Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities

Total Page:16

File Type:pdf, Size:1020Kb

Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities Updated September 2017 Disclaimer The views and opinions summarized in this document do not necessarily reflect those of the United States government or any agency thereof, nor does the government or its employees make any warranty, expressed or implied, or assume any liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe on privately owned rights. Front cover: Jet: iStock 17461860 Cows: shutterstock 18791644 Power Plant: shutterstock 97115075 Oil drops: adobestock 86516758 Biofuels and Bioproducts from Wet and Gaseous Waste Streams: Challenges and Opportunities January 2017 Updated September 2017 Prepared for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS Preface An earlier version of this report was published January 10, 2017. This version includes corrections to the inherent energy content of food waste (Table ES-1, Table 2-1, Table 2-2, Table 2-8, and Table 2-9) and to the estimated annual CO2 resource availability (corrected from metric to short tons in Table ES-1 and Table 2-1). A second update was made to this report in September 2017. This version replaces Figure 2-20 to clarify mass flows in metric units for the figure. Additionally, this version revises a statement regarding yellow- grease use and availability in Europe on page 50. This report draws together activities related to wet and gaseous waste feedstocks into a single document. It enables an amplified focus on feedstocks in the relevant technology and potential markets category. Also, this report helps to inform and support ongoing wet and gaseous resource recovery activities in the Bioenergy Technologies Office (BETO) and in the broader federal space. Historically, the office has identified wet and gaseous waste feedstocks as potentially advantageous, but has not pursued them with a sustained focus. This document seeks to position these waste streams appropriately alongside more traditional feedstocks in BETO efforts. This document is intended as one step in a longer journey, in which BETO can enhance the economic and environmental sustainability of utilizing wet and gaseous wastes. Without prescribing any particular course of action, this report identifies areas of opportunity. It is intended as a useful resource for reference in selecting targets for more rigorous analyses or areas for future research, development, and demonstration investment. Preface II BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS Preface III BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS Acknowledgements This report was developed by Allegheny Science & Technology (AS&T) in support of the Department of Energy’s Bioenergy Technologies Office (BETO). Mark Philbrick oversaw report development, and Beau Hoffman and Rafael Nieves served as co-authors. Energetics, Inc. provided document production services under the able leadership of Jonathan Rogers. Further credit to Paget Donnelly and Harrison Schwartz of Energetics is in order for their editing and graphics contributions to this report. BETO offers sincere thanks to the following people for providing content, producing data, modeling, and analysis, or providing reviews of this report. This list is incomplete, as many others contributed, but the folks listed below merit special mention: Anelia Milbrandt, National Renewable Energy Laboratory Jonathan Male, Bioenergy Technologies Office, DOE Corinne Drennan, Pacific Northwest National Laboratory Kristen Johnson, Bioenergy Technologies Office, DOE Cynthia Jenks, Ames Laboratory Mark Elless, Bioenergy Technologies Office, DOE Daniel Fishman, Bioenergy Technologies Office, DOE Meltem Urgun-Demirtas, Argonne National Laboratory Daniel Inman, National Renewable Energy Laboratory Michael Guarnieri, National Renewable Energy Laboratory David Babson, Bioenergy Technologies Office Philip Pienkos, National Renewable Energy Laboratory John Lewis, National Renewable Energy Laboratory Richard Skaggs, Pacific Northwest National Laboratory John Holladay, Pacific Northwest National Laboratory Valerie Sarisky-Reed, Bioenergy Technologies Office, DOE BETO gratefully acknowledges reviewers from the U.S. Environmental Protection Agency and U.S. Department of Agriculture for their valuable comments. BETO also acknowledges the ideas and insights