Game of Registrars: an Empirical Analysis of Post-Expiration Domain
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Privacy Policy V1.1
CENTRALNIC LTD REGISTRY PRIVACY POLICY Version 1.1 September 2018 CentralNic Ltd 35-39 Moorgate London EC2R 6AR Table of Contents TABLE OF CONTENTS ......................................................................................................................... 2 AMENDMENT ISSUE SHEET ................................................................................................................. 3 INTRODUCTION ................................................................................................................................ 4 DATA PROTECTION RIGHTS ................................................................................................................. 5 RELATIONSHIP WITH REGISTRARS ......................................................................................................... 6 WHAT INFORMATION CENTRALNIC COLLECTS .......................................................................................... 6 INFORMATION CENTRALNIC DOES NOT COLLECT ....................................................................................... 8 HOW INFORMATION IS STORED ............................................................................................................ 8 HOW WE USE INFORMATION ............................................................................................................... 8 HOW INFORMATION IS PROTECTED ..................................................................................................... 13 HOW INFORMATION IS DELETED ........................................................................................................ -
Passive Monitoring of DNS Anomalies Bojan Zdrnja1, Nevil Brownlee1, and Duane Wessels2
Passive Monitoring of DNS Anomalies Bojan Zdrnja1, Nevil Brownlee1, and Duane Wessels2 1 University of Auckland, New Zealand, b.zdrnja,nevil @auckland.ac.nz { } 2 The Measurement Factory, Inc., [email protected] Abstract. We collected DNS responses at the University of Auckland Internet gateway in an SQL database, and analyzed them to detect un- usual behaviour. Our DNS response data have included typo squatter domains, fast flux domains and domains being (ab)used by spammers. We observe that current attempts to reduce spam have greatly increased the number of A records being resolved. We also observe that the data locality of DNS requests diminishes because of domains advertised in spam. 1 Introduction The Domain Name System (DNS) service is critical for the normal functioning of almost all Internet services. Although the Internet Protocol (IP) does not need DNS for operation, users need to distinguish machines by their names so the DNS protocol is needed to resolve names to IP addresses (and vice versa). The main requirements on the DNS are scalability and availability. The DNS name space is divided into multiple zones, which are a “variable depth tree” [1]. This way, a particular DNS server is authoritative only for its (own) zone, and each organization is given a specific zone in the DNS hierarchy. A complete domain name for a node is called a Fully Qualified Domain Name (FQDN). An FQDN defines a complete path for a domain name starting on the leaf (the host name) all the way to the root of the tree. Each node in the tree has its label that defines the zone. -
Monthly Cybersecurity Newsletter April 2018 Issue
Monthly Cybersecurity Newsletter April 2018 Issue Enterprise Security and Risk Management Office (ESRMO) From the Desk of the State Chief Risk Officer – Maria Thompson Be Careful What You Type You should be careful when typing a web address into your browser. It is very easy to enter a similar but incorrect domain name and end up somewhere you do not want to be. Unscrupulous individuals use domain names similar to more popular ones on the Internet in order to entice individuals who mistakenly type the wrong web address. This practice of using similar domain names and relying on individuals to type the wrong address is called typosquatting. A typosquatter’s URL will usually be one of several kinds: a common misspelling of the known name (e.g. exemple.com), a differently phrased name (e.g. examples.com), a different top-level domain name (e.g. example.org), or an abuse of a country code (example.cm). In fact, a report published in December 2009 by McAfee found that .cm was the riskiest domain in the world, with 36.7% of the sites posing a security risk to users. Once on a typosquatter’s site, the user may be tricked into thinking he or she is on the intended site, through the use of similar logos, website layouts or content. Visiting such a site, however, may result in malicious software (malware) to be downloaded and installed on the end user’s machine, or it may entice the end user to disclose private information. Most typosquatters are probably just aiming to make money by taking advantage of your errors. -
