 5). Upon cleavage of DNA replication. Failure to transmit exactly one of centromeric cohesin, dyads are converted to single copy of each chromosome during fertilization gives chromatids, which segregate equationally to opposite rise to aneuploid embryos resulting in infertility and poles of the meiosis II spindle. Protection of a centro- congenital abnormalities such as Down’s syndrome. meric cohesin by Shugoshin proteins (SGOL2 in mam- Aneuploidy attributable to meiotic errors is over- mals) until the onset of anaphase II is essential for whelming due to chromosome segregation errors dur- orderly segregation of chromatids (7, 8). In oocytes, ing female meiosis, and the incidence of these both meiotic divisions are highly asymmetrical, giving increases dramatically as women get older (1, 2). Be- rise to two small nonviable polar bodies (Fig. 1). cause the oocyte is the only viable product of female Consistent with previous studies (9), Tyc et al. (3) meiosis, our understanding of predisposing events in found that only a tiny fraction (<1%) of meiotic errors human oocytes relies largely on inferences from ge- are of paternal origin. Compared with males, the es- netic studies in cases of trisomy and on analysis of tablishment and maintenance of bivalent chromo- oocytes obtained from in vitro fertilization clinics. somes are compromised in female meiosis. In females, Progress toward understanding the underlying mech- there is a greater risk of homologs failing to form cross- anisms has been hampered by a paucity of informa- overs, or of forming them in precarious positions that are tion on the outcome of both meiotic divisions.
    [Show full text]
  • Nuclear Import Protein KPNA7 and Its Cargos Acta Universitatis Tamperensis 2346
    ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos ELISA Acta Universitatis Tamperensis 2346 ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology AUT 2346 AUT ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology ACADEMIC DISSERTATION To be presented, with the permission of the Faculty Council of the Faculty of Medicine and Life Sciences of the University of Tampere, for public discussion in the auditorium F114 of the Arvo building, Arvo Ylpön katu 34, Tampere, on 9 February 2018, at 12 o’clock. UNIVERSITY OF TAMPERE ELISA VUORINEN Nuclear Import Protein KPNA7 and its Cargos Diverse roles in the regulation of cancer cell growth, mitosis and nuclear morphology Acta Universitatis Tamperensis 2346 Tampere University Press Tampere 2018 ACADEMIC DISSERTATION University of Tampere, Faculty of Medicine and Life Sciences Finland Supervised by Reviewed by Professor Anne Kallioniemi Docent Pia Vahteristo University of Tampere University of Helsinki Finland Finland Docent Maria Vartiainen University of Helsinki Finland The originality of this thesis has been checked using the Turnitin OriginalityCheck service in accordance with the quality management system of the University of Tampere. Copyright ©2018 Tampere University Press and the author Cover design by Mikko Reinikka Acta Universitatis Tamperensis 2346 Acta Electronica Universitatis Tamperensis 1851 ISBN 978-952-03-0641-0 (print) ISBN 978-952-03-0642-7 (pdf) ISSN-L 1455-1616 ISSN 1456-954X ISSN 1455-1616 http://tampub.uta.fi Suomen Yliopistopaino Oy – Juvenes Print Tampere 2018 441 729 Painotuote CONTENTS List of original communications ................................................................................................
    [Show full text]
  • Mutational Inactivation of STAG2 Causes Aneuploidy in Human Cancer
    REPORTS mean difference for all rubric score elements was ing becomes a more commonly supported facet 18. C. L. Townsend, E. Heit, Mem. Cognit. 39, 204 (2011). rejected. Univariate statistical tests of the observed of STEM graduate education then students’ in- 19. D. F. Feldon, M. Maher, B. Timmerman, Science 329, 282 (2010). mean differences between the teaching-and- structional training and experiences would alle- 20. B. Timmerman et al., Assess. Eval. High. Educ. 36,509 research and research-only conditions indicated viate persistent concerns that current programs (2011). significant results for the rubric score elements underprepare future STEM faculty to perform 21. No outcome differences were detected as a function of “testability of hypotheses” [mean difference = their teaching responsibilities (28, 29). the type of teaching experience (TA or GK-12) within the P sample population participating in both research and 0.272, = 0.006; CI = (.106, 0.526)] with the null teaching. hypothesis rejected in 99.3% of generated data References and Notes 22. Materials and methods are available as supporting samples (Fig. 1) and “research/experimental de- 1. W. A. Anderson et al., Science 331, 152 (2011). material on Science Online. ” P 2. J. A. Bianchini, D. J. Whitney, T. D. Breton, B. A. Hilton-Brown, 23. R. L. Johnson, J. Penny, B. Gordon, Appl. Meas. Educ. 13, sign [mean difference = 0.317, = 0.002; CI = Sci. Educ. 86, 42 (2001). (.106, 0.522)] with the null hypothesis rejected in 121 (2000). 3. C. E. Brawner, R. M. Felder, R. Allen, R. Brent, 24. R. J. A. Little, J.