contributed by all the stakeholders who participated in the Report Peer Review Meeting hosted by the National Renewable Energy Laboratory in Golden, CO on June 22-23, 2016. The willingness of these experts to share their time and knowledge has helped to define the challenges and opportunities associated with wet and gaseous waste resource recovery feedstocks, markets, and technologies. Special thanks to Aaron Fisher, WERF; Corinne Drennan, Pacific Northwest National Laboratory; Michael Guarnieri, National Renewable Energy Laboratory; Derek Griffin, LanzaTech, Inc.; Marc von Keitz, ARPA-E; and Nancy Andrews, Brown and Caldwell; for serving as rapporteurs at the meeting. The complete list of participants is found in Appendix 6.1. The review meeting was planned and executed by the aforementioned authors. Meeting facilitation was conducted by Jonathan Rogers, Paget Donnelly, and Shawna McQueen, all of Energetics Inc. Special thanks to Jill Coughlin of the National Renewable Energy Laboratory, for her help coordinating the event. Note taking was provided by Beau Hoffman, Allegheny Science & Technology; Brendan Scott, Allegheny Science & Technology; Cindy Gerk, National Renewable Energy Laboratory; Jeremiah Wilson, Office of Energy Policy and Systems Analysis, Department of Energy; and Zachary Peterson, BCS Inc. Acknowledgements IV BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS List of Acronyms AD Anaerobic Digestion AFO Animal Feeding Operation AnMBR Anaerobic Membrane Bioreactor ARPA-E Advanced Research Projects Agency – Energy bcf Billion Cubic Feet BETO Bioenergy Technologies Office BOD Biochemical Oxygen Demand bpd Barrels per Day Btu British Thermal Units CAFO Concentrated Animal Feeding Operation cf Cubic Feet CH4 Methane CHP Combined Heat and Power CNG Compressed Natural Gas CO2 Carbon Dioxide CO2e Carbon Dioxide Equivalent COD Chemical Oxygen Demand CONUS Conterminous U.S. CWC Cellulosic Waiver Credit CWNS US EPA's Clean Watersheds Needs Survey DDGS Dried Distillers Grains with Solubles DOE U.S. Department of Energy DRM Dry Methane Reforming EERE Office of Energy Efficiency and Renewable Energy EIS Electrochemical Impedance Spectroscopy EOR Enhanced Oil Recovery Operations EPA U.S. Environmental Protection Agency FE DOE Office of Fossil Energy FOGs Fats, Oils, and Greases GGE Gallons Gasoline Equivalent GHG Greenhouse Gas GHGRP EPA's Greenhouse Gas Reporting Program GTL Gas to Liquids GWh Gigawatt-Hour H2 Hydrogen List of Acronyms V BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS H2S Hydrogen Sulfide HEFA Hydrogenated Esters and Fatty Acids HHV High Heating Value HRT Hydraulic Retention Time HTC Hydrothermal Carbonization HTL Hydrothermal Liquefaction kg Kilogram kWh Kilowatt-Hour LCA Life Cycle Analyses LCFS Low Carbon Fuel Standard LNG Liquefied Natural Gas m Meter mgd Millions of Gallons per Day MJ Mega Joule MM Million MM GGE Million Gallons of Gasoline Equivalent MMBtu Million British Thermal Units MMO Methane Monooxygenase MMt Million Metric Ton MSW Municipal Solid Waste Mt Metric Ton MW Megawatt MxCs Microbial Electrochemical Cells MYPP Multi-Year Program Plan N Nitrogen NGO Non-governmental organization NH3 Ammonia NREL National Renewable Energy Laboratory NSF National Science Foundation P Phosphorus PNG Pipeline Natural Gas PNNL Pacific Northwest National Laboratory POTW Publicly Owned Treatment Works PTC Production Tax Credit R&D Research and Development RD&D Research, Development, and Demonstration REC Renewable Electricity Credit or Renewable Energy Certificate List of Acronyms VI BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS RFS Renewable Fuel Standard RIN Renewable Identification Number RNG Renewable Natural Gas SBIR Small Business Innovation Research scfd Standard Cubic Feet per Day SMR Steam Methane Reforming SRT Solids Retention Time TBtu Trillion British Thermal Units tcf Trillion Cubic Feet TEA Techno-Economic Analyses USDA U. S. Department of Agriculture VSS Volatile Suspended Solids WE&RF Water Environment and Reuse Foundation WEF Water Environment Federation WESyS Waste-to-Energy System Simulation WRRF Water Resource Recovery Facility WTE Waste to Energy WWTP Waste Water Treatment Plant List of Acronyms VII BIOFUELS AND BIOPRODUCTS FROM WET AND GASEOUS WASTE STREAMS Executive Summary Historically, the concept of “waste-to-energy” has referred to any of a number of highly mature technologies (e.g. incineration or anaerobic digestion) that decrease waste volumes. Landfill capacity scarcity, coupled with increasingly stringent disposal regulations, is necessitating novel waste management solutions. In particular, the notion that waste streams represent valuable feedstocks for the production of biofuels and bioproducts is gaining currency. These feedstocks include inedible fats and greases, biogas from landfills, dairies, wastewater treatment plants, and the organic fraction of municipal solid wastes. Conversion of these feedstocks into renewable natural gas, diesel, and aviation fuels is just beginning to gain market traction. It represents