Web Portal User Manual For
Web Portal User Manual for ©Copyright 2009 Afilias Limited Afilias Managed DNS – Web Portal User Manual Contents 1. Introduction ................................................................................................................ 1 1.1 About Afilias Managed DNS Service ........................................................................ 1 1.2 Afilias Managed DNS Service Website Help ............................................................. 1 1.3 Support .................................................................................................................. 2 2. DNS Portal Login Screen ............................................................................................... 4 3. MyAccount Screen ....................................................................................................... 5 3.1 Users & Groups ...................................................................................................... 5 3.1.1 User Details Tab ...................................................................................................... 6 3.1.2 User Password Tab .................................................................................................. 7 3.1.3 Users Tab ................................................................................................................. 8 3.1.4 Groups Tab .............................................................................................................. 9 3.2 Add User ............................................................................................................... -
Proactive Cyberfraud Detection Through Infrastructure Analysis
PROACTIVE CYBERFRAUD DETECTION THROUGH INFRASTRUCTURE ANALYSIS Andrew J. Kalafut Submitted to the faculty of the Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in Computer Science Indiana University July 2010 Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements of the degree of Doctor of Philosophy. Doctoral Minaxi Gupta, Ph.D. Committee (Principal Advisor) Steven Myers, Ph.D. Randall Bramley, Ph.D. July 19, 2010 Raquel Hill, Ph.D. ii Copyright c 2010 Andrew J. Kalafut ALL RIGHTS RESERVED iii To my family iv Acknowledgements I would first like to thank my advisor, Minaxi Gupta. Minaxi’s feedback on my research and writing have invariably resulted in improvements. Minaxi has always been supportive, encouraged me to do the best I possibly could, and has provided me many valuable opportunities to gain experience in areas of academic life beyond simply doing research. I would also like to thank the rest of my committee members, Raquel Hill, Steve Myers, and Randall Bramley, for their comments and advice on my research and writing, especially during my dissertation proposal. Much of the work in this dissertation could not have been done without the help of Rob Henderson and the rest of the systems staff. Rob has provided valuable data, and assisted in several other ways which have ensured my experiments have run as smoothly as possible. Several members of the departmental staff have been very helpful in many ways. Specifically, I would like to thank Debbie Canada, Sherry Kay, Ann Oxby, and Lucy Battersby. -
ICANN Registry Request Service
ICANN Registry Request Service Ticket ID: X8T8C-0S4B2 Registry Name: Public Interest Registry gTLD: .org Status: ICANN Review Status Date: 2013-06-04 22:05:48 Print Date: 2013-06-04 22:06:10 Proposed Service Name of Proposed Service: Technical description of Proposed Service: Technical Description of Proposed Service: Background: BTAPPA will be beneficial in situations where one ICANN-accredited registrar purchases (the "Gaining Registrar"), by means of a stock or asset purchase, merger or similar transaction, a portion, but not all, of another ICANN accredited registrar's domain name portfolio ("Losing Registrar") in the .ORG top-level domains ("TLDs") or where a Gaining Registrar receives a request from a registrant to transfer a significant number of its domain names from a Losing Registrar to such Gaining Registrar. Unless an entire portfolio of domain names is being transferred, Gaining Registrars must request that each domain name be transferred individually. Gaining Registrars must meet the following requirements: oGaining Registrar must be ICANN accredited for the .ORG TLD. oGaining Registrar must be in good standing and be under a Registry-Registrar Agreement with PIR. oGaining Registrar must provide PIR with evidence (i.e., affidavit, sale documents) that sets forth the transfer date or, if an acquisition, the target closing date. oIf domain names are to be transferred from multiple Losing Registrars, then they must be Registrar Affiliates. A Registrar Affiliate is a registrar entity that controls, is controlled by or is under common control with, another the Losing Registrar. oTransfers of domain names to multiple Gaining Registrars will not be permitted, regardless of familiar relationship. -