    [Show full text]
  • A Gene Expression Resource Generated by Genome-Wide Lacz
    © 2015. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2015) 8, 1467-1478 doi:10.1242/dmm.021238 RESOURCE ARTICLE A gene expression resource generated by genome-wide lacZ profiling in the mouse Elizabeth Tuck1,**, Jeanne Estabel1,*,**, Anika Oellrich1, Anna Karin Maguire1, Hibret A. Adissu2, Luke Souter1, Emma Siragher1, Charlotte Lillistone1, Angela L. Green1, Hannah Wardle-Jones1, Damian M. Carragher1,‡, Natasha A. Karp1, Damian Smedley1, Niels C. Adams1,§, Sanger Institute Mouse Genetics Project1,‡‡, James N. Bussell1, David J. Adams1, Ramiro Ramırez-Soliś 1, Karen P. Steel1,¶, Antonella Galli1 and Jacqueline K. White1,§§ ABSTRACT composite of RNA-based expression data sets. Strong agreement was observed, indicating a high degree of specificity in our data. Knowledge of the expression profile of a gene is a critical piece of Furthermore, there were 1207 observations of expression of a information required to build an understanding of the normal and particular gene in an anatomical structure where Bgee had no essential functions of that gene and any role it may play in the data, indicating a large amount of novelty in our data set. development or progression of disease. High-throughput, large- Examples of expression data corroborating and extending scale efforts are on-going internationally to characterise reporter- genotype-phenotype associations and supporting disease gene tagged knockout mouse lines. As part of that effort, we report an candidacy are presented to demonstrate the potential of this open access adult mouse expression resource, in which the powerful resource. expression profile of 424 genes has been assessed in up to 47 different organs, tissues and sub-structures using a lacZ reporter KEY WORDS: Gene expression, lacZ reporter, Mouse, Resource gene.
    [Show full text]
  • Supplementary Table S1. Table 1. List of Bacterial Strains Used in This Study Suppl
    Supplementary Material Supplementary Tables: Supplementary Table S1. Table 1. List of bacterial strains used in this study Supplementary Table S2. List of plasmids used in this study Supplementary Table 3. List of primers used for mutagenesis of P. intermedia Supplementary Table 4. List of primers used for qRT-PCR analysis in P. intermedia Supplementary Table 5. List of the most highly upregulated genes in P. intermedia OxyR mutant Supplementary Table 6. List of the most highly downregulated genes in P. intermedia OxyR mutant Supplementary Table 7. List of the most highly upregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Table 8. List of the most highly downregulated genes in P. intermedia grown in iron-deplete conditions Supplementary Figures: Supplementary Figure 1. Comparison of the genomic loci encoding OxyR in Prevotella species. Supplementary Figure 2. Distribution of SOD and glutathione peroxidase genes within the genus Prevotella. Supplementary Table S1. Bacterial strains Strain Description Source or reference P. intermedia V3147 Wild type OMA14 isolated from the (1) periodontal pocket of a Japanese patient with periodontitis V3203 OMA14 PIOMA14_I_0073(oxyR)::ermF This study E. coli XL-1 Blue Host strain for cloning Stratagene S17-1 RP-4-2-Tc::Mu aph::Tn7 recA, Smr (2) 1 Supplementary Table S2. Plasmids Plasmid Relevant property Source or reference pUC118 Takara pBSSK pNDR-Dual Clonetech pTCB Apr Tcr, E. coli-Bacteroides shuttle vector (3) plasmid pKD954 Contains the Porpyromonas gulae catalase (4)
    [Show full text]
  • DCAF1 Ubiquitin E3 Ligase Directs Protein Phosphatase 2A Degradation to Control Oocyte Meiotic Maturation
    ARTICLE Received 28 Jan 2015 | Accepted 7 Jul 2015 | Published 18 Aug 2015 DOI: 10.1038/ncomms9017 OPEN CRL4–DCAF1 ubiquitin E3 ligase directs protein phosphatase 2A degradation to control oocyte meiotic maturation Chao Yu1, Shu-Yan Ji1,*, Qian-Qian Sha1,*, Qing-Yuan Sun2 & Heng-Yu Fan1 Oocyte meiosis is a specialized cell cycle that gives rise to fertilizable haploid gametes and is precisely controlled in various dimensions. We recently found that E3 ubiquitin ligase CRL4 is required for female fertility by regulating DNA hydroxymethylation to maintain oocyte survival and to promote zygotic genome reprogramming. However, not all phenotypes of CRL4-deleted oocytes could be explained by this mechanism. Here we show that CRL4 controls oocyte meiotic maturation by proteasomal degradation of protein phosphatase 2A scaffold subunit, PP2A-A. Oocyte-specific deletion of DDB1 or DCAF1 (also called VPRBP) results in delayed meiotic resumption and failure to complete meiosis I along with PP2A-A accumulation. DCAF1 directly binds to and results in the poly-ubiquitination of PP2A-A. Moreover, combined deletion of Ppp2r1a rescues the meiotic defects caused by DDB1/DCAF1 deficiency. These results provide in vivo evidence that CRL4-directed PP2A-A degradation is physiologically essential for regulating oocyte meiosis and female fertility. 1 Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China. 2 State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to H.-Y.F. (email: [email protected]).