Recommended publications
  • Biogas Current Biofuels
    Current Biofuels - Biogas Keywords Bioenergy, biofuel, biogas, sustainable, renewable, biomass, anaerobic, waste, bacteria, microbes, fermentation, methane. Background Biofuel feedstocks that have high water content, such as food wastes and livestock manure cannot be easily incinerated, but can produce biogas. Biogas can be burnt to produce heat for cooking, warming homes and producing electricity. It can also be compressed and used as a transport fuel in specially © istockphoto® converted vehicle engines. The digested residue is of use as fertiliser in agriculture. Biogas storage containers Biogas is 60-80% methane and is created by a process termed anaerobic digestion, leaving behind a nutrient- rich substance termed digestate. Anaerobic digestion is carried out by a range of bacteria in the absence of oxygen. A number of bacteria and yeast have been identified in biogas production. Initially carbon dioxide is produced by the decomposing organic matter until an anaerobic environment is created. After the initial digestion a group of bacteria known as methanogens convert the products into methane and carbon dioxide. Anaerobic digestion has a number of environmental benefits including production of ‘green energy and natural fertilisers. The production of biogas can substitute feedstocks for fossil fuels and artificial fertilisers, reducing the amount of greenhouse gases released into the atmosphere. The problems associated with waste disposal are also alleviated by the generation of useful products and decreased release of the potent greenhouse gas, methane, from landfill sites Biogas is successfully generated in a number of developing countries and Europe. In the UK, research is being conducted in a number of areas of biogas production including: • Assessment of how more automated production can be achieved and scaled up to make it efficient and cost e fective.
    [Show full text]
  • Expanding the Use of Biogas with Fuel Cell Technologies
    Expanding the Use of Biogas with Fuel Cell Technologies Biogas with Fuel Cells Workshop Sunita Satyapal National Renewable Energy Laboratory U.S. Department of Energy Golden, Colorado Fuel Cell Technologies Program Program Manager 6/11/2012 1 eere.energy.gov U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector Renewable Electric Power Energy 8% Fuel Cells can apply to diverse Nuclear Industrial sectors Energy 9% Share of Energy Consumed Petroleum 37% by Major Sectors of the Economy, 2010 Residential & Commercial Coal 21% Residential 16% Transportation Natural Gas Electric Power 25% 29% Commercial 13% Transportation 20% Total U.S. Energy = 98 Quadrillion Btu/yr Industrial 22% Source: Energy Information Administration, Annual Energy Review 2010, Table 1.3 2 eere.energy.gov Fuel Cells – An Emerging Global Industry Fuel Cell Patents Geographic Source: Clean Distribution 2002-2011 Energy Patent Growth Index Japan 31% United States 46% Other 3% Clean Energy Patent Growth Index France 1% Korea Great Taiwan 7% Top 10 companies: GM, Honda, Samsung, Britain 1% 1% Toyota, UTC Power, Nissan, Ballard, Plug Canada Germany Power, Panasonic, Delphi Technologies 3% 7% Clean Energy Patent Growth Index[1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011. • Nearly double the second place holder, solar, which has ~540 patents. [1] http://cepgi.typepad.com/files/cepgi-4th-quarter-2011-1.pdf 3 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits • up to 60% (electrical) Very High • up to 70% (electrical, hybrid fuel cell / Efficiency turbine) • up to 85% (with CHP) • 35–50%+ reductions for CHP systems Reduced (>80% with biogas) CO2 • 55–90% reductions for light-duty vehicles Emissions /Biogas • >95% reduction for FCEVs (vs.
    [Show full text]
  • WHY BIOGAS? Biogas Systems Protect Our Air, Water and Soil While Recycling Organic Material to Produce Renewable Energy and Soil Products
    WHY BIOGAS? Biogas systems protect our air, water and soil while recycling organic material to produce renewable energy and soil products. In cities, biogas systems recycle food scraps and wastewater sludge, reducing municipal costs and avoiding transport to disposal sites. In rural areas, biogas systems make agriculture more sustainable and create additional revenue streams for farmers. Since biogas systems prevent greenhouse gases, like methane, from entering the atmosphere, all biogas systems make our air cleaner to breathe and combat climate change, displacing fossil fuels. Biogas systems produce soil products that recycle nutrients, contributing to healthier soils 1211 Connecticut Avenue NW, Suite 650 and creating opportunities to eliminate nutrient runoff that pollutes our waterways. Waste management, renewable Washington, DC 20036-2701 energy and fuels, clean air, healthy soils and crystal clear waterways—you can get all of this when you build a new 202-640-6595 biogas system. [email protected] Use the interactive map at https://americanbiogascouncil.org/resources/biogas-projects/ Operational U.S. Biogas Systems The U.S. has over 2,200 sites producing biogas in all 50 states: 253 anaerobic digesters on farms, 1,269 water resource recovery facilities utilizing anaerobic 101 digesters, 68 stand-alone systems that digest food waste, and 652 landfill gas projects. For comparison, Europe has over Alaska 10,000 operating digesters, with some communities essentially fossil fuel free because of these systems. In 2018, investment in new biogas systems Puerto Rico totaled $1 billion. Over the last five years, total investment in the U.S. biogas industry has been growing at an annual rate of 12%.
    [Show full text]
  • Fuel Properties Comparison
    Alternative Fuels Data Center Fuel Properties Comparison Compressed Liquefied Low Sulfur Gasoline/E10 Biodiesel Propane (LPG) Natural Gas Natural Gas Ethanol/E100 Methanol Hydrogen Electricity Diesel (CNG) (LNG) Chemical C4 to C12 and C8 to C25 Methyl esters of C3H8 (majority) CH4 (majority), CH4 same as CNG CH3CH2OH CH3OH H2 N/A Structure [1] Ethanol ≤ to C12 to C22 fatty acids and C4H10 C2H6 and inert with inert gasses 10% (minority) gases <0.5% (a) Fuel Material Crude Oil Crude Oil Fats and oils from A by-product of Underground Underground Corn, grains, or Natural gas, coal, Natural gas, Natural gas, coal, (feedstocks) sources such as petroleum reserves and reserves and agricultural waste or woody biomass methanol, and nuclear, wind, soybeans, waste refining or renewable renewable (cellulose) electrolysis of hydro, solar, and cooking oil, animal natural gas biogas biogas water small percentages fats, and rapeseed processing of geothermal and biomass Gasoline or 1 gal = 1.00 1 gal = 1.12 B100 1 gal = 0.74 GGE 1 lb. = 0.18 GGE 1 lb. = 0.19 GGE 1 gal = 0.67 GGE 1 gal = 0.50 GGE 1 lb. = 0.45 1 kWh = 0.030 Diesel Gallon GGE GGE 1 gal = 1.05 GGE 1 gal = 0.66 DGE 1 lb. = 0.16 DGE 1 lb. = 0.17 DGE 1 gal = 0.59 DGE 1 gal = 0.45 DGE GGE GGE Equivalent 1 gal = 0.88 1 gal = 1.00 1 gal = 0.93 DGE 1 lb. = 0.40 1 kWh = 0.027 (GGE or DGE) DGE DGE B20 DGE DGE 1 gal = 1.11 GGE 1 kg = 1 GGE 1 gal = 0.99 DGE 1 kg = 0.9 DGE Energy 1 gallon of 1 gallon of 1 gallon of B100 1 gallon of 5.66 lb., or 5.37 lb.