    [Show full text]
  • 770.Full-Text.Pdf
    Published OnlineFirst January 14, 2019; DOI: 10.1158/1055-9965.EPI-18-0936 Research Article Cancer Epidemiology, Biomarkers Serum Metabolic Profiling Identified a Distinct & Prevention Metabolic Signature in Bladder Cancer Smokers: A Key Metabolic Enzyme Associated with Patient Survival Chandra Sekhar Amara1, Chandrashekar R. Ambati2, Venkatrao Vantaku1, Danthasinghe Waduge Badrajee Piyarathna1, Sri Ramya Donepudi2, Shiva Shankar Ravi1, James M. Arnold3, Vasanta Putluri2, Gurkamal Chatta4, Khurshid A. Guru5, Hoda Badr6, Martha K. Terris7, Roni J. Bollag7, Arun Sreekumar1,3, Andrea B. Apolo8, and Nagireddy Putluri1 Abstract Background: The current system to predict the outcome of nylalanine, proline, serine, valine, isoleucine, glycine, and smokers with bladder cancer is insufficient due to complex asparagine) and taurine were observed in bladder cancer genomic and transcriptomic heterogeneities. This study aims smokers. Integration of differential metabolomic gene signa- to identify serum metabolite-associated genes related to sur- ture and transcriptomics data from TCGA cohort revealed an vival in this population. intersection of 17 genes that showed significant correlation Methods: We performed LC/MS-based targeted metabo- with patient survival in bladder cancer smokers. Importantly, lomic analysis for >300 metabolites in serum obtained catechol-O-methyltransferase, iodotyrosine deiodinase, and from two independent cohorts of bladder cancer never tubulin tyrosine ligase showed a significant association with smokers, smokers, healthy smokers, and healthy never patient survival in publicly available bladder cancer smoker smokers. A subset of differential metabolites was validated datasets and did not have any clinical association in never using Biocrates absoluteIDQ p180 Kit. Genes associated smokers. with differential metabolites were integrated with a publicly Conclusions: Serum metabolic profiling of bladder cancer available cohort of The Cancer Genome Atlas (TCGA) to smokers revealed dysregulated amino acid metabolism.
    [Show full text]
  • Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
    Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37
    [Show full text]
  • Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma Divulgatum
    microorganisms Article Proteome Cold-Shock Response in the Extremely Acidophilic Archaeon, Cuniculiplasma divulgatum Rafael Bargiela 1 , Karin Lanthaler 1,2, Colin M. Potter 1,2 , Manuel Ferrer 3 , Alexander F. Yakunin 1,2, Bela Paizs 1,2, Peter N. Golyshin 1,2 and Olga V. Golyshina 1,2,* 1 School of Natural Sciences, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK; [email protected] (R.B.); [email protected] (K.L.); [email protected] (C.M.P.); [email protected] (A.F.Y.); [email protected] (B.P.); [email protected] (P.N.G.) 2 Centre for Environmental Biotechnology, Bangor University, Deiniol Rd, Bangor LL57 2UW, UK 3 Systems Biotechnology Group, Department of Applied Biocatalysis, CSIC—Institute of Catalysis, Marie Curie 2, 28049 Madrid, Spain; [email protected] * Correspondence: [email protected]; Tel.: +44-1248-388607; Fax: +44-1248-382569 Received: 27 April 2020; Accepted: 15 May 2020; Published: 19 May 2020 Abstract: The archaeon Cuniculiplasma divulgatum is ubiquitous in acidic environments with low-to-moderate temperatures. However, molecular mechanisms underlying its ability to thrive at lower temperatures remain unexplored. Using mass spectrometry (MS)-based proteomics, we analysed the effect of short-term (3 h) exposure to cold. The C. divulgatum genome encodes 2016 protein-coding genes, from which 819 proteins were identified in the cells grown under optimal conditions. In line with the peptidolytic lifestyle of C. divulgatum, its intracellular proteome revealed the abundance of proteases, ABC transporters and cytochrome C oxidase. From 747 quantifiable polypeptides, the levels of 582 proteins showed no change after the cold shock, whereas 104 proteins were upregulated suggesting that they might be contributing to cold adaptation.
    [Show full text]