    [Show full text]
  • Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries
    Final Report Study on the Potential of Increased Use of LPG for Cooking in Developing Countries September 2020 TABLE OF CONTENTS Executive Summary ....................................................................................................................................................................... 2 List of Abbreviations ...................................................................................................................................................................... 6 Preface .......................................................................................................................................................................................... 7 1 Introduction.......................................................................................................................................................................... 8 1.1 General ................................................................................................................................................................................. 8 1.2 Background ........................................................................................................................................................................... 8 2 Purpose and Scope of the Study ............................................................................................................................................ 9 2.1 Purpose of the Study ...........................................................................................................................................................
    [Show full text]
  • Process Technologies and Projects for Biolpg
    energies Review Process Technologies and Projects for BioLPG Eric Johnson Atlantic Consulting, 8136 Gattikon, Switzerland; [email protected]; Tel.: +41-44-772-1079 Received: 8 December 2018; Accepted: 9 January 2019; Published: 15 January 2019 Abstract: Liquified petroleum gas (LPG)—currently consumed at some 300 million tonnes per year—consists of propane, butane, or a mixture of the two. Most of the world’s LPG is fossil, but recently, BioLPG has been commercialized as well. This paper reviews all possible synthesis routes to BioLPG: conventional chemical processes, biological processes, advanced chemical processes, and other. Processes are described, and projects are documented as of early 2018. The paper was compiled through an extensive literature review and a series of interviews with participants and stakeholders. Only one process is already commercial: hydrotreatment of bio-oils. Another, fermentation of sugars, has reached demonstration scale. The process with the largest potential for volume is gaseous conversion and synthesis of two feedstocks, cellulosics or organic wastes. In most cases, BioLPG is produced as a byproduct, i.e., a minor output of a multi-product process. BioLPG’s proportion of output varies according to detailed process design: for example, the advanced chemical processes can produce BioLPG at anywhere from 0–10% of output. All these processes and projects will be of interest to researchers, developers and LPG producers/marketers. Keywords: Liquified petroleum gas (LPG); BioLPG; biofuels; process technologies; alternative fuels 1. Introduction Liquified petroleum gas (LPG) is a major fuel for heating and transport, with a current global market of around 300 million tonnes per year.
    [Show full text]
  • Biogas As a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context
    sustainability Article Biogas as a Transport Fuel—A System Analysis of Value Chain Development in a Swedish Context Muhammad Arfan *, Zhao Wang, Shveta Soam and Ola Eriksson Department of Building Engineering, Energy Systems and Sustainability Science, University of Gävle, SE-801 76 Gävle, Sweden; [email protected] (Z.W.); [email protected] (S.S.); [email protected] (O.E.) * Correspondence: [email protected]; Tel.: +46-704-400-593 Abstract: Biofuels policy instruments are important in the development and diffusion of biogas as a transport fuel in Sweden. Their effectiveness with links to geodemographic conditions has not been analysed systematically in studying biogas development in a less urbanised regions, with high po- tential and primitive gas infrastructure. One such region identified is Gävleborg in Sweden. By using value chain statistics, interviews with related actors, and studying biofuels policy instruments and implications for biogas development, it is found that the policy measures have not been as effective in the region as in the rest of Sweden due to different geodemographic characteristics of the region, which has resulted in impeded biogas development. In addition to factors found in previous studies, the less-developed biogas value chain in this region can be attributed particularly to undefined rules of the game, which is lack of consensus on trade-off of resources and services, unnecessary competition among several fuel alternatives, as well as the ambiguity of municipalities’ prioritization, and regional cultural differences. To strengthen the regional biogas sector, system actors need a strategy to eliminate blocking effects of identified local factors, and national policy instruments should provide mechanisms to process geographical conditions in regulatory, economic support, Citation: Arfan, M.; Wang, Z.; Soam, and market formation.
    [Show full text]
  • ACEA Tax Guide 2018.Pdf
    2018 WWW.ACEA.BE Foreword The 2018 edition of the European Automobile Manufacturers’ Association’s annual Tax Guide provides an overview of specific taxes that are levied on motor vehicles in European countries, as well as in other key markets around the world. This comprehensive guide counts more than 300 pages, making it an indispensable tool for anyone interested in the European automotive industry and relevant policies. The 2018 Tax Guide contains all the latest information about taxes on vehicle acquisition (VAT, sales tax, registration tax), taxes on vehicle ownership (annual circulation tax, road tax) and taxes on motoring (fuel tax). Besides the 28 member states of the European Union, as well as the EFTA countries (Iceland, Norway and Switzerland), this Tax Guide also covers countries such as Brazil, China, India, Japan, Russia, South Korea, Turkey and the United States. The Tax Guide is compiled with the help of the national associations of motor vehicle manufacturers in all these countries. I would like to extend our sincere gratitude to all involved for making the latest information available for this publication. Erik Jonnaert ACEA Secretary General Copyright Reproduction of the content of this document is not permitted without the prior written consent of ACEA. Whenever reproduction is permitted, ACEA shall be referred to as source of the information. Summary EU member countries 5 EFTA 245 Other countries 254 EU member states EU summary tables 5 Austria 10 Belgium 19 Bulgaria 42 Croatia 48 Cyprus 52 Czech Republic 55 Denmark 65 Estonia 79 Finland 82 France 88 Germany 100 Greece 108 Hungary 119 Ireland 125 Italy 137 Latvia 148 Lithuania 154 Luxembourg 158 Malta 168 Netherlands 171 Poland 179 Portugal 184 Romania 194 Slovakia 198 Slovenia 211 Spain 215 Sweden 224 United Kingdom 234 01 EU summary tables Chapter prepared by Francesca Piazza [email protected] ACEA European Automobile Manufacturers’ Association Avenue des Nerviens 85 B — 1040 Brussels T.
    [Show full text]
  • Biogas As Vehicle Fuel
    Biogas as Vehicle Fuel A European Overview October 2003, Stockholm Trendsetter Report No 2003:3 Biogas as Vehicle Fuel – a European Overview FOREWORD The spontaneous development of transport in Europe is not sustainable. To change this it is necessary to mobilise and present a carefully chosen combination of measures that cover several areas and involve various responsibilities in the cities rather than a list of isolated efforts. In other words, to have an integrated approach. The European project TRENDSETTER involves 50 individual projects, all of which aim to; improve mobility, quality of life, air quality, and reduce noise and traffic congestion. The cities of Stockholm, Lille, Graz, Prague and Pécs co-operate in the project to ensure real impact, by setting good examples and encouraging others to follow. More information is available at http://www.trendsetter-europe.org This report is produced within the framework of the Trendsetter project. It is a summary of European experiences of Biogas, with a focus on the use as a vehicle fuel. It highlights the lack of European legislation and regulation as a major barrier to the further development of biogas use, but also presents some examples of best practise and provides a guide for cities interested in producing and upgrading biogas. The report has been compiled by Charlotte Plombin, Engineering student at the Ecole des Mines d´Albi, France, as a part of her internship at Stockholm Environment Administration. Project Manager Björn Hugosson at Stockholm Environment Administration, supervised the work. Stockholm, October 2003 Gustaf Landahl Project Co-ordinator 3 Biogas as Vehicle Fuel – a European Overview SUMMARY This reports is a survey over biogas production and utilisation in the EU.
    [Show full text]
  • Wisconsin Administrative Code Index
    WISCONSIN ADMINISTRATIVE CODE INDEX This is an index of all rules published in the code as of July 1, 2021. Suggestions for the improvement of the index or reports of errors and omissions will be appreciated. ABORTIONS ADULT AND VOCATIONAL EDUCATION Environmental impact statements and assessments, Generally, Ch. Med 11 See Technical College System Ch. ATCP 3 Correspondence courses, for−profit schools, Safety Fairs, county and district, Ch. ATCP 160 ACCOUNTANTS AND ACCOUNTING and Professional Services Department — Farm mediation and arbitration program, Ch. ATCP Certification, individuals, Ch. Accy 2 Educational Approval 162 Endorsement, Ch. Accy 3 Farmland preservation program, Ch. ATCP 49 Licensure: ADVERTISING Farmland, soil and water resource management Firms, Ch. Accy 5 Auctions, Ch. SPS 123 program, grants, Ch. ATCP 50 Individuals, Accy 2.501 Direct marketing, Ch. ATCP 127 Fertilizer and pesticide bulk storage, Ch. ATCP 33 Peer review, Ch. Accy 6 Eggs, unfair practices, Ch. ATCP 88 Anhydrous ammonia, Ch. SPS 343 Rule enforcement, Ch. Accy 4 Employment, deceptive offers, Ch. ATCP 116 Groundwater protection program, Ch. ATCP 31 Rules of conduct, Ch. Accy 1 Gasoline, Ch. ATCP 113 Fish farms, ATCP 10.60 to 10.67 Home solicitation selling, Ch. ATCP 127 Food safety: ACUPUNCTURISTS Insurance, accident and sickness, deceptive practices, Egg grade, labeling and quality standards, Ch. Certification, Ch. SPS 71 Ins 3.27 ATCP 88 Discipline, grounds for, Ch. SPS 73 Motor vehicle dealer’s business sign, Trans 138.06 Food processing plants, Ch. ATCP 70 Practice, standards of, Ch. SPS 72 Outdoor, along federally funded highways, Ch. Trans Food warehouses and milk distributors, Ch.
    [Show full text]
  • H2A Biomethane Model Documentation and a Case Study for Biogas from Dairy Farms Genevieve Saur and Ali Jalalzadeh-Azar
    H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms Genevieve Saur and Ali Jalalzadeh-Azar NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Technical Report NREL/TP-5600-49009 December 2010 Contract No. DE-AC36-08GO28308 H2A Biomethane Model Documentation and a Case Study for Biogas From Dairy Farms Genevieve Saur and Ali Jalalzadeh-Azar Prepared under Task No. H2782330 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory Technical Report 1617 Cole Boulevard NREL/TP-5600-49009 Golden, Colorado 80401 December 2010 303-275-3000 • www.nrel.gov Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Life-Cycle Greenhouse Gas Emissions
    FACT SHEET 06 EUROPEAN UNION CO2 STANDARDS FOR NEW PASSENGER CARS AND VANS JULY 2021 Life-cycle greenhouse gas emissions As part of the European Green Deal’s target of a climate neutral European Union by 2050, the transport sector is called on to reduce greenhouse gas (GHG) emissions by 90% compared to 1990, and ICCT’s projections show that a large part of this reduction needs to come from passenger cars. It is therefore important for policymakers to understand which powertrain and fuel technologies are most capable of shrinking the carbon footprint of cars—and not only the emissions from the tailpipes, but also from fuel and electricity production and vehicle manufacturing. A life-cycle assessment (LCA) of the GHG emissions of passenger cars in Europe was carried out. It considers the most relevant powertrain types—internal combustion engine vehicles (ICEVs), including hybrid electric vehicles (HEVs); plug-in hybrid electric vehicles (PHEVs); battery electric vehicles (BEVs); and fuel cell electric vehicles (FCEVs)—and a variety of fuel types and power sources including fossil gasoline, diesel, and natural gas (each of these with the current and future biofuels or biomethane blend rate), e-fuels, hydrogen, and electricity. The assessment is part of a global LCA study that also covers India, China, and the United States. For each of the four regions, the same trends are observed. » Average gasoline and diesel cars correspond to very similar, and relatively high, life-cycle GHG emissions levels (Figure 1). HEVs are found to reduce life-cycle GHG emissions by only about 20% compared to conventional gasoline cars.
    [Show full text]